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Supplementary Figure 1.1: ​Estimates of the effective number of UMIs per bead for each of the 
benchmark panel datasets, determined from observed collisions of UMIs across unique genes 
and assuming UMIs are sampled uniformly with replacement (see Supplementary Note for 
further details). The dashed red line is the theoretical maximum for the number of UMIs on a v2 
chemistry bead (4 ​10​=1,048,576) and the red line is the theoretical maximum for the number of 
UMIs on a v3 chemistry bead (4 ​12​=16,777,216). The datasets are ordered by number of reads. 
UMI pools from 10x Chromium v2 and v3 chemistry are found to be highly complex, with the 
effective number of UMIs approaching the theoretical maximum in many cases. Our estimates 
for UMI complexity vary across experiments; this could be due to batch effects, or model 
misspecification. Sequencing chimeras could also affect UMI complexity estimates, specifically 
estimates would be increased with more chimeras. This would reduce the estimates of 
intra-gene collisions due to naïve collapsing. 
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Supplementary Figure 1.2: ​Fraction of UMIs lost per gene across cells in the benchmark panel 
due to over-collapsing. The inset figure is a magnified view of the violin plot demonstrating that 
the fraction of counts lost due to UMI collapsing at the gene level is on the order of 0.0002.   

3 



 
 

 
Supplementary Figure 2: ​The expected percentage of Barcodes (or UMIs) that will have one 
error and can therefore be corrected with a Hamming distance 1 correction algorithm. The y-axis 

displays the value of the function  where , and where  is the 
per base sequencing error probability estimated by averaging the error estimates across all the 
datasets in the benchmark panel (Supplementary Table 2).  
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All ​Supplementary Figure 3 ​ benchmark panels are configured as follows: (A) “Knee plots” for 
kallisto and Cell Ranger showing, for a given UMI count (x-axis), the number of cells that contain 
at least that many UMI counts (y-axis). The dashed lines correspond to the Cell Ranger filtered 
cells. (B) Correspondence in the number of distinct UMIs per cell between the workflows. (C) 
Genes detected by kallisto and Cell Ranger as a function of distinct UMI counts per cell. (D) 
Pearson correlation between gene counts as a function of the distinct UMI counts per cell. (E.1) 
The  distance between gene abundances for each kallisto cell and its nearest neighbor plotted 
against each kallisto cell and its corresponding Cell Ranger cell (orange) and the  distance 
between the gene abundances for each Cell Ranger cell and its nearest neighbor plotted 
against each Cell Ranger cell and its corresponding kallisto cell (orange). Marginal distributions 
show that each kallisto cell is closest to its corresponding Cell Ranger cell and that each Cell 
Ranger cell is closest to its corresponding kallisto cell. (E.2)  ​distance between kallisto and 
Cell Ranger cells as a function of UMI counts. ​(F.1) kallisto t-SNE from the first 10 principal 
components. (F.2) Cell Ranger t-SNE from the first 10 principal components. (G.1) MA plot for 
all genes between kallisto and Cell Ranger. Most of the genes have a  (G.2) 
QQ plot comparing the distribution of observed distribution of p-values of GSEA, after 
Bonferroni correction for multiple testing across ontologies and datasets, with the expected 
distribution of a uniform distribution between 0 and 1. If the observed distribution does not 
significantly deviate from the expected distribution, then the points should lie close to the 
diagonal line, . The gray ribbon around the line is the 95% confidence interval. Here most 
GO terms have adjusted , meaning that most GO terms are very depleted of genes 
“differentially expressed (DE)” between the kallisto and Cell Ranger matrices. GO terms above 

 are labeled. Generally, GO terms significantly enriched among “DE” genes are related to 
ribosomal proteins and are labeled by numbers corresponding to GO terms in the figure caption. 
The points are also colored by ontology: biological processes (BP), cellular components (CC), 
and molecular functions (MF). (H) Significant differential gene sets between Cell Ranger and 
kallisto. 
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Supplementary Figure 3.1: ​Benchmark panel of data from O’Koren et al. 2019 ​(O’Koren et al., 
2019)​ (SRR8599150). Enriched GO terms are 1-structural constituent of ribosome, 2-cytosolic 
small ribosomal subunit, 3-cytosolic large ribosomal subunit. 
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Supplementary Figure 3.2: ​Benchmark panel of data from Packer et al. 2019 ​(Packer et al., 
2019)​ (SRR8611943).  
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Supplementary Figure 3.3: ​Benchmark panel of data from Jin et al. 2018 ​(Jin et al., 2018) 
(SRR6998058). 
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Supplementary Figure 3.4: ​Benchmark panel of the 10x Genomics hgmm1k_v3 dataset. 
Enriched GO terms are 1-nuclear-transcribed mRNA catabolic process, nonsense-mediated 
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decay, 2-SRP-dependent cotranslational protein targeting to membrane, 3-translational 
initiation, 4-structural constituent of ribosome, 5-viral transcription. 
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Supplementary Figure 3.5: ​Benchmark panel of the 10x Genomics pbmc1k_v3 dataset. 
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Supplementary Figure 3.6: ​Benchmark panel of the 10x Genomics hgmm1k_v2 dataset. 
Enriched GO terms are 1-nuclear-transcribed mRNA catabolic process, nonsense-mediated 
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decay, 2-SRP-dependent cotranslational protein targeting to membrane, 3-translational 
initiation, 4-structural constituent of ribosome, 5-viral transcription. 
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Supplementary Figure 3.7: ​Benchmark panel of the 10x Genomics heart1k_v3 dataset. 
Enriched GO terms are 1-cytosolic large ribosomal subunit. 
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Supplementary Figure 3.8: ​Benchmark panel of data from Miller et al. 2019 ​(Miller et al., 2019) 
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(SRR8206317). Enriched GO terms are 1-structural constituent of ribosome, 2-cytosolic large 
ribosomal subunit.  
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Supplementary Figure 3.9: ​Benchmark panel of the 10x Genomics heart1k_v2 dataset. 
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Supplementary Figure 3.10: ​Benchmark panel of data from Carosso et al. 2019 ​(Carosso et 
al., 2018)​ (SRR8524760). 

19 



 

20 



Supplementary Figure 3.11: ​Benchmark panel of data from Mays et al. 2018 ​(Mays et al., 
2018)​ (SRR7299563). Enriched GO terms are 1-cytosolic large ribosomal subunit, 2-translation, 
3-cytosolic small ribosomal subunit, 4-cytoplasmic translation, 5-polysomal ribosome. 
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Supplementary Figure 3.12: ​Benchmark panel of data from the gene expression 
omnibus​(Mahadevaraju et al., 2019)​ (SRR8513910). 
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Supplementary Figure 3.13: ​Benchmark panel of data from Farrell et al. 2018 ​(Farrell et al., 
2018)​ (SRR6956073). 
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Supplementary Figure 3.14: ​Benchmark panel of data from Ryu et al. 2019 ​(Ryu et al., 2019) 
(SRR8257100). 
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Supplementary Figure 3.15: ​Benchmark panel of data from Merino et al. 2019 ​(Merino et al., 
2019)​ (SRR8327928). 
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Supplementary Figure 3.16: ​Benchmark panel of data from Delile et al. 2019 ​(Delile et al., 
2019)​ (EMTAB7320). Enriched GO terms are 1-cytosolic large ribosomal subunit, 2-structural 
constituent of ribosome, 3-cytosolic small ribosomal subunit. 
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Supplementary Figure 3.17: ​Benchmark panel of the 10x Genomics neuron10k_v3 dataset. 
Enriched GO terms are 1-structural constituent of ribosome, 2-cytosolic large ribosomal subunit, 
3-cytosolic small ribosomal subunit. 
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Supplementary Figure 3.18: ​Benchmark panel of data from Guo et al. 2019 ​(Guo et al., 2019) 
(SRR8639063). Note that the FASTQ files distributed with this experiment contained only 
retained barcodes. Enriched GO terms are 1-structural constituent of ribosome, 2-
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cytosolic large ribosomal subunit, 3-cytosolic small ribosomal subunit, 4-cytoplasmic translation, 
5-polysomal ribosome. 
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Supplementary Figure 3.19: ​Benchmark panel of the 10x Genomics pbmc10k_v3 dataset. 
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Supplementary Figure 3.20: ​Benchmark panel of the 10x Genomics hgmm10k_v3 dataset. 
Enriched GO terms are 1-SRP-dependent cotranslational protein targeting to membrane, 
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2-nuclear-transcribed mRNA catabolic process, nonsense-mediated decay, 3-translational 
initiation, 4-structural constituent of ribosome, 5-viral transcription.  
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Supplementary Figure 4:​ Violin plots displaying distribution of counts for the FGF23 
(ENSG00000118972) gene in all cells in the pbmc_10k_v3 dataset using different alignment 
methods. (A) Transcriptome pseudoalignment with kallisto using a standard index constructed 
from ENSEMBL transcripts. (B)  Transcriptome pseudoalignment with kallisto using a modified 
index that includes, separately, sequences from splice junctions to capture unspliced junction 
reads. (C) Genome alignment with Cell Ranger. The gene was selected as an example as it 
was an outlier in discrepancy between kallisto and Cell Ranger when quantification was done 
with the standard index.  
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Supplementary Figure 5: ​Overview of the kallisto | bustools workflow. First an index for kallisto 
is built from a set of transcript sequences using the ​kallisto index ​command. Then ​kallisto bus 
is run on the FASTQ files; this generates a BUS file that contains records corresponding to 
reads, with data on the cell barcode, UMI, and transcript compatibility of each read. The 
barcodes are then corrected by processing the BUS file with the ​bustools correct​ command, 
after which the BUS file is sorted with ​bustools sort​. Here, duplicate reads (those reads sharing 
an identical cell barcode, UMI, and equivalence class triplet) are collapsed into a single record 
and their abundance saved as a new metadata column in the BUS file named “multiplicity”. 
Finally, ​bustoools count​ produces ​cells x features ​count matrices. If ​kallisto bus ​is run with an 
index containing intron sequences, the ​bustools capture ​ command can be used to produce 
spliced and unspliced matrices for RNA velocity after sorting and before counting.  
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Supplementary Figure 6: Pseudotime trajectories. ​(A) Lineage inference of neuron10k_v3 

dataset with slingshot projected to the first 2 principal components, with cells colored by cell 

type inferred by SingleR. aNSCs stands for active neuronal stem cells. NPCs stands for 

neuronal precursor cells. qNSCs stands for quiescent neuronal stem cells. (B) Coloring by 

pseudotime values from slingshot.  
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Supplementary Figure 7.1: ​(A) Elbow plot of standard deviation explained by each principal 
component of the gene count matrix from kallisto and Cell Ranger. (B) Cell embedding in the 
first 2 principal components colored by cluster. (C) Cell embedding in tSNE colored by cluster.  
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Supplementary Figure 7.2:​ (A) Number of cells assigned to each cluster by kallisto and Cell 
Ranger and the correspondence between the clusters. (B) Jaccard indices between each 
kallisto cluster and each Cell Ranger cluster. 
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Supplementary Figure 7.3: ​Number of marker genes with log fold change of at least 0.75 and 
adjusted p < 0.05 in each cluster. (B) Log fold change of marker genes in each cluster. (C) Top 
5 enriched GO terms of marker genes (adjusted p < 0.05) each cluster. 
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Supplementary Figure 7.4: ​(A) Histograms of Spearman and Pearson correlation coefficients 
between barcodes from kallisto and the same barcodes from Cell Ranger for the top 15 marker 
genes (by log fold change) of each cluster. (B) Spearman and Pearson correlation coefficients, 
as in (A), for cells in each kallisto cluster. Here cluster 16 corresponds to erythrocytes, while 
most other cells are neuronal precursor cells.  
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Supplementary Figure 8: ​Comparison of Cell Ranger to kallisto on the 10x Genomics 
hgmm10k_v3 species mixing experiment. (A) Barnyard plot with droplets colored according to 
species of origin: human (red), mouse (blue) and mixed (green). Mixed droplets correspond to 
cell doublets. (B) The number of total counts per barcode in Cell Ranger and kallisto. (C) The 
proportion of UMIs in each droplet originating from human. The cluster of droplets in the lower 
left corner correspond to mouse cells. The cluster of cells in the upper right corner to human 

41 



cells. The middle band of droplets are doublets. Droplets are shaded according to the number of 
distinct UMIs they contain. 
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Supplementary Figure 9:​ Phase diagrams and expression/velocity for six marker genes 
studied in Clark et al. 2019. The expression results are concordant with pseudotime analysis. 

43 



 

 
 
Supplementary Figure 10: ​(A) RNA velocity based on spliced and unspliced matrices from a 
dataset of 1,720 human glutamatergic neuron differentiation cells at post-conception week 10. 
The colors correspond to cell types and intermediate states and a principal “velocity curve” is 
shown in bold. (A) RNA velocity analysis based on spliced and unspliced matrices computed 
with kallisto and bustools. B) RNA velocity based on the spliced and unspliced matrices 
computed with velocyto. Colors correspond to clusters as assigned by the velocyto notebook. 
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Supplementary Figure 11: ​Comparison of Cell Ranger and velocyto to kallisto in an RNA 
velocity analysis of human glutamatergic neuron differentiation cells at post-conception week 
10. (A) Number of distinct UMIs from spliced vs. unspliced transcripts from kallisto (orange). (B) 
Number of distinct UMIs from spliced vs. unspliced transcripts from Cell Ranger (blue). Cell 
Ranger has similar numbers of spliced counts but fewer unspliced counts. (C) Phase diagrams 
from the kallisto RNA velocity analysis for 3 genes highlighted in La Manno et al. 2018. (D) 
Corresponding phase diagrams from the Cell Ranger RNA velocity analysis showing agreement 
with the kallisto results. 
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Supplementary Figure 12: ​Comparison of kallisto runtimes with those of the Unix word count 
(​wc ​) command. Each point corresponds to a different dataset.  
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Supplementary Figure 13: ​The runtime to process 50 million reads as a function of the number 
of indices. The reference transcriptome was split into two, four, eight, and ten parts and the time 
to align all of the reads to each of the set of indices was recorded. 
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Supplementary Figure 14: ​The counts per cell, summed across all genes, when 
pseudoaligning 50 million single cell reads against the full spliced and unspliced indices and the 
2-way split index for spliced and unspliced count matrices. The BUS files generated for the 
2-way split index were merged together using bustools mash followed by bustools sort and 
bustools merge. 
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Supplementary Figure 15: ​The number of counts lost due to naïve collapsing of UMIs as a 
function of the length of the UMIs for a gene with 100 counts. The calculation, based on 
Supplementary Note equation (11), assumes that the effective number of UMIs is  when 
UMIs are of length . 
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Supplementary Table 1: ​Runtime, memory, and cost 
(supplementary_table_S1_runtime_mem_cost.xlsx). 
 

 

Supplementary Table 2: ​All of the bustools commands that have been developed and the 
types of analyses they enable. 

Supplementary Table 3: ​Benchmark panel summary (supplementary_table_S3 
_benchmark_panel_summary.xlsx). 
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bustools Description Enables 

capture Capture records from a BUS file RNA Velocity 
correct Error correct a BUS file Barcode Error correction 

count Generate count matrices from a BUS file 
Gene count or transcript count 
matrices 

extract 
Extract FASTQ reads corresponding to reads 
in BUS file FASTQ sampling 

inspect Produce a report summarizing a BUS file Summary statistics 

linker Remove section of barcodes in BUS files 
Excise sections of barcode for 
custom technologies 

mash 
Combine BUS records and match EC to the 
same reference 

Combining BUS files from different 
indices 

merge Merge kmer alignments for a single read Low memory alignment 

project Project a BUS file to gene sets 
Change coordinate system from 
transcripts to genes 

sort Sort a BUS file by barcodes and UMIs Constant memory sorting 

text 
Convert a binary BUS file to a tab-delimited 
text file Custom BUS file parsing 

whitelist Generate a whitelist from a BUS file Technologies without a whitelist 
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1 Preliminaries

R

L F B

C T

U I

Figure 1: Diagram of sets associated with a cell in a single-cell RNA-seq se-

quencing experiment.

A single-cell RNA-seq experiment can be described as follows: the goal of

the experiment is to identify the ensemble of RNA molecules in multiple cells;

in Figure 1 the ensemble of RNA molecules contained within a single cell is

denoted by R. To investigate R a library (L) is constructed from the set of

molecules captured from R (the set C). Typically, L is the result of of various

fragmentation and amplification steps performed on C, meaning each element

of C may be observed in L with some multiplicity. Thus, there is an inclusion

map from C to L, and an injection from C to R. The library is interrogated

via sequencing of some of the molecules in L, resulting in a set F of fragments.

Subsequently, the set F is aligned or pseudoaligned to create a set B, which

in this paper is a BUS file (Melsted, Ntranos, and Pachter 2019). Not every

fragment F is represented in B, hence the injection, rather than bijection, from
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R : multiset of all RNAs in a cell.

L : multiset of all molecules in the library.

F : multiset of reads.

B : multiset of {barcode, UMI, equivalence class} triplets.

C : multiset of captured RNA molecules represented in the library.

T : multiset of transcripts represented in B corresponding to molecules in C.

U : set of UMIs on a bead.

I : multiset of UMIs represented in B corresponding to molecules in U .

Table 1: Notation for description of a single-cell experiment.

B to F , and similarly from F to L. The set T consists of transcripts that

correspond to molecules in C that were represented in B. Note that |R| �
|C| � |T |. Separately, the set U consists of the UMIs on the bead that the cell

was trapped with, and I is a multiset of UMIs associated with transcripts in C
and UMIs in U that are in B (Table 1).

The data in a single-cell experiment consists of the sets F for each cell. In our

workflow, a combined BUS file (merge of the sets B) is generated using kallisto

(Bray et al. 2016). While the multiset I is not directly measured, it’s support

supp(I) (the set of distinct UMIs) can be extracted from the BUS file. The

goal of single-cell RNA-seq pre-processing is to infer the multiset T . What we

describe in this note is an approach to estimating two di↵erent quantities: the

e↵ective size |U | of the set of UMIs associated with each bead, and the number

of captured molecules represented in the BUS file, i.e. |I| or equivalently |T |.
Specifically, we are interested in the restriction of the latter to individual genes

in cells, for the purpose of estimating the error in the number of counts that can

be introduced when näıvely collapsing UMIs by gene. The reason for estimating

|U | is that it is necessary to estimate |I|.

2 Modeling an experiment

The number of distinct UMIs on one bead is at most 4
L
where L is the number

of UMI bases (10xv2 technology uses L = 10 and 10xv3 technology L = 12).

For a bead captured along with a cell in a droplet, we denote the number

of UMIs on the bead by n = |U |. We model the process by which UMIs are

associated with molecules as follows: each UMI is selected by sampling uniformly

at random from the set of UMIs U . In other words, the molecules are labeled

with UMIs by sampling with replacement. This model has been used previously

(Grün, Kester, and Oudenaarden 2014), and is justified by distributions of UMIs

seen empirically (Figure 2). If k = |I| is the number of UMIs represented

in B corresponding to molecules in U derived from a single droplet then the

assumption of uniform random sampling of UMIs from the bead implies that

the probability that a specific UMI is observed zero times is
�
1� 1

n

�k
. Therefore
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Figure 2: Distribution of UMIs across cells. With the exception of a handful of

artifacts, UMIs are uniformly distributed across cells.

the expected number of UMIs observed at least once, i.e. the expected number

of distinct UMIs in a cell, is

n

 
1�

✓
1� 1

n

◆k
!
. (1)

3 Estimating the e↵ective number of UMIs

To estimate n (=|U |) we utilize two observations:

1. Reads that originated from di↵erent genes correspond to distinct molecules,

so if they share the same UMI then the UMI was sampled more than once

(i.e. the UMI is not duplicated due to PCR).
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2. While the number of sampled UMIs k is unknown, the number of distinct

UMIs can be measured directly.

We say that a UMI that has been sampled more than once has a collision (Figure

3), and we denote the number of UMIs that appear in more than one gene by

random variable (r.v.) X (see Figure 3). We denote the number of distinct

UMIs sequenced, i.e. |supp(I)|, by a r.v. D, and the number of distinct UMIs

observed to be from a gene g by r.v. Dg. We denote the number of sampled

molecules originating from a gene g by kg. Note that
P

g E[dg] � E[d].
We obtain method of moment estimates for the parameters k, kg and n (k̂, k̂g

and n̂) by relating them to realizations of the r.v. Dg, D, and X. First, from

equation (1) (see also Grün, Kester, and Oudenaarden 2014), we have that

E[D] = n

 
1�

✓
1� 1

n

◆k
!
, (2)

and at the gene level,

E[Dg] = n

 
1�

✓
1� 1

n

◆kg
!
. (3)

The number of UMIs that occur in more than one gene can be found by knowing

the number of UMIs that are seen zero times in all genes, and that the number

of UMIs that are seen in only one gene is given by the number of unique UMIs

in gene g and only gene g, summed across all genes. This gives an estimate for

the number of UMIs that collide between genes:

E[X] = n

 
1�

 ✓
1� 1

n

◆k

+

X

g

 
1�

✓
1� 1

n

◆kg
!

·
✓
1� 1

n

◆k�kg
!!

. (4)

From equations (2) and (3) and using the realizations of the r.v. D and Dg, i.e.

d and dg, we have that
✓
1� 1

n̂

◆k̂

=
n̂� d

n̂
(5)

and at the gene level
✓
1� 1

n̂

◆k̂g

=
n̂� dg

n̂
. (6)

Therefore, substituting equations (5), (6) into equation (4) we obtain

x = n̂

 
1�

 
n̂� d

n̂
+

X

g

✓
1� n̂� dg

n̂

◆
·
✓

n̂� d

n̂� dg

◆!!
(7)

= n̂

 
d

n̂
� n̂� d

n̂

X

g

✓
dg

n̂� dg

◆!
(8)

= d� (n̂� d)
X

g

✓
dg

n̂� dg

◆
. (9)
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Since d, dg (for all g) and x are known the number of UMIs, n̂, can be estimated.

Figure 3: Collisions of UMIs. Each small circle represents a distinct UMI. Each

medium sized circle is a gene, and the enclosing circle is the set of all distinct

UMIs. UMIs that have collided are shown in orange. Inter-gene collisions consist

of UMIs present in two or more genes. An intra-gene collision is also shown.

4 Estimating counts lost for each gene

Returning to equation (3), we see that

k̂g =

ln
⇣
1� dg

n̂

⌘

ln
�
1� 1

n̂

� . (10)

With n̂, and measurement of dg, we evaluate the number of molecules captured

per gene, k̂g. The loss of counts due to collapsing of UMIs by gene is

k̂g � dg =

ln
⇣
1� dg

n̂

⌘

ln
�
1� 1

n̂

� � dg (11)

⇡ dg(dg � 1)

2n̂+ 1
, (12)

where (12) is found by Taylor expanding (11).
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5 Constant and low memory processing

The kallisto bustools workflow enables constant and low memory single-cell

RNA-seq pre-processing by using small pseudoalignment reference indices, and

streaming all processing of BUS records which is possible after a constant mem-

ory sort of the initial BUS file produced in an analysis. In order to pseudoalign

reads, kallisto first loads up a small index file constructed from a reference tran-

scriptome. The size of this index is not dependent on the number of reads that

will be processed. Reads are pseudoaligned by streaming through FASTQ files,

and BUS records are incrementally added to as reads are processed. The bus-

tools commands operate on BUS files and are used to perform many required

operations on BUS files in order to generate count matrices. These operations

include sorting the BUS file, correcting barcodes, and counting UMIs among

many others; all operations are performed in constant memory in the number

of reads being processed. The first step in working with BUS files is sorting.

Sorting the BUS file allows all other bustools to operate on the BUS file in a

stream-wise fashion thus keeping memory constant and low. The ‘bustools sort‘

command operates in constant memory by utilizing disk when necessary.

While pseudoalignment of reads and processing of BUS files to perform RNA-

velocity has only constant memory requirements (in terms of the number of

reads) with the kallisto bustools workflow, the indices involved can be large due

to the intronic sequences that must be indexed. The modularity of bustools

makes possible, in principle, a reduction in absolute memory requirements by

virtue of splitting the target sequences prior to indexing, pseudoalignment to the

separate indices, and finally merging of the resultant BUS files. We implemented

this strategy, which required modifying the kallisto bustools workflow to first

align reads to a transcriptome that has been split into an arbitrary number (n)
of parts and then merging the alignments by interval set intersection. Splitting

the transcriptome into n parts yields a smaller indicies to be loaded into memory

and requires n alignments of the reads which comes with a run-time trade-o↵

(Supplementary Figure 13). For each read that aligns, we record the interval of

kmer start positions from the read such that the kmers contained within this

interval align to an associated equivalence class. A single read of length L, with
a kmer size of k can have at most L � k + 1 possible kmer alignments where

each possible kmer in that read aligns to a di↵erent equivalence class. We then

merge these intervals appropriately in order to assign an equivalence class to

the read.

By way of example, suppose that we split an index into three parts and

perform pseudoalignment three times. Additionally, suppose that a single read

has only two kmers that align, k1 and k2. k1 aligns to an equivalence class

which contains transcripts one and two (EC1 = {T1, T2}) in index one and k1
also aligns to EC2 = {T7, T9}. The second kmer k2 aligns to EC4 = {T5, T6, T7}
of index two and EC5 = {T10, T11) of index three.

In the case of a full transcriptome, EC1 and EC2 would have been indexed

together since they share the same kmer, EC1,2 = {T1, T2, T7, T9} and k1 would

have aligned to this equivalence class. Similarly, in the case of a full transcrip-
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tome, EC4 and EC5 would have have been indexed together since they share

the same kmer, EC4,5 = {T5, T6, T7, T10, T11} and k2 would have aligned to this

equivalence class. The read would then have been assigned the equivalence class

EC = EC1,2 \ EC7,9 = {T7}.
In the case of the split indices, in order to accurately assign the read to this

equivalence class we must:

1. determine all of the kmer alignments for a single read from each index,

2. appropriately merge overlapping kmer alignments and equivalence classes,

3. determine the set of elementary intervals
1
and the set of equivalence classes

contained within those intervals,

4. and intersect all of the elementary intervals.

A single read can have multiple kmers align to multiple equivalence classes

in each of the n split indices. To keep track of these alignments we store a

0-indexed interval with endpoints corresponding to kmer start positions on the

read and the equivalence class corresponding to that interval. Note that the

interval is closed on the left and open on the right.

After n separate alignments, we combine all of the n BUS files into one BUS

file by simply remapping the equivalence class so that the set of transcripts

defined by an equivalence is based on the combined transcripts from all n splits

instead of just the transcripts from each separate split.

For all of the BUS records corresponding to single read, we find the set of

elementary intervals and the set of transcripts corresponding to each interval,

and then intersect the intervals to ultimately assign an equivalence class to the

read.

The example above for the split indices would then result in the following

alignment (superscript corresponds to the index number that the equivalence

class is from):

1. Find split alignments. k1: EC1
1 = {T1, T2}, EC2

2 = {T7, T9} and k2 :

EC2
4 = {T5, T6, T7}, EC3

5 = {T10, T11)

2. Merge. k1 : EC1
1 [EC2

2 = EC1,2 = {T1, T2, T7, T9} and k2 : EC2
4 [EC3

5 =

EC4,5 = {T5, T6, T7, T10, T11}

3. Intersect. EC = EC1,2 \ EC7,9 = {T7}

To validate this approach, we split the human polyadenylated transcriptome, as

well as an intronic sequences used for RNA velocity into two parts respectively

and indexed each part. We then aligned 50 million reads to the four indices and

merged the resultant BUS files as described above. Additionally we aligned the

1Given a list of intervals where for any interval the left endpoint is smaller than the
right endpoint, an elementary interval is defined as any interval from the set of intervals
constructed by taking every adjacent pair of points from a sorted list of unique endpoints.
E.g. I = {[3, 5), [0, 4), [4, 9)} and E = {[0, 3), [3, 4), [4, 5), [5, 9)}
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reads to the full indices. We then computed the cell-count correlation between

the quantification generated with the full indices and the quantification gener-

ated with the separate indices and found the results to be highly concordant

(r2 = 0.97 for counts from the polyadenylated transcriptome and r2 = 0.90 for

counts from the intronic sequences, Supplementary Figure 14).

The results obtained from merging BUS records that were pseudoaligned

to split indices will not necessarily exactly recapitulate the results obtained

from pseudoaligning to the full index. This is due to the ambiguity introduced

when kmers from a single read map to multiple transcripts. When reducing the

number of transcripts in the index in each split index, there are fewer sets of

shared k-mers between transcripts. Given a k-mer alignment to an equivalence

class in a read, the strategy in kallisto is to skip ahead in the index graph and

check if the final k-mer in the read maps to the same equivalence class, a di↵erent

equivalence class, or none at all. This skip ahead strategy, while appropriate for

the full index, can skip intermediate k-mer alignments that only result from an

equivalence class in the full transcriptome, thereby resulting in fewer alignments

and a slight loss in pseudoalignments when splitting indices and subsequently

merging results (Supplementary Figure 14).
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