Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2020 | Submitted + Published
Journal Article Open

Optomechanical entanglement at room temperature: A simulation study with realistic conditions


Quantum entanglement is the key to many applications like quantum key distribution, quantum teleportation, and quantum sensing. However, reliably generating quantum entanglement in macroscopic systems has proven to be a challenge. Here, we present a detailed analysis of ponderomotive entanglement generation in a movable-end-mirror-type optomechanical cavity. These cavities utilize optomechanical interactions between the intracavity field and the end mirror to create quantum correlations. We numerically calculate an entanglement measure, the logarithmic negativity, for the quantitative assessment of the entanglement. Experimental limitations, including thermal noise and optical loss, from measurements of an existing experiment were included in the calculation, which is intractable to solve analytically. This analysis shows that lowering optical losses and measurement uncertainties is more important than temperature for observation of the entanglement in movable-end-mirror-type optomechanical cavity experiments. This work will play an important role in the development of ponderomotive entanglement devices.

Additional Information

© 2020 American Physical Society. (Received 9 July 2020; revised 13 October 2020; accepted 25 November 2020; published 14 December 2020) K.D., L.C., N.B., and J.P.D. would like to acknowledge the Air Force Office of Scientific Research, Grant No. FA2386-18-1-4010, the Army Research Office, Grant No. W911NF-17-1-0541, ARO MURI Grant No. N00014-17-S-F006/F47000, the Defense Advanced Research Projects Agency, and the National Science Foundation. We would also like to thank Mark Wilde, Vishal Katariya, and Nicholas Studer for important discussions. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1806634.

Attached Files

Published - PhysRevA.102.063518.pdf

Submitted - 2007.11675.pdf


Files (3.1 MB)
Name Size Download all
1.6 MB Preview Download
1.5 MB Preview Download

Additional details

August 20, 2023
October 23, 2023