Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2014 | Supplemental Material + Published
Journal Article Open

Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium


Understanding the regenerative capacity of small vertebrate models has provided new insights into the plasticity of injured myocardium. Here, we demonstrate the application of flexible microelectrode arrays (MEAs) in elucidating electrophysiological phenotypes of zebrafish and neonatal mouse models of heart regeneration. The 4-electrode MEA membranes were designed to detect electrical signals in the aquatic environment. They were micro-fabricated to adhere to the non-planar body surface of zebrafish and neonatal mice. The acquired signals were processed to display an electrocardiogram (ECG) with high signal-to-noise-ratios, and were validated via the use of conventional micro-needle electrodes. The 4-channel MEA provided signal stability and spatial resolution, revealing the site-specific electrical injury currents such as ST-depression in response to ventricular cryo-injury. Thus, our polymer-based and wearable MEA membranes provided electrophysiological insights into long-term conduction phenotypes for small vertebral models of heart injury and regeneration with a translational implication for monitoring cardiac patients.

Additional Information

© 2014 The Royal Society of Chemistry. Received 11th March 2014. Accepted 15th May 2014. First published online 16 May 2014. These studies were supported by National Institutes of Health HL-068689 (T.K.H.), HL-083015 (T.K.H.), HD069305-01 (N.C.C., T.K.H.), 1R01HL111437-01 (T.K.H., N.C.C.), and R01HL096121-03 (C.L.L.). No competing financial interests exist.

Attached Files

Published - c4ib00052h.pdf

Supplemental Material - c4ib00052h1.pdf


Files (3.9 MB)
Name Size Download all
524.3 kB Preview Download
3.3 MB Preview Download

Additional details

August 20, 2023
October 17, 2023