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Figure S1. IV curves comparison with various literature data.  
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The dielectric constant was estimated using 0solWsol  cc−= (eq. 21), in which βc 

is solution dependent.4 In the reference5, βc is 12.5% lower for K+ compared to Na+ 

based electrolyte. Note that the electrolyte discussed in reference4 was KCl and NaCl 

and we assumed the dielectric constant difference was induced by the cations. We 

performed additional calculations with different diffusion coefficients and dielectric 

constants (see Figure S2). We observe no difference when using two different 

electrolytes. 

 

Figure S2. Comparison between Na2SO4 and K2SO4 with different diffusion 

coefficients and dielectric constants. 
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Experimental Methods for 4-Probe Measurement 

BPM voltage measurements were performed in a H type cell. The Keithley 2601B 

(V/I range 100 fA - 10A, 100 nV - 40 V, accuracy 0.015%) was used as the power supply. 

The BPM (Fumatech) voltage drop was determined by measuring the voltage difference 

between two Ag/AgCl reference electrodes (4 M KCl). The temperature of electrolyte 

was measured through two K-type thermocouples (range 0 ~ 1000 oC, ±2 K). The 

Keithley DAQ6510 (V/I range 100 pA - 3A, 100 nV - 1000 V, accuracy < 0.015%) was 

used for the data acquisition of voltage and temperatures. Na2SO4 (Aladdin, AR, 99%) 

used as the catholyte and the anolyte was flowed to the H type cell at a flow rate of 25.5 

mL min-1 with the control of peristaltic pump (Longer Pump, BT100-2J, 0.1rpm – 

100rpm, accuracy = 0.1rpm), and the temperature of the electrolyte with the control of 

the right water bath. The BPM voltages were measured in the multistep 

chronopotentiometry mode and the applied current density was swept from low current 

density to high current density. The voltage at each applied current density was recorded 

once the voltage stabilized (typical after 5 mins). The hot water with the control of left 

water bath was flowed to the insulation layer of H type cell at a rate of 1090 mL min-1 

using peristaltic pump (Kamoer, KKDD-24B17 A, flow rate >840 ml/min). The 

temperature of electrolyte was heated by hot water and stabilized at 25 oC, 50 oC, and 

80 oC (see Figure S3).  
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Figure S3. Schematic illustration of the Experimental setup consisting of water bath, 

Platinum (Pt) electrodes, catholyte compartment, BPM, and anolyte compartment. The 

anolyte and catholyte were 1 M Na2SO4 and BPM with an active area of 1.0 cm2. 
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Figure S4. The temperature of electrolyte with concentration of (a) 0.6 M and (b) 1.0 

M stabilized at 25 oC, 50 oC, and 80 oC. 
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Higher IEC value leads to better performing BPM due to enhanced junction electrical 

field. However, the IEC value do not change the trend of the BPM performance and 

hence not changing the conclusions of this study. The detailed effect of IEC can be 

found in our previous work.6 

 

Figure S5. IV curves for different temperature with IEC is 1 mmol g-1 (solid lines) and 

2 mmol g-1 (dash lines). 

  



 S8 

Table S1. Water Transport Parameters in BPM 

Property Value Unit 

DW 

0 < λ < 4 

( ) ( )
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Figure S6. (a) IV curves for different Bruggman coefficients. (b) IV curves for different 

diffusion coefficients of water. (c) Potential drop of junction (Vjunction) as a function of 

current density at different temperatures and different csol. 

The effective diffusion coefficient of each ion species (Di
eff) depends on the phase. 

In the aqueous electrolyte phase, these diffusion coefficients are equal to their values in 

pure water. The Bruggman relation was used within the bipolar membrane 

(  ). Here fmem is the porosity of the membrane (0.15)，q is Bruggman 

coefficient in the model. Regarding the effect of electrolyte concentration on the q 
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during BPM operation, the current research data is lacking, and the internal mechanism 

is not clear. This study did not explore this in depth. q is corrected by passing through 

our experimental data. In this study, it is set to 1.8 when the electrolyte concentration is 

1 M, and it is set to 1.6 when the electrolyte concentration is 0.6 M. 

Figure S6a shows the IV curves for different q. It can be shown that the change of q 

affects the slope of the B-C region (ohmic region). Figure 2b shows the B-C region 

(ohmic region) of the IV curve of simulation and experiment, which can be completely 

corresponded. At the same time, the change of q will also affect the D-E region (Water-

limiting region). Compared with q, the change of DW does not affect the IV curve of B-

C region (ohmic region). But it will affect D-E region (Water-limiting region). 

In order to fit the experimental data, the q was adjusted from 1.8 to 1.6 when the 

electrolyte concentration changed. Figure 5a shows that the experimental data of 

csol=0.6 M and csol=1 M at different temperatures are basically consistent with the 

simulated data, which proves that the model developed in this study has universal 

applicability of temperature and concentration. In addition, the decrease of the solution 

concentration has an effect on the ohmic limit stage, which is the decrease of the Vjunction 

voltage (see Figure S6c).  
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Figure S7. (a) Fixed charge concentration as a function of location over the entire 

calculation domain. (b) Zoom in fixed charge concentration profiles and catalyst 

concentration profiles (c) for the junction layer with its adjacent AEL and CEL regions 

(10 nm for each) at different Lchar. 
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Figure S8. (a) IV curves for different relative tolerance of solver. (b) IV curves for 

different mesh elements. 

The IV curves are almost the same for different relative tolerances and different mesh 

elements. Decreasing the relative tolerance or increasing the elements of meshes has 

little effect on the accuracy of the results, justifying our choice of relative tolerance and 

number of meshes.  

0 2 4 6 8 10

0

300

600

900

1200

1500

0 2 4 6 8 10

0

300

600

900

1200

1500

C
u

rr
en

t 
d

en
si

ty
 (

m
A

 c
m

-2
)

Potential (V)

Relative tolerance

 0.001

 0.0005

 0.0001

C
u

rr
en

t 
d

en
si

ty
 (

m
A

 c
m

-2
)

Potential (V)

Mesh

 5300

 26528

 53029

a) b)



 S12 

 

Figure S9. (a) The slope of the IV curve at different temperatures. (b) Ions diffusion 

coefficient and WD equilibrium constant as a function of temperature. (c) Average 

water concentration in the bipolar membrane as a function of current density at different 

temperatures. (d) Conductivity of a 1 M Na2SO4 solution as a function of water 

concentration. 
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Figure S10. Long time (>10 hours) test of BPM performance at 25 oC, current density 

620 mA cm-2, 1 M Na2SO4.  
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Figure S11. (a) WDH+ concentration profiles and (b) OH- concentration profiles at the 

junction layer for various junction layer thicknesses and temperatures at 600 mA cm-2. 

Solid lines are for 25 oC and dashed lines for 80 oC.  
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Figure S12. (a) The enhancement factor felectrical,F for reaction 1 due to electric field 

increase as a function of current density at various Lchar. (b) Zoom in sub figure for the 

current density in the range of 500 - 700 mA cm -2. 
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Figure S13. (a) The simulation contribution of catalyzed pathway and uncatalyzed 

pathway of WD as a function of voltage across the BPM at different junction layer 

thickness, (b) different abruptness. (c) different solution concentration. 
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