Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 18, 2008 | public
Journal Article

Effects of Ion Solvation on the Miscibility of Binary Polymer Blends


We study the effects of adding salt ions on the miscibility of a binary blend of polymers having different dielectric constants. The competition between the preference of the ions to be solvated by the component of the higher dielectric constant and the entropic tendency for the ions to be distributed uniformly results in nontrivial effects on the miscibility. We first study the thermodynamics of the polymer blend−ion mixture using a simple Born model in a uniform dielectric medium of the average composition of the polymer blend. We then study the effect of local enrichment of the higher dielectric constant polymer near the ion. We find that when the dielectric constants of the polymers are both low, adding salt decreases the miscibility, while when the dielectric constants of the polymers are both high, the addition of salt enhances the miscibility. When the blend consists of a high dielectric constant polymer and a low dielectric constant polymer, miscibility is decreased if the low dielectric constant component is the majority and is increased if the high dielectric constant component is the majority. The effect becomes significant at ion concentrations corresponding to an order of one ion per polymer chain. The quantitative change in the effective χ parameter depends on the functional form of the composition dependence of the dielectric constant of the mixture. We also illustrate the difference between fixed ion concentration and fixed chemical potential of the ions.

Additional Information

Copyright © 2008 American Chemical Society. Received: August 2, 2008; Revised Manuscript Received: September 23, 2008. Publication Date (Web): November 14, 2008. The author thanks Nitash Balsara, Alexander Grosberg, Michael Rubinstein, and Ralph Colby for helpful discussions. This article is part of the B: Karl Freed Festschrift special issue. http://pubs.acs.org/toc/jpcbfk/112/50

Additional details

August 20, 2023
October 17, 2023