View
Online
Export
Citation
REVIEW ARTICLE
|
JUNE 28 2024
Roadmap on photonic metasurfaces
Sebastian A. Schulz
;
Rupert. F
. Oulton
;
Mitchell Kenney
;
Andrea Alù
;
Isabelle Staude
;
Ayesheh Bashiri
;
Zlata Fedorova
;
Radoslaw Kolkowski
;
A. Femius Koenderink
;
Xiaofei Xiao
;
John Y
ang
;
William J. Peveler
;
Alasdair W
. Clark
;
George Perrakis
;
Anna C. T
asolamprou
;
Maria Kafesaki
;
Anastasiia Zaleska
;
Wayne Dickson
;
David Richards
;
Anatoly Zayats
;
Haoran Ren
;
Yuri Kivshar
;
Stefan Maier
;
Xianzhong Chen
;
Muhammad Afnan Ansari
;
Yuhui Gan
;
Arseny Alexeev
;
Thomas F
. Krauss
;
Andrea Di Falco
;
Sylvain D. Gennaro
;
Tomás Santiago-Cruz
;
Igal Brener
;
Maria V
. Chekhova
;
Ren-Min Ma
;
Viola V. Vogler-Neuling
;
Helena C. W
eigand
;
Ülle-Linda T
alts
;
Irene Occhiodori
;
Rachel Grange
;
Mohsen Rahmani
;
Lei Xu
;
S. M. Kamali
;
E. Arababi
;
Andrei Faraon
;
Anthony C. Harwood
;
Stefano V
ezzoli
;
Riccardo Sapienza
;
Philippe Lalanne
;
Alexandre Dmitriev
;
Carsten Rockstuhl
;
Alexander Sprafke
;
Kevin V
ynck
;
Jeremy Upham
;
M. Zahirul Alam
;
Israel De Leon
;
Robert W
. Boyd
;
Willie J. Padilla
;
Jordan M. Malof
;
Aloke Jana
;
Zijin Yang
;
Rémi Colom
;
Qinghua Song
;
Patrice Genevet
;
Karim Achouri
;
Andrey B. Evlyukhin
;
Ulrich Lemmer
;
Ivan Fernandez-Corbaton
Appl. Phys. Lett.
124, 260701 (2024)
https://doi.org/10.1063/5.0204694
02 July 2024 21:45:45
Roadmap on photonic metasurfaces
Cite as: Appl. Phys. Lett.
124
, 260701 (2024);
doi: 10.1063/5.0204694
Submitted: 22 February 2024
.
Accepted: 18 May 2024
.
Published Online: 28 June 2024
Sebastian A.
Schulz,
1,a)
Rupert. F.
Oulton,
2,a)
Mitchell
Kenney,
3,a)
Andrea
Al
u,
4,5
Isabelle
Staude,
6
Ayesheh
Bashiri,
6
Zlata
Fedorova,
6
Radoslaw
Kolkowski,
7
A. Femius
Koenderink,
8
Xiaofei
Xiao,
2
John
Yang,
2
William J.
Peveler,
9
Alasdair W.
Clark,
10
George
Perrakis,
11
Anna C.
Tasolamprou,
12
Maria
Kafesaki,
11,13
Anastasiia
Zaleska,
14
Wayne
Dickson,
14
David
Richards,
14
Anatoly
Zayats,
14
Haoran
Ren,
15
Yuri
Kivshar,
16
Stefan
Maier,
15,17
Xianzhong
Chen,
18
Muhammad Afnan
Ansari,
18
Yuhui
Gan,
19
Arseny
Alexeev,
20
Thomas F.
Krauss,
21
Andrea
Di Falco,
19
Sylvain D.
Gennaro,
22
Tom
as
Santiago-Cruz,
23
Igal
Brener,
23
Maria V.
Chekhova,
24
Ren-Min
Ma,
25
Viola V.
Vogler-Neuling,
26
Helena C.
Weigand,
27
€
Ulle-Linda
Talts,
27
Irene
Occhiodori,
27
Rachel
Grange,
27
Mohsen
Rahmani,
28
Lei
Xu,
28
S. M.
Kamali,
29
E.
Arababi,
30
Andrei
Faraon,
31
Anthony C.
Harwood,
2
Stefano
Vezzoli,
2
Riccardo
Sapienza,
2
Philippe
Lalanne,
32
Alexandre
Dmitriev,
33
Carsten
Rockstuhl,
34,35
Alexander
Sprafke,
36
Kevin
Vynck,
37
Jeremy
Upham,
38,39
M. Zahirul
Alam,
38,39
Israel
De Leon,
40,41
Robert W.
Boyd,
38,39
Willie J.
Padilla,
42
Jordan M.
Malof,
43
Aloke
Jana,
44
Zijin
Yang,
45
R
emi
Colom,
46
Qinghua
Song,
45
Patrice
Genevet,
44
Karim
Achouri,
47
Andrey B.
Evlyukhin,
48,49
Ulrich
Lemmer,
50,51
and Ivan
Fernandez-Corbaton
35
For affiliations, please see the end of the Reference section.
a)
Authors to whom correspondence should be addressed:
sas35@st-andrews.ac.uk
;
r.oulton@imperial.ac.uk
;
and
Mitchell.Kenney@nottingham.ac.uk
ABSTRACT
Here we present a roadmap on Photonic metasurfaces. This document consists of a number of perspective articles on different applications,
challenge areas or technologies underlying photonic metasurfaces. Each perspective will introduce the topic, present a state of the art as well
as give an insight into the future direction of the subfield.
V
C
2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (
https://
creativecommons.org/licenses/by/4.0/
)
.
https://doi.org/10.1063/5.0204694
TABLE OF CONTENTS
EDITORIAL
.........................................
3
I. PERSPECTIVE ON PHOTONIC METASURFACES . . . .
4
A. Introduction
.................................
4
B. State of the art . .
.............................
4
C. Future directions and outlook.
.................
5
II. METASURFACES FOR CONTROLLING LIGHT
EMISSION. . .
.....................................
7
A. Introduction
.................................
7
B. State of the art . .
.............................
8
1. Emission enhancement . . .
.................
8
2. Shaping the emitted light .
.................
9
3. Dynamic tuning of emission. . .
............. 10
4. Chiral light control. . .
..................... 10
5. Methods: Design and fabrication . . .
......... 10
C. Future directions and outlook. . .
............... 10
1. Materials and their integration. . .
........... 10
2. Fabrication challenges . .
................... 11
3. Emission stability . .
....................... 11
4. Magnetic dipole transitions. .
............... 11
5. 2D materials and valleytronics . . .
........... 11
6. Emerging trends in metasurface design . . . . . .
11
7. High-power applications
................... 12
8. Tunable light sources . . .
................... 12
9. Topological, non-Hermitian, and temporal
effects
................................... 12
D. Concluding remarks . . .
....................... 12
III. NONLINEAR OPTICAL METASURFACES . . .
....... 12
A. Introduction . .
............................... 12
B. State of the art
............................... 14
1. Local resonance
—
surface plasmons . . .
....... 14
Appl. Phys. Lett.
124
, 260701 (2024); doi: 10.1063/5.0204694
124
, 260701-1
V
C
Author(s) 2024
Applied Physics Letters
ROADMAP
pubs.aip.org/aip/apl
02 July 2024 21:45:45
2. Local resonance
—
Mie and multipolar modes .
14
3. Local resonance
—
Fano interference
......... 14
4. Collective resonance
—
bound states in the
continuum . .
............................. 15
5. Collective resonance
—
surface lattice
resonance . . .
............................. 15
6. Material resonance
—
epsilon near zero
materials
................................. 15
7. Integrating metasurfaces with nonlinear
materials
................................. 15
8. Nonlinear metasurface selection rules . . .
..... 15
C. Nonlinear generation rate and efficiency. . . .
..... 15
D. Future directions of nonlinear optical
metasurfaces
................................. 17
1. Metasurfaces for nonlinear wave-front
control................................. 17
2. Metasurfaces for modulation and switching. . .
17
3. Reduced power non-perturbative nonlinear
optics. . .
................................. 17
IV. METASURFACES FOR BIOSENSING. .
............. 17
A. Introduction
................................. 17
B. Biosensors: Plasmonic vs dielectric.
............. 18
C. Biosensing. .
................................. 18
D. Refractometric sensors . . .
..................... 18
E. Plasmonic refractometric sensors . .
............. 18
F. Dielectric refractometric sensors . . .
............. 19
G. Chiral sensors . .
............................. 19
H. Enhanced vibrational spectroscopy
............. 19
I. Nanoholes . .
................................. 20
J. Future directions and outlook
—
cross-reactive
metasurface biosensors
......................... 20
V. METASURFACES FOR PASSIVE RADIATIVE
COOLING. . .
..................................... 22
A. Introduction
................................. 22
B. State of the art . .
............................. 23
C. Future directions and outlook.
................. 25
VI. METASURFACES FOR PHOTOCATALYSIS
......... 26
A. Introduction
................................. 26
B. State of the art . .
............................. 27
C. Future directions and outlook.
................. 29
D. Concluding remarks .
......................... 30
VII. ORBITAL ANGULAR MOMENTUM AND
WAVEFRONT CONTROL . . .
..................... 30
A. Introduction
................................. 30
B. State-of-the-art . .
............................. 30
C. Future directions and outlook.
................. 32
VIII. METASURFACES FOR HOLOGRAPHY AND
STRUCTURAL COLOR.
......................... 33
A. Introduction
................................. 33
B. Optical field manipulation in polarization-based
holography .
................................. 33
C. Toward 3D polarization structures: challenges
and future directions.
......................... 35
IX. META-OPTICS FOR AUGMENTED REALITY
APPLICATIONS.
................................. 37
A. Introduction
................................. 37
B. State of the art . .
............................. 38
1. Parameters . .
............................. 38
2. System architectures and technological
platforms .
............................... 38
C. Future perspectives
........................... 39
X. METASURFACES FOR QUANTUM STATES
GENERATION.
................................... 40
A. Introduction . .
............................... 40
B. Single-photon generation . . .
................... 41
C. Biphoton generation . . .
....................... 43
D. Future directions . .
........................... 45
XI. METASURFACE LASERS. . .
....................... 46
A. Introduction . .
............................... 46
B. Key performance parameters
................... 46
C. Eigenmode engineering in a single microscale
laser cavity . . .
............................... 47
1. Enhance laser performance . .
............... 47
2. Enhancing local field . . .
................... 47
3. Controlling radiation field. . .
............... 47
D. Eigenmode engineering in arrayed lasers .
....... 47
1. Large area single mode .
................... 47
2. High dimensional radiation. .
............... 49
3. Reconfigurable phased array nanolasers . . . . . .
49
E. Future directions . .
........................... 49
F. Summary .
................................... 50
XII. SOLUTION-DERIVED NANOFABRICATION FOR
NONLINEAR METASTRUCTURES .
............... 50
A. Introduction . .
............................... 50
B. Nanoimprint and solution derived principles and
advantages
................................... 50
C. The challenges of solution-based processing of
metasurfaces . .
............................... 51
D. Roadmap towards high-performing solution-
based metasurfaces
........................... 52
E. Future directions . .
........................... 53
1. Exploration of other materials and processes. .
53
2. Nonlinear applications with high scalability,
transparency ranges, robustness, and
dimensionality .
........................... 53
3. Unexplored properties and more fundamental
aspects
................................... 54
XIII. SEMICONDUCTOR METASURFACES:
MATERIALS AND NANOFABRICATION
APPROACHES. . .
............................... 54
A. Introduction . .
............................... 54
B. Semiconductor metasurfaces and fabrication
challenges
................................... 54
C. Group IV semiconductor metasurfaces . . .
....... 55
D. Group III
–
V semiconductor metasurfaces
....... 55
E. Multi-layered semiconductor metasurfaces
....... 56
F. Metasurfaces made of hybrid and emerging
materials .
................................... 58
G. Conclusions and future perspectives .
........... 58
XIV. CONFORMAL AND FLEXIBLE METASURFACES:
A BRIEF PERSPECTIVE . .
....................... 58
A. Introduction and brief history . .
............... 58
B. Design, fabrication, and applications .
........... 61
1. Optical design .
........................... 61
2. Fabrication techniques . .
................... 61
3. Applications. . .
........................... 62
Applied Physics Letters
ROADMAP
pubs.aip.org/aip/apl
Appl. Phys. Lett.
124
, 260701 (2024); doi: 10.1063/5.0204694
124
, 260701-2
V
C
Author(s) 2024
02 July 2024 21:45:45