Published November 1, 2025 | Version Published
Journal Article Open

GW241011 and GW241110: Exploring Binary Formation and Fundamental Physics with Asymmetric, High-spin Black Hole Coalescences

Creators

  • 1. ROR icon Max Planck Institute for Gravitational Physics
  • 2. ROR icon Laser Interferometer Gravitational Wave Observatory
  • 3. ROR icon University of Salerno
  • 4. ROR icon INFN Sezione di Napoli
  • 5. ROR icon University of Warwick
  • 6. ROR icon Monash University
  • 7. ROR icon Pennsylvania State University
  • 8. ROR icon Leibniz University Hannover
  • 9. ROR icon University of Wisconsin–Milwaukee
  • 10. ROR icon California Institute of Technology
  • 11. ROR icon Louisiana State University
  • 12. ROR icon Tata Institute of Fundamental Research
  • 13. ROR icon Centre de Physique Théorique
  • 14. ROR icon Université Catholique de Louvain
  • 15. ROR icon Queen Mary University of London
  • 16. ROR icon University of California, Davis
  • 17. ROR icon University of Minnesota
  • 18. ROR icon National Institute for Space Research
  • 19. ROR icon Astroparticle and Cosmology Laboratory
  • 20. ROR icon University of Rome Tor Vergata
  • 21. ROR icon INFN Sezione di Roma II
  • 22. ROR icon University of Antwerp
  • 23. ROR icon International Centre for Theoretical Sciences
  • 24. ROR icon National Astronomical Observatory of Japan
  • 25. ROR icon Friedrich Schiller University Jena
  • 26. ROR icon INFN Sezione di Torino
  • 27. ROR icon INFN Sezione di Genova
  • 28. ROR icon University of Genoa
  • 29. ROR icon Université Savoie Mont Blanc
  • 30. ROR icon University of Naples Federico II
  • 31. ROR icon Cardiff University
  • 32. ROR icon Australian National University
  • 33. ROR icon Massachusetts Institute of Technology
  • 34. ROR icon Maastricht University
  • 35. ROR icon National Institute for Subatomic Physics
  • 36. ROR icon INFN Sezione di Roma I
  • 37. ROR icon Sapienza University of Rome
  • 38. ROR icon Institut Fresnel
  • 39. ROR icon Laboratoire de Physique des 2 Infinis Irène Joliot-Curie
  • 40. ROR icon University of Tokyo
  • 41. ROR icon Institute for High Energy Physics
  • 42. ROR icon Gran Sasso Science Institute
  • 43. ROR icon Gran Sasso National Laboratory
  • 44. ROR icon University of Florida
  • 45. ROR icon University of Udine
  • 46. ROR icon INFN Sezione di Trieste
  • 47. ROR icon Monterrey Institute of Technology and Higher Education
  • 48. ROR icon INFN Sezione di Perugia
  • 49. ROR icon University of Camerino
  • 50. ROR icon University of Washington
  • 51. ROR icon University of Santiago de Compostela
  • 52. ROR icon California State University, Fullerton
  • 53. ROR icon University of Strathclyde
  • 54. ROR icon Claude Bernard University Lyon 1
  • 55. ROR icon Georgia Institute of Technology
  • 56. ROR icon Chennai Mathematical Institute
  • 57. ROR icon Royal Holloway University of London
  • 58. ROR icon The Graduate University for Advanced Studies, SOKENDAI
  • 59. ROR icon University of Urbino
  • 60. ROR icon INFN Sezione di Firenze
  • 61. ROR icon European Gravitational Observatory
  • 62. ROR icon University of Strasbourg
  • 63. ROR icon Embry–Riddle Aeronautical University
  • 64. ROR icon King's College London
  • 65. ROR icon Korea Institute of Science & Technology Information
  • 66. ROR icon Osaka University
  • 67. ROR icon High Energy Accelerator Research Organization
  • 68. ROR icon Utrecht University
  • 69. ROR icon University of Western Australia
  • 70. ROR icon University of Portsmouth
  • 71. ROR icon University of Trento
  • 72. ROR icon Trento Institute for Fundamental Physics and Applications
  • 73. ROR icon University of Perugia
  • 74. ROR icon University of Oregon
  • 75. ROR icon Syracuse University
  • 76. ROR icon Inter-University Centre for Astronomy and Astrophysics
  • 77. ROR icon INFN Sezione di Pisa
  • 78. ROR icon University of Pisa
  • 79. ROR icon University of Barcelona
  • 80. ROR icon Institut d'Estudis Espacials de Catalunya
  • 81. ROR icon University of Glasgow
  • 82. ROR icon Wigner Research Centre for Physics
  • 83. ROR icon Concordia University Wisconsin
  • 84. ROR icon Stanford University
  • 85. ROR icon University of Michigan–Ann Arbor
  • 86. ROR icon University of Padua
  • 87. ROR icon INFN Sezione di Padova
  • 88. ROR icon Institute for Plasma Research
  • 89. ROR icon Ghent University
  • 90. ROR icon Polish Academy of Sciences
  • 91. ROR icon Northwestern University
  • 92. ROR icon Universität Hamburg
  • 93. ROR icon University of the Balearic Islands
  • 94. Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France
  • 95. ROR icon University of Siena
  • 96. ROR icon Villanova University
  • 97. ROR icon Raja Ramanna Centre for Advanced Technology
  • 98. ROR icon Kenyon College
  • 99. ROR icon Missouri University of Science and Technology
  • 100. ROR icon Indian Institute of Technology Madras
  • 101. ROR icon VU Amsterdam
  • 102. ROR icon Lomonosov Moscow State University
  • 103. ROR icon KU Leuven
  • 104. ROR icon Rochester Institute of Technology
  • 105. ROR icon Université Libre de Bruxelles
  • 106. ROR icon Bar-Ilan University
  • 107. ROR icon Observatoire de la Côte d'Azur
  • 108. ROR icon University of British Columbia
  • 109. ROR icon University of Adelaide
  • 110. ROR icon French National Centre for Scientific Research
  • 111. ROR icon University of Rennes 1
  • 112. ROR icon University of Birmingham
  • 113. ROR icon Washington State University
  • 114. ROR icon Cornell University
  • 115. ROR icon Kastler-Brossel Laboratory
  • 116. ROR icon Christopher Newport University
  • 117. ROR icon University of Melbourne
  • 118. ROR icon University of Warsaw
  • 119. ROR icon University of Maryland, College Park
  • 120. ROR icon University of Milano-Bicocca
  • 121. ROR icon INFN Sezione di Milano Bicocca
  • 122. ROR icon Institut Lumière Matière
  • 123. ROR icon University of Chicago
  • 124. ROR icon Williams College
  • 125. ROR icon University of Arizona
  • 126. ROR icon University of Massachusetts Dartmouth
  • 127. ROR icon University of Copenhagen
  • 128. ROR icon University of Guadalajara
  • 129. ROR icon Institute for Space Astrophysics and Planetology
  • 130. ROR icon Colorado State University
  • 131. ROR icon University of Valencia
  • 132. ROR icon National Central University
  • 133. ROR icon National Tsing Hua University
  • 134. ROR icon Charles Sturt University
  • 135. ROR icon Vanderbilt University
  • 136. ROR icon National Chiao Tung University
  • 137. ROR icon The University of Texas at Austin
  • 138. ROR icon Northeastern University
  • 139. ROR icon University of Toyama
  • 140. ROR icon Carleton College
  • 141. ROR icon University of Szeged
  • 142. ROR icon Swinburne University of Technology
  • 143. ROR icon University of Cagliari
  • 144. ROR icon Brera Astronomical Observatory
  • 145. ROR icon Montana State University
  • 146. ROR icon University of Utah
  • 147. ROR icon Johns Hopkins University
  • 148. ROR icon University of Rhode Island
  • 149. ROR icon The University of Texas Rio Grande Valley
  • 150. ROR icon University of Liège
  • 151. ROR icon University of Bologna
  • 152. ROR icon INFN Sezione di Bologna
  • 153. ROR icon University of Manitoba
  • 154. INFN-CNAF - Bologna, Viale Carlo Berti Pichat, 6/2, 40127 Bologna BO, Italy
  • 155. ROR icon University of Sassari
  • 156. ROR icon Laboratori Nazionali del Sud
  • 157. ROR icon Laboratoire de Physique Corpusculaire de Caen
  • 158. ROR icon University of Sheffield
  • 159. ROR icon University of Florence
  • 160. ROR icon University of Parma
  • 161. INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
  • 162. ROR icon California State University, Long Beach
  • 163. ROR icon Marquette University
  • 164. ROR icon Perimeter Institute
  • 165. ROR icon Mines ParisTech
  • 166. ROR icon University of Trieste
  • 167. ROR icon National Centre for Nuclear Research
  • 168. ROR icon Vrije Universiteit Brussel
  • 169. ROR icon University of Zurich
  • 170. ROR icon Canadian Institute for Theoretical Astrophysics
  • 171. ROR icon Stony Brook University
  • 172. Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
  • 173. ROR icon Montclair State University
  • 174. ROR icon Institute for Nuclear Research
  • 175. ROR icon Indian Institute of Technology Bombay
  • 176. ROR icon University of Minho
  • 177. ROR icon Center for Particle Physics of Marseilles
  • 178. ROR icon Superconducting and other Innovative Materials and Devices Institute
  • 179. ROR icon University of Basilicata
  • 180. ROR icon Western Washington University
  • 181. ROR icon University of the West of Scotland
  • 182. ROR icon Barry University
  • 183. ROR icon Eötvös Loránd University
  • 184. Department of Physics, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan
  • 185. ROR icon University of Sannio
  • 186. ROR icon University of California, Berkeley
  • 187. ROR icon Institute for Theoretical Physics
  • 188. Laboratoire d'Acoustique de l'Université du Mans, UMR CNRS 6613, F-72085 L. Mans, France
  • 189. ROR icon University of Southampton
  • 190. ROR icon University of California, Riverside
  • 191. ROR icon Roma Tre University
  • 192. University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
  • 193. ROR icon University of Nottingham
  • 194. ROR icon Ariel University
  • 195. ROR icon University of Mississippi
  • 196. Graduate School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
  • 197. ROR icon Academia Sinica
  • 198. ROR icon Chinese University of Hong Kong
  • 199. ROR icon American University
  • 200. ROR icon University of Milan
  • 201. ROR icon INFN Sezione di Milano
  • 202. ROR icon Fukuoka University
  • 203. ROR icon University of Cambridge
  • 204. ROR icon Lancaster University
  • 205. ROR icon Nihon University
  • 206. ROR icon Niigata University
  • 207. ROR icon Tamkang University
  • 208. ROR icon Rutherford Appleton Laboratory
  • 209. ROR icon Aoyama Gakuin University
  • 210. ROR icon Helmut Schmidt University
  • 211. Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan
  • 212. ROR icon Department of Atomic Energy
  • 213. ROR icon Observatory of Strasbourg
  • 214. ROR icon University of Białystok
  • 215. ROR icon National Astronomical Observatories
  • 216. ROR icon University of Chinese Academy of Sciences
  • 217. ROR icon Sungkyunkwan University
  • 218. ROR icon Ulsan National Institute of Science and Technology
  • 219. ROR icon Chung-Ang University
  • 220. University of Washington Bothell, Bothell, WA 98011, USA
  • 221. ROR icon University of Ouagadougou
  • 222. ROR icon Ewha Womans University
  • 223. ROR icon National Institute for Mathematical Sciences
  • 224. ROR icon Korea Astronomy and Space Science Institute
  • 225. ROR icon Chungnam National University
  • 226. ROR icon Nagoya University
  • 227. ROR icon Aristotle University of Thessaloniki
  • 228. ROR icon Bard College
  • 229. ROR icon Technische Universität Braunschweig
  • 230. ROR icon Institute of Mathematics
  • 231. ROR icon Jagiellonian University
  • 232. ROR icon University of Montreal
  • 233. ROR icon Indian Institute of Science Education and Research Kolkata
  • 234. ROR icon Seoul National University
  • 235. ROR icon Inje University
  • 236. ROR icon Université Gustave Eiffel
  • 237. ROR icon National Cheng Kung University
  • 238. ROR icon St. Thomas University
  • 239. ROR icon Scuola Normale Superiore di Pisa
  • 240. ROR icon Institució Catalana de Recerca i Estudis Avançats
  • 241. ROR icon Heidelberg University
  • 242. ROR icon Tokyo City University
  • 243. ROR icon Tsinghua University
  • 244. ROR icon Institut des Hautes Études Scientifiques
  • 245. ROR icon Ryukoku University
  • 246. ROR icon University of Stavanger
  • 247. ROR icon Hiroshima University
  • 248. ROR icon University of Amsterdam
  • 249. ROR icon University College London
  • 250. ROR icon Paris Observatory
  • 251. ROR icon Laboratory Universe and Theories
  • 252. ROR icon University of Maryland, Baltimore County
  • 253. ROR icon Central Glass and Ceramic Research Institute
  • 254. ROR icon Institute for Complex Systems
  • 255. ROR icon Yonsei University
  • 256. ROR icon Hobart and William Smith Colleges
  • 257. ROR icon Osservatorio Astronomico di Padova
  • 258. ROR icon Enrico Fermi Center for Study and Research
  • 259. ROR icon Kennesaw State University
  • 260. ROR icon Laboratoire de Physique Subatomique et des Technologies Associées
  • 261. ROR icon University of Antioquia
  • 262. ROR icon Technical University of Madrid
  • 263. ROR icon National Institute of Technology
  • 264. ROR icon Trinity College
  • 265. ROR icon University of Ferrara
  • 266. ROR icon Toho University
  • 267. ROR icon Indian Institute of Technology Gandhinagar
  • 268. ROR icon Peking University
  • 269. Laboratoire MSME, Cité Descartes, 5 Boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France
  • 270. ROR icon Osaka Institute of Technology
  • 271. ROR icon Princeton University
  • 272. ROR icon Goddard Space Flight Center
  • 273. ROR icon Kōchi University
  • 274. ROR icon Laboratoire de Physique de l'ENS de Lyon
  • 275. Deceased 2024 September.
  • 276. ROR icon Kyoto University
  • 277. ROR icon University of Catania
  • 278. ROR icon National Defense Academy of Japan
  • 279. ROR icon Eindhoven University of Technology
  • 280. Deceased 2025 August.
  • 281. ROR icon Beijing Normal University
  • 282. ROR icon Wuhan University

Abstract

We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12 eV.

Copyright and License

© 2025. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Acknowledgement

This material is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia, Innovación y Universidades, the European Union NextGenerationEU/PRTR (PRTR-C17.I1), the ICSC—CentroNazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by the European Union NextGenerationEU, the Comunitat Autonòma de les Illes Balears through the Conselleria d’Educació i Universitats, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the Polish National Agency for Academic Exchange, the National Science Centre of Poland and the European Union—European Regional Development Fund; the Foundation for Polish Science (FNP), the Polish Ministry of Science and Higher Education, the Swiss National Science Foundation (SNSF), the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris I^le-de-France Region, the National Research, Development and Innovation Office of Hungary (NKFIH), the National Research Foundation of Korea, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Israel Science Foundation (ISF), the US-Israel Binational Science Fund (BSF), the Leverhulme Trust, the Research Corporation, the National Science and Technology Council (NSTC), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. This work was supported by MEXT, the JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2402: 24103006, 24103005, and 2905: JP17H06358, JP17H06361, and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grants-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, the National Research Foundation (NRF), the Computing Infrastructure Project of the Global Science experimental Data hub Center (GSDC) at KISTI, the Korea Astronomy and Space Science Institute (KASI), the Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), the AS Grid Center (ASGC) and the National Science and Technology Council (NSTC) in Taiwan under grants including the Science Vanguard Research Program, the Advanced Technology Center (ATC) of NAOJ, and the Mechanical Engineering Center of KEK.

We are grateful for the valuable feedback provided by anonymous reviewers. Additional acknowledgments for support of individual authors may be found in the following document: https://dcc.ligo.org/LIGO-M2300033/public. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising. We request that citations to this article use “A. G. Abac et al. (LIGO-Virgo-KAGRA Collaboration), ...” or similar phrasing, depending on journal convention.

Data Availability

Strain data from the LIGO and Virgo observatories associated with GW241011 and GW241110 are available from the Gravitational Wave Open Science Center. Datasets generated as part of this study, including posterior samples on the source properties of both events, are available on Zenodo, together with notebooks reproducing figures in this Letter (LIGO Scientific Collaboration et al. 2025).

Software References

Calibration of the LIGO strain data was performed with a GstLAL-based calibration software pipeline (A. Viets et al. 2018). Data-quality products and event-validation results were computed using the DMT (J. Zweizig 2006), DQR (LIGO Scientific Collaboration & Virgo Collaboration 2018), DQSEGDB (R. P. Fisher et al. 2021), gwdetchar (D. Macleod et al. 2021), hveto (J. R. Smith et al. 2011), iDQ (R. Essick et al. 2020), Omicron (F. Robinet et al. 2020), and PythonVirgoTools(Virgo Collaboration 2021) software packages and contributing software tools. Analyses in this catalog relied on software from the LVK Algorithm Library Suite (LIGO Scientific Collaboration et al. 2018; K. Wette 2020). The detection of the signals and subsequent significance evaluations were performed with the GstLAL-based inspiral software pipeline (C. Messick et al. 2017; S. Sachdev et al. 2019; C. Hanna et al. 2020; K. Cannon et al. 2021; A. Ray et al. 2023; L. Tsukada et al. 2023; B. Ewing et al. 2024; S. Sakon et al. 2024; P. Joshi et al. 2025a2025b), with the MBTA pipeline (T. Adams et al. 2016; F. Aubin et al. 2021; C. Alléné et al. 2025), and with the PyCBC (S. A. Usman et al. 2016; A. H. Nitz et al. 2017; A. H. Nitz 2018; G. S. Davies et al. 2020; T. Dal Canton et al. 2021) packages. Estimates of the noise spectra and glitch models were obtained using BayesWave(N. J. Cornish & T. B. Littenberg 2015; T. B. Littenberg & N. J. Cornish 2015; T. B. Littenberg et al. 2016; N. J. Cornish et al. 2021; T. Gupta & N. J. Cornish 2024). Low-latency source localization was performed using BAYESTAR(L. P. Singer & L. R. Price 2016). Source-parameter estimation was performed with the Bilby library (G. Ashton et al. 2019; I. M. Romero-Shaw et al. 2020b), using the Dynesty nested sampling package(J. S. Speagle 2020), and the RIFT (C. Pankow et al. 2015; J. Lange et al. 2017; D. Wysocki et al. 2019) package. SEOBNRv5PHM waveforms used in parameter estimation were generated using pySEOBNR (D. P. Mihaylov et al. 2025). PESummary was used to postprocess and collate parameter estimation results (C. Hoy & V. Raymond 2021). The various stages of the parameter estimation analysis were managed with the Asimov library (D. Williams et al. 2023). Population inference was performed with the GWPopulation package(C. Talbot et al. 2025). The SuperRad package (N. Siemonsen et al. 2023; T. May et al. 2025) was used to characterize superradiance phenomena. Plots were prepared with Matplotlib (J. D. Hunter 2007). NumPy (C. R. Harris et al. 2020) and SciPy (P. Virtanen et al. 2020) were used for analyses in the manuscript.

Files

Abac_2025_ApJL_993_L21.pdf

Files (16.8 MB)

Name Size Download all
md5:96d8dd0d0476db1b27660d0756e7a94f
16.8 MB Preview Download

Additional details

Related works

Funding

National Science Foundation
Japan Society for the Promotion of Science
26000005
Japan Society for the Promotion of Science
24103006
Japan Society for the Promotion of Science
24103005
Japan Society for the Promotion of Science
JP17H06358
Japan Society for the Promotion of Science
JP17H06361
Japan Society for the Promotion of Science
JP17H06364
Japan Society for the Promotion of Science
17H06133
Japan Society for the Promotion of Science
20H05639
Japan Society for the Promotion of Science
JP20H05854

Dates

Accepted
2025-09-26
Available
2025-10-28
Published online

Caltech Custom Metadata

Caltech groups
TAPIR, Astronomy Department, LIGO, Walter Burke Institute for Theoretical Physics, Division of Physics, Mathematics and Astronomy (PMA)
Publication Status
Published