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We propose an efficient and accurate scheme to calculate the melting point (MP) of materials. This
method is based on the statistical analysis of small-size coexistence molecular dynamics simulations.
It eliminates the risk of metastable superheated solid in the fast-heating method, while also signif-
icantly reducing the computer cost relative to the traditional large-scale coexistence method. Using
empirical potentials, we validate the method and systematically study the finite-size effect on the cal-
culated MPs. The method converges to the exact result in the limit of large system size. An accuracy
within 100 K in MP is usually achieved when simulation contains more than 100 atoms. Density
functional theory examples of tantalum, high-pressure sodium, and ionic material NaCl are shown
to demonstrate the accuracy and flexibility of the method in its practical applications. The method
serves as a promising approach for large-scale automated material screening in which the MP is a
design criterion. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819792]

. INTRODUCTION

Theoretical predictions of the melting point (MP) have
a long history, and have been based on a wide variety of
calculation approaches, as well as different levels of accu-
racy in the descriptions of interatomic interactions. In the last
two decades, thanks to the increased availability of comput-
ing power, density functional theory (DFT)'~* has established
itself as a useful simulation tool for accurate and general mod-
eling of materials, but melting point predictions based on DFT
are still considered quite challenging, involving either the use
of large simulation cells or the development of auxiliary em-
pirical potentials. In this paper, we seek to relax the require-
ments by exploring the possibility of accurately and quickly
predicting MP using small-cell DFT calculations alone. Such
a capability would be very useful, for instance, in the study of
phase diagrams of novel materials or in the automated screen-
ing of materials when MP enters in the selection criterion.

Our primary goal is to devise a method that delivers a
melting point estimate simply and quickly, and whose ac-
curacy can be systematically improved if more calculations
are performed. This capability is ideal for material screen-
ing efforts, but, unfortunately, current methods commonly
used in MP calculations do not have this property. For ex-
ample, free energy-based methods,*® in which MP is lo-
cated at the intersection of free energy curves, suffer from
the high computational cost of liquid-state free energy calcu-
lations and/or the reliance on reference systems with known
free energy, which may be difficult to devise in complex ma-
terials. Another mainstream method, the solid-liquid coexis-
tence approach,'*'# requires a large system size to stabilize
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the coexistence, thus rendering the method computationally
demanding in the context of DFT. In each case, the methods
have a large “fixed cost,” both in terms of computational and
human effort, that is hard to reduce even if a lower accuracy is
sufficient. The fast-heating method, or so-called “heat-until-
it-melts” method, ' has lower computational requirements but
exhibits hysteresis and overheating issues near phase transi-
tion. The “Z-method,”'% although successfully applied to sev-
eral systems,!”!8 is still under debate'”-'>2% on its rigorous
theoretical ground and its heavy dependence on simulation
size and length.

Despite of their disadvantages, both the coexistence and
the fast-heating methods shed light on the search of an au-
tomated MP predictor, as they are complementary to each
other. For example, while the coexistence method demands
large system size, which skyrockets the computer cost, the
fast-heating method requires only a small size. Also, while
the fast-heating method suffers from hysteresis due to the high
energy barrier between the solid and liquid phases, the solid-
liquid interface in the coexistence method creates a channel
between the two phases, so they are free to exchange and the
hysteresis is removed. These observations naturally suggest
the possibility of combining these two methods.

Let us imagine the case of small size solid-liquid coexis-
tence. We expect to gain a significant speed boost as the sys-
tem size is significantly reduced. At the same time, we will
certainly face another problem: the interface is not stable in
small systems. In isothermal-isobaric (constant NPT) simu-
lations, the system will quickly turn into a pure state, either
solid or liquid, and never go back again to the coexisting state,
during the short time scale (~10 ps) we can reach.

Although it fails to maintain two stable phases, we
find that small-size coexistence simulation contains plenty of

© 2013 AIP Publishing LLC
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thermodynamic information. When two phases coexist at
the beginning, the system evolves following thermodynamic
rules, which govern the transition between the two phases and
affect the probability distribution of the final pure states. By
running many parallel small-size coexistence simulations and
analyzing this probability distribution, we can obtain the rel-
ative stability of the two competing phases. In this article, we
derive the theory that describes small-size coexistence sim-
ulation and demonstrate that it is a robust method for MP
prediction.

Despite its similar name, our approach should be
distinguished from the “two-phase thermodynamics”
approach,”'=?* in which the liquid phase is represented as a
fictitious mixture of a solid-like and hard-sphere-like free
energy contributions.

The method is described in detail in Sec. II. We present
the validation of the method and the study on its system-size
dependence in Sec. III. Then we apply it to DFT calculations
of melting temperatures. Discussions and conclusions can be
found in Sec. IV.

Il. METHODS

A schematic illustration of the idea is shown in Fig. 1.
Solid-liquid coexisting systems are prepared by heating and
melting half of the solid, while the other half is fixed frozen.
Starting from a set of different coexistence configurations,
isothermo-isobaric (NPT) MD simulations are carried out to
trace the evolution. After several picoseconds, the two inter-
faces annihilate with each other and all simulations end with
homogeneous phases, either solid or liquid.

We attempt to extract information regarding the MP from
the ratio Nyquid/ Nsolid» Where Niiquia and Nyoig are, respec-
tively, the numbers of simulations that terminate in a com-
pletely liquid or completely solid state starting from an initial

n solid n

l

face  interface inter

n  solid

liquid
/2 1/2
| Neotia + Miquid
¢ ]Vsolid ATqunid
solid liquid

FIG. 1. Schematic illustration of how small-size coexistence method is exe-
cuted in practice. Starting from n x n x [ supercell with atoms on their ideal
solid positions, we heat and melt the right half to obtain solid-liquid coexis-
tence configurations. Then many parallel NPT MD simulations (here a total
of N = Ngolid + Miiquid) are performed, in order to measure the probability
distribution.
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half-half solid-liquid coexistence. To calculate this ratio, we
view the interface position x (defined by the atomic fraction
of liquid phase) as obeying a random walk with a drift related
to the free energy difference between the liquid and the solid
phases. The initial state is x = 0.5 and we track the system
until it reaches either x = 0 or x = 1, which are considered
completely “absorbing” states, because the free energy of for-
mation of the interface so large that, once it has disappeared,
it would not reappear in a time frame reachable by our simu-
lations. In between those two absorbing states, the free energy
of system is given by G(x) = G* + G' ~*x, with G'~* = G/
— G*, and where G' and G*, respectively, denote the free en-
ergies of the whole system if it were entirely liquid or entirely
solid. In a time step At, the system can jump from x to x + Ax
or to x — Ax or stay in place at x. The system jumps with an
attempt frequency v (which can be assumed constant, with-
out loss of generality, since the activation entropy can absorb
any change in v). When jumping from x to x 4+ Ax, the sys-
tem faces a free energy barrier G + G' =35 Ax/2, where Gg
is a barrier measured relative to the average free energy of
the initial and final states. The probability of jumping from
x tox + Ax in a time interval A¢ is thus

Proxiar = Vexp(=B(Gp + G Ax/2)At, (1)
where B = (kzT)~" and kg is Boltzmann’s constant. Similarly,
the probability of jumping from x to x — Ax is

Prox-ax =vexp(—B(Gg — G'* Ax/2)Ar. (2)

To avoid carrying through unnecessary quantities, it is conve-
nient to work with jump probabilities conditional on a jump
(by either +Ax or —Ax) taking place, given by

Px—x+Ax

3)

ﬁx%x+Ax = )
Px—x+Ax + Px—x—Ax

Px—x—Ax

“)

Prosx—nx = .
Px—x+Ax + Px—x—Ax
As the system undergoes a random walk, the interface posi-
tion goes through a sequence of values x;. A useful obser-
vation is that for any sequence x; converging to 1 there ex-
ists a corresponding sequence X; = 1 — x; converging to 0. In
general, the two sequences do not necessarily have the same
probability. Indeed, the ratio of their probabilities can be de-
rived as follows. Let r and / be the number of times x; jumps
towards +Ax and towards — Ax, respectively. Note that

I+r ~
Hi:l Pxi—xiq
I+r ~
Hi:l Pxi—>%iq

I+r ~ I+r

_ Pxi—xiq _ | |

i=1 PA—xp)—>(1—xi41) ie1 D—xp)—>(1—xi41)

pxi—>xi+|

_ (exp(=BG'* Ax/2)) (exp(BG'* Ax/2))
 (exp(BG'~* Ax/2)) (exp(—B G~ Ax/2))

= exp(—BG' T Ax(r — 1))
= exp(—BG'7*/2), (5)

since if x; goes from 1/2 to 1, then Ax(r — [) = 1/2. Now, if
we consider every possible path x; (of any length) going to 1,
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the ratio of the total probabilities is

thUid _ Z{Xi} Hi ﬁxf_>x[+l
Z{x;} l_[i ﬁ(lfxi)%(lfx,-ﬂ)

o Z{x;} CXP(_IBGlﬂV/z) l_[,- P—xi)—(1=x;41)
Z{x;} l_[i ﬁ(lfx,-)»(lfxi_*_])

Z{Xi} 1_[[ ﬁ(l—x,-)_>(|_xi+])
Z{x,-} Hi Pl—xi)—(1=x;11)

= exp(—BG'*/2). (©6)

The factor 1/2 in this Boltzmann-like expression arises be-
cause our probabilities are conditional on the system starting
in specific state (half liquid, half solid) and ending in one of
the two specific states (entirely liquid or solid). If the sys-
tem were started in a randomly chosen state and were left to
evolve indefinitely (repeatedly melting and solidifying at ran-
dom), then the ratio of the probabilities of the simulation cell
being all liquid and all solid would yield, asymptotically, the
usual Boltzmann expression exp (—BG' ~*), without the 1/2
factor.

Since G'—* equals zero at MP, one could locate MP
where Njjquia €quals Nyo1ia. However, it is not an efficient way
to proceed because it usually takes several iterations to ap-
proach MP while all the trial calculations (away from the MP)
are wasted. To avoid this, we propose the following fitting
method which not only takes advantages of all available cal-
culations, but also yields more melting properties in addition
to the MP.

We compute the ratios f{T) = Niiquia/(Nsotia + Miiquid) On a
set of different temperatures. As T increases, G' ~* turns grad-
ually from positive to negative, so f changes smoothly from 0
to 1. Thus, we can obtain MP through fitting the expression.
In practice, in order to calculate more melting properties, we
combine this relation with enthalpy, since it can be easily cal-
culated as an average over an MD trajectory:

exp[-BG'(T)/2]

Niolia

= exp(—BG'™"/2)

H(T) = H'(T) + H'™(T)5 iy T ST
where
H'(T) = H'(T,,) + C3(T — Ty, (®)
H'™(T)=H'"(T,)) + C, (T — T,), ©)
l—s _ Tm -T l—s _ l=s (T - Tm)2
GT(T) = == HT(T,) — € === (10)

We derive Eq. (10) in the Appendix. By fitting H(T) to T, we
obtain melting properties, e.g., melting temperature 7, solid
and liquid enthalpies H*'(T,,) at T,,,, and heat capacities C}/'.

lll. RESULTS

This section consists of two parts. In the first part, the
method is extensively studied on empirical potentials. Al-
though our method is primarily intended to be used with DFT
calculations, empirical potentials enable us to extensively test
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and study our method, using an accurate benchmark (a large
cell coexistence simulation). The validation of the method is
first demonstrated. Then size effect is studied by gradually re-
ducing the system size to around 100 atoms, which is suitable
for DFT calculations. In the second part, we apply the method
to DFT calculations to show that it provides an effective way
to predict melting temperatures.

A. Empirical potentials
1. Validation

We test our method on a relatively large system (6 x 6
x 12 supercell containing 864 atoms) and a tantalum em-
bedded atom method (EAM) potential.>* The MP predicted
is compared with the benchmarks, which we obtain by both
large-size solid-liquid coexistence method and the free en-
ergy method. The excellent agreement demonstrates that our
method is valid and it is capable to compute MP accurately.

To generate starting configurations (x;q = 0.5) for MD
simulations, we melt the right half of the bec Ta lattice by
heating it to a very high temperature (about 4 times the es-
timated MP), while the left half is fixed at its ideal bcc po-
sition. After the right half melts completely, we continue the
MD simulation for several thousand steps and capture differ-
ent coexisting configurations uniformly from the MD trajec-
tory. Each snapshot, a half-and-half combination of freezed
solid and superhot fluid, serves as a starting point for one MD
simulation.

NPT MD simulations are carried out to trace the evolu-
tion of coexisting systems, as is commonly done (see, e.g.,
Ref. 10). Here, the thermostat is conducted under the Nose-
Hoover chain formalism.?>~2% The barostat is realized by ad-
justing volume every 200 steps according to average pressure.
(Although this does not formally generate an isobaric ensem-
ble, we find it effective to change volume smoothly and to
avoid the unphysical large oscillation caused by commonly
used barostats.) During the first hundred femtoseconds, the
temperature difference between the solid and the liquid is
eliminated through fast heat transfer. The thermostat quickly
turns the whole system to the designed temperatures, while
the solid and liquid compositions are still approximately 0.5,
as the time scale is too short for any phase transition to occur.

Each MD simulation undergoes either freezing or melting
to a pure state. Methods including bond order parameter®®3°
and atomic displacements are used to distinguish between
solid and liquid, and to determine whether a system has com-
pletely frozen or melted. We show in Fig. 2 the evolution of
50 independent MD trajectories at 3325 K, from which we
can clearly see phase transitions, as they all end at either a
higher (liquid) or lower (solid) enthalpy. The final enthalpy
is collected from each trajectory, shown as green dots in
Fig. 3. Enthalpies and heat capacities are fitted for the solid
and the liquid state separately, according to Egs. (8) and (9).
At each temperature, the combined enthalpy of solid and liq-
uid together and its standard error are computed based on bi-
nomial distribution, shown as blue bars. Finally, melting tem-
perature is obtained through fitting the relation between en-
thalpy and temperature according to Eq. (10). As shown in
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t/ ps

FIG. 2. Enthalpy H versus time ¢ shows the evolution of 50 independent MD
systems (6 x 6 x 12 supercell, 864 atoms) at 3325 K. It is clear that each
trajectory ends finally in a pure state, either solid (lower enthalpy) or liquid
(higher enthalpy).

both Table I and Fig. 3, the close agreement between the re-
sults and the benchmarks strongly suggests that our method is
valid.

There is another interesting phenomenon we should note
in Fig. 2. Although we have assumed that a simulation will
never go back to coexistence only after it reaches a pure phase,
this is not exactly true. Even when the fraction of a certain
phase is nonzero but small enough, the two interfaces on its
boundaries interact so strongly that they intend to annihilate
with each other. According to Fig. 2, the ultimate fate of an
MD simulation (fully liquid or fully solid) is only “undeter-
mined” if its composition is within a certain region, e.g., be-
tween —7.0 and —6.9 in Fig. 2. As soon as it steps outside
the region, i.e., the composition of one phase is large enough,
this advantage is so large that it will never be overruled. This
implies that the range [Xmin, Xmax] Of liquid fraction x where
the system truly evolves as a random walk is smaller than
[0, 1]. To account for this, we introduce one more parameter
in to Eq. (6) when fitting to reflect the a priori unknown length
Iy = Xmax — Xmin- It is straightforward that we can rewrite
Eq. (6) as follows, provided that [Xpin, Xmax] 1S Symmetric,

—6.7
6.8 ]
6.9 ]
=z
o
~ Ir b
ss|
71k ]
721 average H (single trajectory)
—— H linear fit of solid/liquid
73 — T,=3325+1 K, 1,=0.36+0.01
-7.3k . . . . |
3100 3200 3300 3400 3500 3600

T/ K

FIG. 3. The melting properties fitted according to Eqs. (7)—(10). The average
enthalpies are shown in green dots. The solid and liquid parts (two red lines)
are first fitted separately to obtain enthalpies and heat capacities, according
to Egs. (8) and (9). Then, we combine the two phases and fit to Eq. (10) to
compute MP. The predicted MP agrees with the benchmarks (the pink vertical
bin).
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TABLE I. Melting properties and comparison with benchmarks.

Free energy Coexistence
This method method method

Ty (K) 3325 3370 3340
H'=5(T,,) (eV) 0.348 0.353
C5 (x107%) eV K™ 3.49 3.24
C! (x107%) eV K™ 3.88 3.98
1.., Xmin + Xmax = 1:

Niiquid

—E = exp (—BG'1,/2). (11)

Nsolid

Observing that the interaction of two interfaces is deter-
mined dominantly by the distance d between them, we expect
I, to approach 1 asymptotically as we elongate the cell along
the direction perpendicular to the interface, which renders d
negligible compared the total length of the cell. We calculate
the value of I, for different length [ in cell size n x n x [.
When the length [ increases, we find /, approaches 1 as we
expected, shown in Fig. 4. This predicted property serves as
another proof on the validity of our theory.

We note that although our theory is perfect (i.e., T, is
exact and /, = 1) only when the system size is large enough,
the accurate calculation of melting temperature does not nec-
essarily require such large size. Take the study in Fig. 4 as
an example. T, is calculated as 3325 and 3312 K for [ = 12
and 32, respectively, though [, is as different as 0.36 and 0.89.
Melting temperature calculations are accurate even on small
system sizes, as we will show in Sec. IIT A 2.

2. Size effect

After we demonstrate that our method is valid in the large
system limit, we gradually reduce the system size down to
around 100 atoms, a size suitable for DFT calculations. The
size effect is studied systematically in this section. The three
dimensional space is catalogued into two groups, i.e., the two

~508

0.6

0.4

i
“10 15 20 25 30 35
lin 6 x 6 x [ supercell

FIG. 4. [, as a function of cell length / in supercell size 6 x 6 x [. We calcu-
late [, onl = 12, 18, 24, and 32. The value of /, approaches 1 asymptotically
as [ increases. Two curves, which are functions of /=! and I=!7, respectively,
are fitted to show the asymptote. Although a simple geometrical argument
suggests an exponent of —1, we find that, in practice, the convergence is
slightly faster, perhaps because of other size effects, such as the periodic im-
age interactions, an additional higher-order effect that fades with system size.
In the inserted small plot, the data points are fitted to a line I, = 1 — d/I.
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3300F 1
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FIG. 5. Finite-size effect caused by system size n in n x n x [. Melting
temperatures are calculated on n x n x 12 supercells with n ranging from 2
to 6, following the same scheme described in Sec. III A 1. We find that MP
calculations are still correct for n down to 3.

dimensions in parallel to the interface and the last dimension
perpendicular to the interface. The contributions of these two
factors are treated separately. We find that the error of MP
is still within 100 K even if the supercell size is reduced to
3 x 3 x 6 (108 atoms), which is appropriate for DFT MD
calculations.

We first study the directions parallel to the interface
plane. As the box size becomes smaller in these two di-
rections, the periodic constraints exert more impact on both
phases, especially on the liquid, since the correlation length
is truncated by the box vectors. Therefore, the calculated MP
starts to deviate from the true value. We decrease supercell
sizes (n x n x 12) from n = 6 down to 2, and calculate MP
for each size, following the same recipe. The size dependence
of MP is shown and compared in Fig. 5. We find that even
for system size as small as n = 3, the finite size effect is still
reasonably small.

We then study the size effect along the direction perpen-
dicular to the interface. As we reduce the vector along this
direction, the interaction among interfaces becomes stronger,
either attracting or repelling each other and thus biasing the
result. We gradually decrease / from 12 to 4. n is set to 3, be-
cause it is small enough and it still leads to the correct MP,
according to the analysis in the previous paragraph. We find
that the error is still small even for 3 x 3 x 6, as shown in
Fig. 6.

3800
3700 I 1
3600F 1
35007 1

3400F 1

3300 1 1

3200 4 6 8 10 12
l

FIG. 6. Finite-size effect caused by system size [ in n x n x [. Melting
temperatures are calculated on 3 x 3 x [ supercells with / from 12 down
to 4. We find that melting temperature is still accurate even for system size as
small as 3 x 3 x 6.
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3. More tests

Employing empirical potentials, we test the method on
different materials, including bce niobium,?! fcc copper,®
and ionic material sodium chloride.>® For each material, we
study the finite-size effect caused by system size n X n x L.
The MPs calculated are presented in Fig. 7. For super-cells
withn:n:[l=1:1:2 (sothe box size is approximately
a x a x 2a), we summarize the finite-size error in Fig. 8.
When system size is large, the excellent agreement with the
benchmarks serves as strong evidence of the reliability of our
method. In order to achieve the accuracy within 100 K in MP
calculation, we find that it is usually sufficient if the system
size is larger than 10 A and if it contains more than 100 atoms.
This property strongly supports our claim that this method can
be applied to DFT calculations.

B. DFT calculations
1. Tantalum at ambient pressure

As a simple example, we first apply our method to the
MP calculation of Ta at ambient pressure.

The simulations are performed on a 3 x 3 x 6 bcc
supercell, containing 108 atoms. All electronic structures
are calculated by the Vienna Ab-initio Simulation Package
(VASP),**3% with the projector-augmented-wave (PAW)>’
implementation and the generalized gradient approximation
(GGA) for exchange-correlation energy, in the form known
as Perdew-Burke-Ernzerhof (PBE).3® Both the valence 6s, 5d,
and inner core 5p electrons (denoted as PBE-core) are in-
cluded. The electronic temperature is accounted for by im-
posing Fermi distribution of the electrons on the energy level
density of states (DOS), so it is consistent with the ionic tem-
perature. The plane wave energy cutoff is set to 224 eV and
it is further increased to 500 eV for pressure correction. A
special k-point™8 (0.00 0.25 0.25) is used throughout the cal-
culations. To estimate the error of using this single k-point,
we compute its difference to fully converged value, on ran-
domly chosen configurations including both solid and liquid.
The root mean square error is less than 1 meV/atom.

As shown in Fig. 9 and Table II, the melting tempera-
ture calculated is 3200 K, only ~60 K lower than the exper-
iment. This magnitude of error is consistent with our previ-
ous size-effect study in Sec. IIT A 2. It is interesting that, by
contrast, the calculated heat of fusion and heat capacity (as
shown in Table II) differ more significantly from experiment.
These observations are not contradictory. First, finite size ef-
fects could introduce a similar bias in the free energies of both
the solid and the liquid phases, so that such bias would man-
ifest itself in phase-specific quantities but would only have
a second-order effect on the melting point. Second, although
the argument of error cancellation between phases is not ap-
plicable to the heat of fusion, another possible error cancel-
lation mechanism is between entropy and enthalpy, as these
two quantities tend to change in concert but affect the free
energy in opposite ways. Periodic boundary conditions cause
the long-range pair-correlation of the liquid to exhibit some
solid-like character. This could lead to a larger reduction in
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FIG. 7. Various tests on different materials to study the finite-size effect on melting temperature calculations. Tests are conducted on bec tantalum, niobium,
fce copper, and ionic sodium chloride. These tests suggest that if we perform calculations with around 100-200 atoms, we are likely to achieve an accuracy of

100 K in melting temperature.

both the entropy and the enthalpy of the liquid phase, relative
to the solid phase. Further study on finite-size effects would
be useful to confirm this and could suggest approaches to in-
clude finite-size corrections to the current method.

We evaluate the importance of the core Sp electrons, by
freezing them in electronic structure calculations (denoted
as PBE-valence). As shown in Table III and Fig. 10, the
new PBE valence-only pseudo-potential reduces the calcu-
lated MP and worsens the results. This necessity of 5p core
electrons is consistent with previous findings.*

We also test the effect of exchange-correlation function-
als by changing it to the Perdew-Wang 1991 (PW91) form*’

250 : T
A
= Tha
200 ¢ Nb d
° e NaCl
L AC J
150 u
N4
~
= 100+ e
&
Tosof , » , ‘ .
£ .
3] ok A A . ol
| |
“s0l » |
~100 j j i j i i i i
6 8 10 12 14 18 20 22 24

16
size a / A

FIG. 8. The impact from box size a x a x 2a on the error of MP calculation.
When the size is larger than 10 A, an accuracy of 100 K in 7}, is usually
guaranteed, though for ionic materials it is relatively less accurate probably
due to the long-distance Coulomb interaction.

(denoted as PW91-core). As summarized in Table III and
Fig. 10, it also reduces the calculated MP and worsens the re-
sults. This small discrepancy is not strange, since there have
been evidences showing the differences between PBE and
PWO1, although they are regarded as almost identical GGA
functionals most of the time. Our results indicate that PBE
is a better exchange-correlation functional than PW91 in the
case of tantalum melting.

The impact of PW91-core and PBE-valence can be quan-
tified in the following way. At the MP, the free energy
difference is zero, i.e.,

Ap = Wiiquid — Msotid = 0, (12)

average H (single trajectory)
—— H linear fit of solid/liquid 7
m=3194+41 K, [,=0.55+0.19

-113

I I I I I
2800 3000 3100 3300 3400 3500

I
2900

‘
3200 3600
T/K

FIG. 9. The melting properties fitted according to Egs. (7)—(10). All calcula-
tions are based on PBE-core pseudo-potential.
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TABLE II. Melting properties and comparison with benchmarks.
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TABLE III. Comparison of PBE-core, PW91-core, and PBE-valence.

This method Experiment
T, (K) 3200 3258
H!=5(T,,) (eV) 0.274 0.379
C5 (x107%) eV K™ 2.57 4.34
Ch(x107%) eVK™) 2.52 4.57

PBE PBE PWI1

Core Valence Core Experiment
T, (K) 3200 2990 3070 3258
Appg — Apg —25,-64 —6.8,-7.3

(A =0,1) (meV)

we employ the thermodynamic integration method to estimate
the impact PW91-core and PBE-valence have on the free en-
ergy difference Apu:

1 1
W=t [~ Hona. (13)
N Jo
where B is PW91-core or PBE-valence, « is PBE-core and
H, = (1 —AH, + AHg. (14)

The integral is evaluated only at A = 0 (PBE-core) and 1
(PWO91-core or PBE-valence). Snapshots of pure solid and
liquid are chosen randomly from MD trajectories of A = 0
and 1, and the energy differences Hg — H, are calculated
on them. As summarized in Table III, PW91-core and PBE-
valence stabilize liquid phase by 7 and 4 meV, respectively.
Over-stabilized liquid results in a lower MP, thus qualitatively
explains the MP trend predicted.

Similar to the procedure we have employed in Fig. 7,
traditional coexistence method could serve as a benchmark
to judge the quality of our calculation. However, such large-
scale first-principles MD is computationally prohibitive. Here
we perform such a check only on the relatively “less expen-
sive” PBE-valence pseudo-potential. A 6 x 6 x 12 supercell
(864 atoms) containing solid and liquid coexistence is em-
ployed in NV E MD. As shown in Fig. 11, the MP is around
2900 K, in close agreement with the corresponding small-size
coexistence calculation (2990 K), thus further confirming the
reliability of our method.

2. bece sodium under high pressure

A prototype simple metal at ambient conditions, sodium
exhibits unexpected complexity under high pressure. One typ-

-10.4

—-10.5

—-10.6

-10.7
Z -108
~

= 109

—11

—11.1

—112 PW9l-core: T,n=3067+51 K, 1,=0.554+0.20
PBE-valence: Tpn=2988443 K, [,=0.5140.19
~113F ‘ ‘ | PBE-core: T,,=3195+41 K, [,=0.55+0.20 1
2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600
T /K

FIG. 10. Comparison of PBE-core, PBE-valence, and PW91-core, from bot-
tom to top. The latter two are shifted vertically for clarity.

ical example is the so-called “reentrant” behavior, i.e., the
melting curve of sodium reaches a maximum around 1000 K
at ~30 GPa followed by a pressure-induced drop, which ex-
tends to nearly room temperature at ~120 GPa and over the
stability regions of three solid phases.*! There have been com-
putational evidences supporting the experimental observation.
Raty et al.'> employed the fast-heating method and obtained
a melting curve close to the experiments. Eshet et al.*? used a
neural-network potential based on DFT and calculated a melt-
ing curve through the free energy method. Despite of their
successful capture of the reentrant behavior, the detailed melt-
ing points in these two articles are nevertheless quite differ-
ent. The possible reason could be either the overheating prob-
lem in the former method, or the inaccuracy brought in by
the neural-network method of the latter. Our small-size coex-
istence method provides an independent way to corroborate
either one of these results.

Here we calculate the melting temperatures in the pres-
sure range where the bce structure is stable. The simulation
techniques are similar as described in Secs. II-III B 1. We use
a3 x 3 x 6 bce supercell with 108 Na atoms. All calculations
are performed by VASP with PAW and PBE. All 3s valence
and 2p core electrons are included for electronic structure cal-
culations, as the importance of the core 2p electrons is widely
acknowledged.*>** Fermi distribution among the energy level
density of states is imposed to realize the electronic tempera-
ture. The plane wave energy cutoff is set to 260 eV and it is
further increased to 500 eV for pressure correction. A special
k-point (0.00 0.25 0.25) is used throughout the calculations.

The calculated melting temperatures under various pres-
sures are shown in Fig. 12 and Table IV. We successfully cap-
ture the reentrant point near (750 K, 40 GPa). Beyond this
point, Ty, starts to drop, and the specific volume change of
melting, AVI=S o dT)y, /dP, turns from positive to negative,
in agreement with the decrease of Tp,,. Our calculations agree

3100

3050

3000

2950

Hi Hm' i ””uy\i" L]

&2900
stso ull ‘ ‘“
&l

2700

265(}0 2 6 8 18

t/ ps

FIG. 11. NVE MD simulation of solid-liquid coexistence with 864 Ta atoms.



094114-8 Q.-J. Hong and A. van de Walle
05k
P = 55 GPa
T, = 713412 K
— 05
Cossk e = 0.5040.13
. P = 40 GPa
° Tw = T41£19 K
= -0.6f l, = 0.40£0.13 1
=
P = 26 GP:
T = 750£16 K
-0.65F I, = 0.64:£0.20 1
= 15 GPa
Ty = 6569 K
L, = 0.99+0.26
o7k J

450 500 550 600 650 700 750 800 850 900 950
T/K

FIG. 12. The melting properties of Na up to 60 GPa fitted according to
Egs. (7)-(10).

very well with the result reported in Ref. 42, while the MPs
are still significantly lower than results from the fast heating
method,'’ as summarized in Fig. 13. Our results suggest that
the neutral network potential in Ref. 42 successfully mim-
ics the interactions as comparable to DFT accuracy, while
the over-heating issue, though relatively small, is still lim-
iting the accuracy of the fast heating method employed in
Ref. 15. To further verify our statement, we perform bench-
marking through very expensive, large-size coexistence sim-
ulation (with 864 Na atoms). As Fig. 14 demonstrates, the
melting temperature is around 750 K at 26 GPa, thus corrob-
orating the reliability of our calculations. Although the MPs
we compute, along with Ref. 42, are significantly lower than
experiments, the good agreement with large-size coexistence
calculations points to DFT errors, rather than a flaw of our
method.

Our method’s capability to obtain MP directly from DFT
exhibits its potential to predict phase diagrams. Our melting
curve in the bec solid region, to the best of our knowledge,
serves as the first directly first-principles and hysteresis-free
computational evidence for the reentrant point of sodium.

3. NaCl at ambient pressure

After giving two examples on metals, we choose sodium
chloride, an ionic material, as our last example. For a long
time, MP calculations of ionic crystals were limited to only
empirical potentials, probably due to the high expense for
DFT correction by thermodynamic integration, as the cor-
responding high-quality empirical potentials are difficult to
find. Recent development of computer power has made pos-

TABLE IV. MP and volume change upon melting at different pressures.

P (GPa) 15 26 40 55
T (K) 657 + 8 750 + 16 742 + 17 716 + 12
AVI=S (A3) 0.048 0.029 —0.005 —0.023

J. Chem. Phys. 139, 094114 (2013)
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FIG. 13. Comparison of our results with other theoretical and experimental
studies. Our melting temperatures at 20-50 GPa are presented as red dots.
Green diamonds are experimental results from Ref. 41. Purple triangles are
MPs by fast-heating method in Ref. 15. Blue squares are MPs by empirical
potential in Ref. 42.

sible progresses on direct large-scale coexistence simulations
of magnesium oxide'? and lithium hydride.'* However, these
calculations are “extremely computationally intensive.” Em-
ploying “Z-method,” Belonoshko et al. have also successfully
calculated MP for magnesium oxide.'”

The  simulation techniques are  similar as
Secs. II-1IT B 2. We use a 2 x 2 x 4 supercell contain-
ing 64 Na and 64 CI atoms. Electronic structure calculations
are performed by VASP PAW-PBE. Only valence electrons
are included, i.e., the 3s electron for sodium and 3s, 3p
electrons for chlorine. Electronic temperature is accounted
for by a Fermi distribution. The energy cutoff is 280 eV and
only I'-point is used throughout the calculation. The error
caused by using only I"-point is less than 0.6 meV/atom.

As shown in Fig. 15, the MP is 1016 K, which agrees
well with the experimental value, 1074 K.

900

8

73
S

800

S
S

~ 750 n|
&~

FIG. 14. Traditional large scale coexistence method (NV E) at different E.
Systems with different E are shown in different colors. We plot in this figure
the temperature evolution over time. Broken lines are time averages so they
are more stable and clearer. Atomic configurations are included to help under-
stand the results. Solid part has clear ordered patterns, while liquid part does
not have. All starting from solid-liquid coexisting configurations (black), only
system with proper E (green) remains in stabilized coexistence. A system
with too high E will completely melt (red) and vice versa (blue). These tests
suggest the melting temperature is around 750 K.
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FIG. 15. The melting properties of NaCl fitted according to Egs. (7)—(10).

IV. DISCUSSIONS AND CONCLUSIONS

The method we developed is based on formal theoreti-
cal grounds, derived in Sec. II, and its reliability is further
strengthened by the excellent agreement with benchmarks,
shown in Fig. 7, especially when system size is large. Var-
ious tests show that finite size effects are usually small and
acceptable when the system size is larger than 10 A and
when it contains more than 100 atoms, a size manageable by
DFT calculations. Our DFT examples demonstrate that our
method is robust, efficient, and applicable for a wide class of
materials.

To calculate a melting temperature, we usually need 30—
60 MD simulations, each with an average length of 10-20 ps.
Overall, our method saves significant computational costs
compared to the traditional large-scale coexistence method.
We list and compare in Table V the timings of several DFT
examples we present in this article. In terms of total costs,
our method is less expensive by approximately one order of
magnitude. In addition, our method is inherently paralleliz-
able, as we can run the whole set of MD simulations simul-
taneously. Therefore, it takes us the time of running only one
single MD trajectory to finish a MP calculation, if we have
plenty of computer resources. By contrast, one usually needs
to perform, step by step, a long-time (usually more than 10 ps)
MD simulation on a large-size system, in traditional coexis-
tence method, which usually takes several months.

As discussed in Secs. III A 2 and III A 3, this method is
subject to finite-size errors, i.e., about 100 K in MP for a sys-
tem size of 100-200 atoms. Although this seems to be a major
disadvantage of our method compared to others, we note that
finite-size effect is a universal problem persisting in almost

TABLE V. Computational costs of our method and traditional coexistence
approach. (Unit: x10° cpu hours on the Stampede cluster at TACC.)

Traditional coexistence

Our method
Single trajectory Total Total
Ta, PBE-valence 1502 ~500 30°
Na, P =26 GPa 42,48, and 35¢ 125 264

4Shown in Fig. 11.

YShown in Fig. 10 and Table III.

¢Shown in Fig. 14, colored in blue, green, and red, respectively.
dShown in Fig. 12 and Table IV.
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all MP prediction methods. (The large coexistence method is
an exception. But it is nearly infeasible due to its high cost.)
For example, fast-heating method and Z-method usually use
comparable system size, so they suffer from similar size ef-
fect as well, in addition to the hysteresis problem. As another
example, let us consider the free energy method based on em-
pirical reference potentials followed by DFT corrections. One
might argue that the finite-size error can be completely elimi-
nated if convergence is achieved on empirical potentials with
respect to system size. But this is not exactly true. As DFT
corrections are usually performed on small-size systems, the
final free energy calculated by this method is, strictly speak-
ing, a DFT free energy on a small system plus a finite-size
correction by the empirical potential. One can never guaran-
tee that the finite size effect from an empirical potential will
be the same (or even similar) to that of DFT. Therefore, the
free energy method is also subject to finite-size errors.

We can approximately correct the finite-size errors by
extrapolating the convergence behavior of both phases. The
quasi-harmonic approximation provides a quick approach to
estimate the correction in the solid phase, while radial dis-
tribution function® gives insight to the entropy of the liquid
phase. The authors are currently working on this topic. Pre-
liminary study shows promising results and sheds light on the
improvement of the current method, making it more accurate
and efficient, as we can further reduce the system size.

Another problem of finite size effect is that the system
could be stabilized in a wrong phase, for either solid or liq-
uid. This problem occurs when there is a competing alterna-
tive near the desired phase in the phase diagram. In reality,
this competing phase is relatively less stable, but the finite-
size effect could revert the stability relation of them, so that
the simulation ends in a wrong structure. Therefore, we rec-
ommend that one should check the final structure of a MD
trajectory to make sure that it is in the desired solid or liquid
phase.

Although the method is robust in MP prediction, it
also inherits the disadvantage of MD simulations, unfortu-
nately. For example, it suffers from the well-known rare
event problem. This renders it incapable for the following
circumstances:

1. If the crystal structure of the solid is complex, the lig-
uid half may fail to find the right crystal structure when
solidifying, and it may form defected solid structures.
Fortunately, this possibility is readily detectable in the
simulations.

2. [If there are more than one solid configurations and the
stability is based on certain distribution in phase space,
e.g., for some alloys, MD will fail to explore all con-
figurations in limited computer time and find kinetically
favored metastable structure.

3. If the elemental concentrations of the solid and the lig-
uid are different at the equilibrium, MD is not capable
to redistribute different atoms in each phase sufficiently
fast. In systems where this occurs, the method can still
be used to find melting points at compositions where
congruent melting occurs. Free energy integration (on
fairly small simulation cells) can be used to find the
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solidus and liquidus at other compositions, using con-
gruent melting points as free energy references.

However, we note here that these problems are also com-
mon to other methods, e.g., in the traditional large scale coex-
istence method.

It is interesting to compare our approach to the two-phase
thermodynamics method, which calculates the entropies and
free energies of liquids by partitioning the DOS into two parts,
i.e., the solid-like Debye-model DOS and the gas-like hard-
sphere DOS. This approach has been successfully applied to
a wide variety of substances, including water>> and many or-
ganic compounds.?? Indeed, this method is surprisingly fast,
since it only requires a MD simulation of ~20 ps. However,
the methods should be compared, not only in terms of com-
putational costs, but also in terms of accuracy and their abil-
ity to converge to the correct answer as computational ef-
fort is increased. The two-phase thermodynamics approach
relies on the assumption that the partitioning of DOS into
two phases is always valid, which is not necessarily true. In
addition, the harmonic approximation used for entropy cal-
culations would be problematic at high temperatures, when
anharmonic effects become significant. Due to these approxi-
mations, the two-phase thermodynamics method tends to un-
derestimate the excess entropy by 5%.%* Although small, this
error is detrimental to melting temperature calculations. For
instance, we estimate the error to be 40—60 meV in free en-
ergy and ~500 K in melting temperature if the two-phase
thermodynamics method is applied to the case of liquid-state
copper, which we have studied extensively and achieved an
accuracy of 100 K in melting temperature by DFT and par-
ticle insertion method.® Therefore, we conclude that our ap-
proach nicely fills the gap between the two phase thermody-
namics method (at one extreme of the accuracy/cost trade-off)
and methods based on large-scale coexistence (at the other
extreme of the accuracy/cost trade-off). Our small-cell coex-
istence approach is immune to such problems. Its uncertain-
ties only arise from finite size effects and statistical sampling,
both of which can be systematically reduced by increasing
computational resources. By contrast, the two-phase thermo-
dynamic approach is not systematically improvable, because
the partitioning and harmonic approximations are central to
its convenient implementation.

To summarize, we have proposed an efficient and accu-
rate method to calculate the MP of materials. This method is
based on the statistical analysis of small-size coexistence MD
simulations, so it circumvents both the hysteresis overheat-
ing problem in small system size and the prohibitive com-
puter cost in traditional coexistence method. Using empirical
potentials, we present the validation of the method and sys-
tematically study the finite-size effect on the MPs calculated.
Through the DFT examples, we demonstrate the capability
and flexibility of the method in its practical applications.
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APPENDIX: DERIVATION OF A _,;G(T) AND H(T)

Assuming heat capacities C;/ ! are constants in the vicin-
ity of MP. Then enthalpy and entropy are

H/N(T) = HY!(T,,) + C/ /(T — T,), (A1)
s/l g8/l s/l T
SYUT) = $71 (T + €/ in —, (A2)

where T, is the melting temperature.
The Gibbs free energy difference G' ~*(T) is

G'=(T) = GX(T) — GX(T)
= H'=(T)-TS§"~(T)
= H'™(T,) + C) (T — Ty

T
- I—s
~TS'™(T,) = TC ™ In s

T
= (T, —T)S'" (T +C,* [T — T, —Tln —]
(T — Tm)2

T
(T — Ty
Tn

= (T, — T)S"*(T,)) — C*

T,—T
_&=D )HI—S(Tm) —-ch

T (A3)
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