Published October 2008 | Version Published
Journal Article Open

Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations

Abstract

We present an off-lattice, on-the-fly kinetic Monte Carlo (KMC) model for simulating stress-assisted diffusion and trapping of hydrogen by crystalline defects in iron. Given an embedded atom (EAM) potential as input, energy barriers for diffusion are ascertained on the fly from the local environments of H atoms. To reduce computational cost, on-the-fly calculations are supplemented with precomputed strain-dependent energy barriers in defect-free parts of the crystal. These precomputed barriers, obtained with high-accuracy density functional theory calculations, are used to ascertain the veracity of the EAM barriers and correct them when necessary. Examples of bulk diffusion in crystals containing a screw dipole and vacancies are presented. Effective diffusivities obtained from KMC simulations are found to be in good agreement with theory. Our model provides an avenue for simulating the interaction of hydrogen with cracks, dislocations, grain boundaries, and other lattice defects, over extended time scales, albeit at atomistic length scales.

Additional Information

© 2008, Materials Research Society. (Received 25 February 2008; accepted 2 July 2008) We thank Prof. Weinan E for useful discussions. Computational resources were provided by the Arctic Region Supercomputing Center and the Maui High Performance Computing center. This work was supported by a grant from the Office of Naval Research (awarded to E.A.C.).

Attached Files

Published - RAMjmr08.pdf

Files

RAMjmr08.pdf

Files (619.3 kB)

Name Size Download all
md5:be3004e60972ad1c17e487b0c9e19a37
619.3 kB Preview Download

Additional details

Identifiers

Eprint ID
12327
Resolver ID
CaltechAUTHORS:RAMjmr08

Funding

Office of Naval Research

Dates

Created
2008-11-11
Created from EPrint's datestamp field
Updated
2021-11-08
Created from EPrint's last_modified field