of 7
Search for
CP
Violation in
B
0
-

B
0
Mixing Using Partial Reconstruction
of
B
0
!
D

X‘
þ

and a Kaon Tag
J. P. Lees,
1
V. Poireau,
1
V. Tisserand,
1
E. Grauges,
2
A. Palano,
3a,3b
G. Eigen,
4
B. Stugu,
4
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
M. J. Lee,
5
G. Lynch,
5
H. Koch,
6
T. Schroeder,
6
C. Hearty,
7
T. S. Mattison,
7
J. A. McKenna,
7
R. Y. So,
7
A. Khan,
8
V. E. Blinov,
9a,9c
A. R. Buzykaev,
9a
V. P. Druzhinin,
9a,9b
V. B. Golubev,
9a,9b
E. A. Kravchenko,
9a,9b
A. P. Onuchin,
9a,9c
S. I. Serednyakov,
9a,9b
Yu. I. Skovpen,
9a,9b
E. P. Solodov,
9a,9b
K. Yu. Todyshev,
9a,9b
A. N. Yushkov,
9a
D. Kirkby,
10
A. J. Lankford,
10
M. Mandelkern,
10
B. Dey,
11
J. W. Gary,
11
O. Long,
11
G. M. Vitug,
11
C. Campagnari,
12
M. Franco Sevilla,
12
T. M. Hong,
12
D. Kovalskyi,
12
J. D. Richman,
12
C. A. West,
12
A. M. Eisner,
13
W. S. Lockman,
13
A. J. Martinez,
13
B. A. Schumm,
13
A. Seiden,
13
D. S. Chao,
14
C. H. Cheng,
14
B. Echenard,
14
K. T. Flood,
14
D. G. Hitlin,
14
P. Ongmongkolkul,
14
F. C. Porter,
14
R. Andreassen,
15
Z. Huard,
15
B. T. Meadows,
15
M. D. Sokoloff,
15
L. Sun,
15
P. C. Bloom,
16
W. T. Ford,
16
A. Gaz,
16
U. Nauenberg,
16
J. G. Smith,
16
S. R. Wagner,
16
R. Ayad,
17,
W. H. Toki,
17
B. Spaan,
18
K. R. Schubert,
19
R. Schwierz,
19
D. Bernard,
20
M. Verderi,
20
S. Playfer,
21
D. Bettoni,
22a
C. Bozzi,
22a
R. Calabrese,
22a,22b
G. Cibinetto,
22a,22b
E. Fioravanti,
22a,22b
I. Garzia,
22a,22b
E. Luppi,
22a,22b
L. Piemontese,
22a
V. Santoro,
22a
R. Baldini-Ferroli,
23
A. Calcaterra,
23
R. de Sangro,
23
G. Finocchiaro,
23
S. Martellotti,
23
P. Patteri,
23
I. M. Peruzzi,
23,
M. Piccolo,
23
M. Rama,
23
A. Zallo,
23
R. Contri,
24a,24b
E. Guido,
24a,24b
M. Lo Vetere,
24a,24b
M. R. Monge,
24a,24b
S. Passaggio,
24a
C. Patrignani,
24a,24b
E. Robutti,
24a
B. Bhuyan,
25
V. Prasad,
25
M. Morii,
26
A. Adametz,
27
U. Uwer,
27
H. M. Lacker,
28
P. D. Dauncey,
29
U. Mallik,
30
C. Chen,
31
J. Cochran,
31
W. T. Meyer,
31
S. Prell,
31
A. E. Rubin,
31
A. V. Gritsan,
32
N. Arnaud,
33
M. Davier,
33
D. Derkach,
33
G. Grosdidier,
33
F. Le Diberder,
33
A. M. Lutz,
33
B. Malaescu,
33
P. Roudeau,
33
A. Stocchi,
33
G. Wormser,
33
D. J. Lange,
34
D. M. Wright,
34
J. P. Coleman,
35
J. R. Fry,
35
E. Gabathuler,
35
D. E. Hutchcroft,
35
D. J. Payne,
35
C. Touramanis,
35
A. J. Bevan,
36
F. Di Lodovico,
36
R. Sacco,
36
G. Cowan,
37
J. Bougher,
38
D. N. Brown,
38
C. L. Davis,
38
A. G. Denig,
39
M. Fritsch,
39
W. Gradl,
39
K. Griessinger,
39
A. Hafner,
39
E. Prencipe,
39
R. J. Barlow,
40,
§
G. D. Lafferty,
40
E. Behn,
41
R. Cenci,
41
B. Hamilton,
41
A. Jawahery,
41
D. A. Roberts,
41
R. Cowan,
42
D. Dujmic,
42
G. Sciolla,
42
R. Cheaib,
43
P. M. Patel,
43,
*
S. H. Robertson,
43
P. Biassoni,
44a,44b
N. Neri,
44a
F. Palombo,
44a,44b
L. Cremaldi,
45
R. Godang,
45,
P. Sonnek,
45
D. J. Summers,
45
X. Nguyen,
46
M. Simard,
46
P. Taras,
46
G. De Nardo,
47a,47b
D. Monorchio,
47a,47b
G. Onorato,
47a,47b
C. Sciacca,
47a,47b
M. Martinelli,
48
G. Raven,
48
C. P. Jessop,
49
J. M. LoSecco,
49
K. Honscheid,
50
R. Kass,
50
J. Brau,
51
R. Frey,
51
N. B. Sinev,
51
D. Strom,
51
E. Torrence,
51
E. Feltresi,
52a,52b
M. Margoni,
52a,52b
M. Morandin,
52a
M. Posocco,
52a
M. Rotondo,
52a
G. Simi,
52a,52b
F. Simonetto,
52a,52b
R. Stroili,
52a,52b
S. Akar,
53
E. Ben-Haim,
53
M. Bomben,
53
G. R. Bonneaud,
53
H. Briand,
53
G. Calderini,
53
J. Chauveau,
53
Ph. Leruste,
53
G. Marchiori,
53
J. Ocariz,
53
S. Sitt,
53
M. Biasini,
54a,54b
E. Manoni,
54a
S. Pacetti,
54a,54b
A. Rossi,
54a
C. Angelini,
54a,54b
G. Batignani,
55a,55b
S. Bettarini,
55a,55b
M. Carpinelli,
55a,55b,
G. Casarosa,
55a,55b
A. Cervelli,
55a,55b
F. Forti,
55a,55b
M. A. Giorgi,
55a,55b
A. Lusiani,
55a,55c
B. Oberhof,
55a,55b
E. Paoloni,
55a,55b
A. Perez,
55a
G. Rizzo,
55a,55b
J. J. Walsh,
55a
D. Lopes Pegna,
56
J. Olsen,
56
A. J. S. Smith,
56
R. Faccini,
57a,57b
F. Ferrarotto,
57a
F. Ferroni,
57a,57b
M. Gaspero,
57a,57b
L. Li Gioi,
57a
G. Piredda,
57a
C. Bu
̈
nger,
58
O. Gru
̈
nberg,
58
T. Hartmann,
58
T. Leddig,
58
C. Voß,
58
R. Waldi,
58
T. Adye,
59
E. O. Olaiya,
59
F. F. Wilson,
59
S. Emery,
60
G. Hamel de Monchenault,
60
G. Vasseur,
60
Ch. Ye
`
che,
60
F. Anulli,
61
D. Aston,
61
D. J. Bard,
61
J. F. Benitez,
61
C. Cartaro,
61
M. R. Convery,
61
J. Dorfan,
61
G. P. Dubois-Felsmann,
61
W. Dunwoodie,
61
M. Ebert,
61
R. C. Field,
61
B. G. Fulsom,
61
A. M. Gabareen,
61
M. T. Graham,
61
C. Hast,
61
W. R. Innes,
61
P. Kim,
61
M. L. Kocian,
61
D. W. G. S. Leith,
61
P. Lewis,
61
D. Lindemann,
61
B. Lindquist,
61
S. Luitz,
61
V. Luth,
61
H. L. Lynch,
61
D. B. MacFarlane,
61
D. R. Muller,
61
H. Neal,
61
S. Nelson,
61
M. Perl,
61
T. Pulliam,
61
B. N. Ratcliff,
61
A. Roodman,
61
A. A. Salnikov,
61
R. H. Schindler,
61
A. Snyder,
61
D. Su,
61
M. K. Sullivan,
61
J. Va’vra,
61
A. P. Wagner,
61
W. F. Wang,
61
W. J. Wisniewski,
61
M. Wittgen,
61
D. H. Wright,
61
H. W. Wulsin,
61
V. Ziegler,
61
W. Park,
62
M. V. Purohit,
62
R. M. White,
62,
**
J. R. Wilson,
62
A. Randle-Conde,
63
S. J. Sekula,
63
M. Bellis,
64
P. R. Burchat,
64
T. S. Miyashita,
64
E. M. T. Puccio,
64
M. S. Alam,
65
J. A. Ernst,
65
R. Gorodeisky,
66
N. Guttman,
66
D. R. Peimer,
66
A. Soffer,
66
S. M. Spanier,
67
J. L. Ritchie,
68
A. M. Ruland,
68
R. F. Schwitters,
68
B. C. Wray,
68
J. M. Izen,
69
X. C. Lou,
69
F. Bianchi,
70a,70b
F. De Mori,
70a
A. Filippi,
70a
D. Gamba,
70a,70b
S. Zambito,
70a,70b
L. Lanceri,
71a,71b
L. Vitale,
71a,71b
F. Martinez-Vidal,
72
A. Oyanguren,
72
P. Villanueva-Perez,
72
H. Ahmed,
73
J. Albert,
73
Sw. Banerjee,
73
F. U. Bernlochner,
73
H. H. F. Choi,
73
G. J. King,
73
R. Kowalewski,
73
M. J. Lewczuk,
73
T. Lueck,
73
I. M. Nugent,
73
J. M. Roney,
73
R. J. Sobie,
73
N. Tasneem,
73
T. J. Gershon,
74
P. F. Harrison,
74
T. E. Latham,
74
H. R. Band,
75
S. Dasu,
75
Y. Pan,
75
R. Prepost,
75
and S. L. Wu
75
(
B
A
B
AR
Collaboration)
PRL
111,
101802 (2013)
PHYSICAL REVIEW LETTERS
week ending
6 SEPTEMBER 2013
0031-9007
=
13
=
111(10)
=
101802(7)
101802-1
Ó
2013 American Physical Society
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie, CNRS/IN2P3,
F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
Institut fu
̈
r Experimentalphysik 1, Ruhr Universita
̈
t Bochum, D-44780 Bochum, Germany
7
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9a
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia
9b
Novosibirsk State University, Novosibirsk 630090, Russia
9c
Novosibirsk State Technical University, Novosibirsk 630092, Russia
10
University of California at Irvine, Irvine, California 92697, USA
11
University of California at Riverside, Riverside, California 92521, USA
12
University of California at Santa Barbara, Santa Barbara, California 93106, USA
13
Institute for Particle Physics, Santa Cruz, University of California at Santa Cruz, California 95064, USA
14
California Institute of Technology, Pasadena, California 91125, USA
15
University of Cincinnati, Cincinnati, Ohio 45221, USA
16
University of Colorado, Boulder, Colorado 80309, USA
17
Colorado State University, Fort Collins, Colorado 80523, USA
18
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
19
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
20
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
21
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22a
INFN Sezione di Ferrara, I-44122 Ferrara, Italy
22b
Dipartimento di Fisica e Scienze della Terra, Universita
`
di Ferrara, I-44122 Ferrara, Italy
23
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
24a
INFN Sezione di Genova, I-16146 Genova, Italy
24b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
25
Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
26
Harvard University, Cambridge, Massachusetts 02138, USA
27
Physikalisches Institut, Universita
̈
t Heidelberg, D-69120 Heidelberg, Germany
28
Institut fu
̈
r Physik, Humboldt-Universita
̈
t zu Berlin, D-12489 Berlin, Germany
29
Imperial College London, London SW7 2AZ, United Kingdom
30
University of Iowa, Iowa City, Iowa 52242, USA
31
Iowa State University, Ames, Iowa 50011-3160, USA
32
Johns Hopkins University, Baltimore, Maryland 21218, USA
33
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11, Centre Scientifique d’Orsay,
F-91898 Orsay Cedex, France
34
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
35
University of Liverpool, Liverpool L69 7ZE, United Kingdom
36
Queen Mary, University of London, London, E1 4NS, United Kingdom
37
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
38
University of Louisville, Louisville, Kentucky 40292, USA
39
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
40
University of Manchester, Manchester M13 9PL, United Kingdom
41
University of Maryland, College Park, Maryland 20742, USA
42
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
43
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
44a
INFN Sezione di Milano, I-20133 Milano, Italy
44b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
45
University of Mississippi, University, Mississippi 38677, USA
46
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
47a
INFN Sezione di Napoli, I-80126 Napoli, Italy
47b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
48
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
49
University of Notre Dame, Notre Dame, Indiana 46556, USA
50
Ohio State University, Columbus, Ohio 43210, USA
51
University of Oregon, Eugene, Oregon 97403, USA
52a
INFN Sezione di Padova, I-35131 Padova, Italy
PRL
111,
101802 (2013)
PHYSICAL REVIEW LETTERS
week ending
6 SEPTEMBER 2013
101802-2
52b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
53
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
54a
INFN Sezione di Perugia, I-06123 Perugia, Italy
54b
Dipartimento di Fisica, Universita
`
di Perugia, I-06123 Perugia, Italy
55a
INFN Sezione di Pisa, I-56127 Pisa, Italy
55b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
55c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
56
Princeton University, Princeton, New Jersey 08544, USA
57a
INFN Sezione di Roma, I-00185 Roma, Italy
57b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
58
Universita
̈
t Rostock, D-18051 Rostock, Germany
59
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
60
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
61
SLAC National Accelerator Laboratory, Stanford, California 94309, USA
62
University of South Carolina, Columbia, South Carolina 29208, USA
63
Southern Methodist University, Dallas, Texas 75275, USA
64
Stanford University, Stanford, California 94305-4060, USA
65
State University of New York, Albany, New York 12222, USA
66
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
67
University of Tennessee, Knoxville, Tennessee 37996, USA
68
University of Texas at Austin, Austin, Texas 78712, USA
69
University of Texas at Dallas, Richardson, Texas 75083, USA
70a
INFN Sezione di Torino, I-10125 Torino, Italy
70b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
71a
INFN Sezione di Trieste, I-34127 Trieste, Italy
71b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
72
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
73
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
74
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
75
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 10 May 2013; published 3 September 2013)
We present results of a search for
CP
violation in
B
0
-

B
0
mixing with the
BABAR
detector. We select a
sample of
B
0
!
D

X‘
þ

decays with a partial reconstruction method and use kaon tagging to assess the
flavor of the other
B
meson in the event. We determine the
CP
violating asymmetry
A
CP
N
ð
B
0
B
0
Þ
N
ð
B
0
B
0
Þ
=
½
N
ð
B
0
B
0
Þþ
N
ð
B
0
B
0
Þ ¼ ð
0
:
06

0
:
17
þ
0
:
38

0
:
32
Þ
%
, corresponding to

CP
¼
1
j
q=p
j¼ð
0
:
29

0
:
84
þ
1
:
88

1
:
61
Þ
10

3
.
DOI:
10.1103/PhysRevLett.111.101802
PACS numbers: 13.20.He, 11.30.Er, 13.20.Gd, 13.25.Ft
Experiments at
B
factories have observed
CP
violation
in direct
B
0
decays [
1
] and in the interference between
B
0
mixing and decay [
2
].
CP
violation in mixing has so far
eluded observation.
The weak-Hamiltonian eigenstates are related to the
flavor eigenstates of the strong interaction Hamiltonian
by
j
B
L;H
p
j
B
0
i
q
j

B
0
i
. The value of the ratio
j
q=p
j
can be determined from the asymmetry between the
two oscillation probabilities
P
¼
P
ð
B
0
!

B
0
Þ
and

P
¼
P
ð

B
0
!
B
0
Þ
through
A
CP
¼ð

P

P
Þ
=
ð

P
þ
P
Þ¼ð
1

j
q=p
j
4
Þ
=
ð
1
þj
q=p
j
4
Þ
2
CP
, where

CP
¼
1
j
q=p
j
and the Standard Model (SM) prediction is
A
CP
¼
4
:
0

0
:
6
Þ
10

4
[
3
]. Any observation with the present
experimental sensitivity [
O
ð
10

3
Þ
] would therefore reveal
physics beyond the SM.
Experiments measure
A
CP
from the dilepton asymme-
try,
A
‘‘
¼½
N
ð
þ
þ
Þ
N
ð


Þ
=
½
N
ð
þ
þ
Þþ
N
ð


Þ
,
where an
þ
(

) tags a
B
0
(

B
0
) meson, and
refers to
either an electron or a muon [
4
]. These measurements
benefit from the large number of produced dilepton events.
However, they rely on the use of control samples to sub-
tract the charge-asymmetric background originating from
hadrons wrongly identified as leptons or leptons from light
hadron decays and to compute the charge-dependent lepton
identification asymmetry that may produce a false signal.
The systematic uncertainties associated with the correc-
tions for these effects constitute a severe limitation to the
precision of the measurements.
Using a sample of dimuon events, the
D
0
Collaboration
measured a value of
A
CP
for a mixture of
B
s
and
B
0
decays that deviates from the SM by 3.9 standard devia-
tions [
5
]. Measurements of
A
CP
for
B
s
!
D
s
X
decays
are consistent with the SM [
6
].
We present a measurement of
A
CP
ð
B
0
Þ
with a new
technique. We reconstruct
B
0
mesons (hereafter called
B
R
; charge conjugation is implied) from semileptonic
PRL
111,
101802 (2013)
PHYSICAL REVIEW LETTERS
week ending
6 SEPTEMBER 2013
101802-3
B
0
!
D

X‘
þ

events with a partial reconstruction of the
D

!



D
0
decay [
7
]. The observed asymmetry
between the number of events with an
þ
versus an

is
A

A
r‘
þ
A
CP

d
;
(1)
where

d
¼
0
:
1862

0
:
0023
[
8
] is the integrated mixing
probability for
B
0
mesons and
A
r‘
is the detector-induced
charge asymmetry in the
B
R
reconstruction.
We identify (‘‘tag’’) the flavor of the other
B
0
meson
(labeled
B
T
) using events with a charged kaon (
K
T
). An
event with a
K
þ
(
K

) usually arises from a state that
decays as a
B
0
(

B
0
) meson. When mixing occurs, the
and
K
T
have the same electric charge. The observed asym-
metry in the rate of mixed events is
A
T
¼
N
ð
þ
K
þ
T
Þ
N
ð

K

T
Þ
N
ð
þ
K
þ
T
Þþ
N
ð

K

T
Þ

A
r‘
þ
A
K
þ
A
CP
;
(2)
where
A
K
is the detector charge asymmetry in kaon
reconstruction. A kaon with the same charge as the
might
also arise from the Cabibbo-favored decays of the
D
0
meson produced with the lepton from the partially recon-
structed side (
K
R
). The asymmetry observed for these
events is
A
R
¼
N
ð
þ
K
þ
R
Þ
N
ð

K

R
Þ
N
ð
þ
K
þ
R
Þþ
N
ð

K

R
Þ

A
r‘
þ
A
K
þ
A
CP

d
:
(3)
Equations (
1
)–(
3
) can be used to extract
A
CP
and the
detector-induced asymmetries (
A
r‘
and
A
K
).
A detailed description of the
BABAR
detector is pro-
vided elsewhere [
9
]. We use a sample with an integrated
luminosity of
425
:
7fb

1
[
10
] collected on the peak of the

ð
4
S
Þ
resonance. A
45 fb

1
sample collected 40 MeV
below the resonance (‘‘off peak’’) is used for background
studies. We also use a simulated sample of
B

B
events [
11
]
with an integrated luminosity equivalent to approximately
3 times the data.
We preselect a sample of hadronic events requiring the
number of charged particles to be at least four. We reduce
non-
B

B
(continuum) background by requiring the ratio of
the second to the zeroth order Fox-Wolfram moments [
12
]
to be less than 0.6.
We select the
B
R
sample by searching for combinations
of a charged lepton (in the momentum range
1
:
4
<p
<
2
:
3 GeV
=c
) and a low momentum pion


s
(
607
<p


s
<
190 MeV
=c
), which is taken to arise from
D

!

D
0


s
decay. Here and elsewhere momenta are calculated in the
center-of-mass frame. The
þ
and the


s
must have
opposite electric charge. Their tracks must be consistent
with originating from a common vertex, which is con-
strained to the beam collision point in the plane transverse
to the beam axis. Finally, we combine
p
,
p


s
, and the
probability of the vertex fit in a likelihood ratio variable (

)
optimized to reject combinatorial
B

B
events. If more than
one candidate is found in the event, we choose the one with
the largest value of

.
We determine the square of the unobserved neutrino
mass as
M
2

¼ð
E
beam

E
D


E
Þ
2
p
D

þ
p
Þ
2
;
where we neglect the momentum of the
B
0
(
p
B

340 MeV
=c
) and identify the
B
0
energy with the beam
energy
E
beam
in the
e
þ
e

center-of-mass frame;
E
and
p
are the energy and momentum of the lepton and
p
D

is the
estimated momentum of the
D

. As a consequence of
limited phase space in the
D
decay, the soft pion is
emitted nearly at rest in the
D
rest frame. The
D
four-momentum can therefore be computed by approximat-
ing its direction as that of the soft pion, and parametrizing its
momentum as a linear function of the soft-pion momentum.
All
B
0
semileptonic decays with
M
2

near zero are consid-
ered to be signal events, including
B
0
!
D

X
0
þ

(primary),
D

X
0

þ


;
þ
!
þ




(cascade), and
D

h
þ
(misidentified), where
h
¼
; K
is misidentified
as a lepton.
B
0
decays to flavor-insensitive
CP
eigenstates,
B
0
!
D

DX; D
!

X
, and
B
þ
!
D

X
þ
þ

accu-
mulate at
M
2

0
and are called ‘‘peaking background.’’
The uncorrelated background consists of continuum and
combinatorial
B

B
events.
We identify charged kaons in the momentum range
0
:
2
<p
K
<
4 GeV
=c
with an average efficiency of about
85% and a
3%
pion misidentification rate. We determine
the
K
production point from the intersection of the
K
track
and the beam spot, and then determine the distance

z
between the
þ


s
and
K
vertex coordinates along
the beam axis. Finally, we define the proper time difference

t
between the
B
R
and the
B
T
in the ‘‘Lorentz boost
approximation’’ [
13
],

t
¼

z=
, where

¼
0
:
56
is
the average boost of the

ð
4
S
Þ
in the laboratory frame.
Since the
B
mesons are not at rest in the

ð
4
S
Þ
rest frame,
and in addition the
K
is usually produced in the cascade
process
B
T
!
DX
,
D
!
KY
,

t
is only an approximation
of the actual proper time difference between the
B
R
and the
B
T
. We reject events if the uncertainty
ð

t
Þ
exceeds 3 ps.
This selection reduces to a negligible level the contamina-
tion from protons produced in the scattering of primary
particles with the beam pipe or the detector material and
wrongly identified as kaons, which would otherwise con-
stitute a large charge-asymmetric source of background.
We define an event as ‘‘mixed’’ if the
K
and the
have
the same electric charge and as ‘‘unmixed’’ otherwise. In
about 20% of the cases, the
K
has the wrong charge
correlation with respect to the
B
T
, and the event is wrongly
defined (mistags).
About 95% of the
K
R
candidates have the same electric
charge as the
; they constitute 75% of the mixed event
sample. Because of the small lifetime of the
D
0
meson, the
separation in space between the
K
R
and the
‘
s
production
PRL
111,
101802 (2013)
PHYSICAL REVIEW LETTERS
week ending
6 SEPTEMBER 2013
101802-4
points is much smaller than for
K
T
. Therefore, we use

t
as
a first discriminant variable. Kaons in the
K
R
sample are
usually emitted in the hemisphere opposite to the
, while
genuine
K
T
are produced randomly, so we use in addition
the cosine of the angle
‘K
between the
and the
K
.
In about 20% of the cases, the events contain more than
one
K
; most often we find both a
K
T
and a
K
R
candidate.
As these two carry different information, we accept
multiple-candidate events. Using ensembles of simulated
samples of events, we find that this choice does not affect
the statistical uncertainty.
The
M
2

distribution of all signal candidates in shown in
Fig.
1
. We determine the signal fraction by fitting the
M
2

distribution in the interval
½
10
;
2
:
5

GeV
2
=c
4
with the
sum of continuum,
B

B
combinatorial, and
B

B
peaking
events. We split peaking
B

B
into direct (
B
0
!
D

þ

),
‘‘
D

’’ (
B
!
D

X
0
þ

), cascade, hadrons wrongly
identified as leptons, and
CP
eigenstates. In the fit, we
float the fraction of direct,
D

, and
B

B
combinatorial
background, while we fix the continuum contribution to
the expectation from off-peak events, rescaled by the on-
peak to off-peak luminosity ratio, and the rest (less than 2%
of the total) to the level predicted by the simulation. Based
on the assumption of isospin conservation, we attribute
66% of the
D

events to
B
þ
decays and the rest to
B
0
decays. We use the result of the fit to compute the fractions
of continuum, combinatorial, and peaking
B
þ
background,
CP
eigenstates, and
B
0
signal in the sample, as a function
of
M
2

. We find
ð
5
:
945

0
:
007
Þ
10
6
peaking events
(see Fig.
1
).
We then repeat the fit after dividing events into the four
lepton categories (
e

,


) and eight tagged samples
(
e

K

,


K

).
We measure
A
CP
with a binned four-dimensional fit to

t
(100 bins),
ð

t
Þð
20
Þ
,
cos
‘k
ð
4
Þ
, and
p
K
ð
5
Þ
. Following
Ref. [
14
] and neglecting resolution effects, the

t
distri-
butions for signal events with a
K
T
are represented by the
following expressions:
F

B
0
B
0
ð

t
Þ¼

0
e


0
j

t
j
2
ð
1
þ
r
0
2
Þ

1
þ
q
p
2
r
0
2

cosh
ð

t=
2
Þþ

1

q
p
2
r
0
2

cos
ð

m
d

t
Þ
q
p
ð
b
þ
c
Þ
sin
ð

m
d

t
Þ

;
F
B
0

B
0
ð

t
Þ¼

0
e


0
j

t
j
2
ð
1
þ
r
0
2
Þ

1
þ
p
q
2
r
0
2

cosh
ð

t=
2
Þþ

1

p
q
2
r
0
2

cos
ð

m
d

t
Þþ
p
q
ð
b

c
Þ
sin
ð

m
d

t
Þ

;
F

B
0

B
0
ð

t
Þ¼

0
e


0
j

t
j
2
ð
1
þ
r
0
2
Þ

1
þ
p
q
2
r
0
2

cosh
ð

t=
2
Þ

1

p
q
2
r
0
2

cos
ð

m
d

t
Þ
p
q
ð
b

c
Þ
sin
ð

m
d

t
Þ


q
p
2
;
F
B
0
B
0
ð

t
Þ¼

0
e


0
j

t
j
2
ð
1
þ
r
0
2
Þ

1
þ
q
p
2
r
0
2

cosh
ð

t=
2
Þ

1

q
p
2
r
0
2

cos
ð

m
d

t
Þþ
q
p
ð
b
þ
c
Þ
sin
ð

m
d

t
Þ


p
q
2
;
where the first index of
F
refers to the flavor of the
B
R
and
the second to the
B
T
,

0
¼


1
B
0
is the average width of the
two
B
0
mass eigenstates,

m
d
and

are, respectively,
their mass and width differences, the parameter
r
0
results
from the interference of Cabibbo-favored and doubly
Cabibbo suppressed decays on the
B
T
side [
14
] and has a
very small value [
O
ð
1%
Þ
], and
b
and
c
are two parameters
expressing the
CP
violation arising from that interference.
In the SM,
b
¼
2
r
0
sin
ð
2

þ

Þ
cos
0
and
c
¼

2
r
0
cos
ð
2

þ

Þ
sin
0
, where

and

are angles of the
unitary triangle and
0
is a strong phase. The quantities

m
d
,

B
0
,
b
,
c
, and
sin
ð
2

þ

Þ
are left free in the fit. The
value of

is fixed to zero. Neglecting the tiny contribu-
tion from doubly Cabibbo suppressed decays, the main
contribution to the asymmetry is time independent and
due to the normalization factors of the two mixed terms.
The

t
distribution for the decays of the
B
þ
mesons
is parametrized by an exponential function,
F
B
þ
¼

þ
e
j

þ

t
j
, where the
B
þ
decay width is computed as the
inverse of the lifetime


1
þ
¼

B
þ
¼ð
1
:
641

0
:
008
Þ
ps
.
When the
K
T
comes from the decay of the
B
0
meson to a
CP
eigenstate (as, for example,
B
0
!
D
ðÞ

D
ðÞ
[
8
]), a
different expression applies:
F
CPe
ð

t
Þ¼

0
4
e


0
j

t
j
½
1

S
sin
ð

m
d

t
Þ

C
cos
ð

m
d

t
Þ
;
where the plus (minus) sign applies if the
B
R
decays as a
B
0
(

B
0
). The fraction of these events (about 1%) and the
parameters
S
and
C
are fixed in the fits and are taken
from simulation.
We obtain the

t
distributions for
K
T
in
B

B
events,
G
i
ð

t
Þ
, by convolving the theoretical ones with a resolu-
tion function, which consists of the superposition of several
Gaussian functions, convolved with exponentials to
account for the finite lifetime of charmed mesons in the
cascade decay
b
!
c
!
K
. Different sets of parameters
are used for peaking and for combinatorial background
events.
PRL
111,
101802 (2013)
PHYSICAL REVIEW LETTERS
week ending
6 SEPTEMBER 2013
101802-5
To describe the

t
distributions for
K
R
events,
G
K
R
ð

t
Þ
,
we select a subsample of data containing fewer than 5%
K
T
decays and use background-subtracted histograms in our
likelihood functions. As an alternative, we apply the same
selection to the simulation and correct the simulated

t
distribution by the ratio of histograms from data and simu-
lation. The
cos
‘K
shapes are obtained from the histograms
of the simulated distributions for
B

B
events. The

t
dis-
tribution of continuum events is represented by a decaying
exponential convolved with Gaussians parametrized by
fitting simultaneously the off-peak data.
The rate of events in each bin (
j
) and for each tagged
sample is then expressed as the sum of the predicted
contributions from peaking events,
B

B
combinatorial,
and continuum background. Accounting for mistags and
K
R
events, the peaking
B
0
contributions to the same-sign
samples are
G
þ
K
þ
ð
j
Þ¼ð
1
þ
A
r‘
Þð
1
þ
A
K
Þfð
1

f
þþ
K
R
Þ
½ð
1

!
þ
Þ
G
B
0
B
0
ð
j
Þþ
!

G
B
0

B
0
ð
j
Þ
þ
f
þþ
K
R
ð
1

!
Þ
G
K
R
ð
j
Þð
1
þ

d
A
‘‘
Þg
;
G

K

ð
j
Þ¼ð
1

A
r‘
Þð
1

A
K
Þfð
1

f

K
R
Þ
½ð
1

!

Þ
G

B
0

B
0
ð
j
Þþ
!
þ
G

B
0
B
0
ð
j
Þ
þ
f

K
R
ð
1

!
0
Þ
G
K
R
ð
j
Þð
1


d
A
‘‘
Þg
;
where the reconstruction asymmetries have separate values
for the
e
and

samples. We allow for different mistag
probabilities for
K
T
(
!

) and
K
R
(
!
0
). The parameters
f

K
R
ð
p
k
Þ
describe the fractions of
K
R
tags in each sample
as a function of the kaon momentum.
A total of 168 parameters are determined in the fit. By
analyzing simulated events as data, we observe that the fit
reproduces the generated values of
1
j
q=p
j
(zero) and of
the other most significant parameters (
A
r‘
,
A
K
,

m
d
,
and

B
0
). We then produce samples of simulated events
with

CP
¼
0
:
005
,

0
:
010
,

0
:
025
and
A
r‘
or
A
K
in
the range of

10%
, by removing events. A total of 67
different simulated event samples are used to check for
biases. In each case, the input values are correctly deter-
mined, and an unbiased value of
j
q=p
j
is always obtained.
The fit to the data yields

CP
¼ð
0
:
29

0
:
84
þ
1
:
88

1
:
61
Þ
10

3
, where the first uncertainty is statistical and the
second systematic. The values of the detector charge
asymmetries are
A
r;e
¼ð
3
:
0

0
:
4
Þ
10

3
,
A
r;
¼
ð
3
:
1

0
:
5
Þ
10

3
, and
A
K
¼ð
13
:
7

0
:
3
Þ
10

3
. The
frequency of the oscillation

m
d
¼
508
:
5

0
:
9ns

1
is
consistent with the world average, while

B
0
¼
1
:
553

0
:
002 ps
is somewhat larger than the world average, which
we account for in the systematic uncertainties. Figure
2
shows the fit projection for

t
.
The systematic uncertainty is computed as the sum in
quadrature of several contributions, described below and
summarized in Table
I
.
Peaking sample composition.—
We vary the sample
composition by the statistical uncertainty of the
M
2

fit,
the fraction of
B
0
to
B
þ
in the
D

peaking sample in the
range
50

25%
to account for possible violation of iso-
spin symmetry, the fraction of the peaking contributions
FIG. 2 (color online). Distribution of

t
for the continuum-
subtracted data (points with error bars) and fitted contributions
from
K
R
(dark) and
K
T
(light), for (a)
þ
K
þ
events, (b)

K

events, (c)

K
þ
events, (d)
þ
K

events, (e) raw asymmetry
between
þ
K
þ
and

K

events.
FIG. 1 (color online).
M
2

distribution for selected events. The
data are represented by the points with error bars. The fitted
contributions from

B
0
!
D



, other peaking background,
D

events,
B

B
combinatorial background, and rescaled off-peak
events are overlaid.
PRL
111,
101802 (2013)
PHYSICAL REVIEW LETTERS
week ending
6 SEPTEMBER 2013
101802-6
(taken from the simulation) by

20%
, and the fraction of
CP
eigenstates by

50%
.
B

B
combinatorial sample composition.—
We vary the
fraction of
B
þ
events in the
B

B
combinatorial sample by

4
:
5%
, which corresponds to the uncertainty in the inclu-
sive branching fraction for
B
0
!
D

X
.

t
resolution model.—
We quote the difference between
the result when all resolution parameters are determined in
the fit and those obtained when those that exhibit a weak
correlation with
j
q=p
j
are fixed.
K
R
fraction.—
We vary the ratio of
B
þ
!
K
R
X
to
B
0
!
K
R
X
by

6
:
8%
, which corresponds to the uncertainty of
the fraction
BR
ð
D

0
!
K

X
Þ
=BR
ð
D
!
K

X
Þ
.
K
R

t
distribution.—
We use half the difference between
the results obtained using the two different strategies to
describe the
K
R

t
distribution.
Fit bias.—
Parametrized simulations are used to check
the estimate of the result and its statistical uncertainty. We
add the statistical uncertainty on the validation test using
the detailed simulation and the difference between the
nominal result and the central result determined from the
ensemble of parametrized simulations.
CP
eigenstates description.—
We vary the
S
and
C
parameters describing the
CP
eigenstates by their statisti-
cal uncertainties as obtained from simulation.
Physical parameters.—
We repeat the fit setting the value
of

to
0
:
02 ps

1
. The lifetimes of the
B
0
and
B
þ
mesons
and

m
d
are floated in the fit. Alternatively, we check the
effect of fixing each parameter in turn to the world average.
In summary, we present a new measurement of the
parameter governing
CP
violation in
B
0
-

B
0
oscillations.
With a partial
B
0
!
D

X‘
þ

reconstruction and kaon
tagging, we find

CP
¼ð
0
:
29

0
:
84
þ
1
:
88

1
:
61
Þ
10

3
and
A
CP
¼ð
0
:
06

0
:
17
þ
0
:
38

0
:
32
Þ
%
. These results are consistent
with, and more precise than, dilepton-based results from
B
factories [
4
]. No deviation is observed from the SM
expectation [
3
].
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for
the substantial dedicated effort from the computing
organizations that support
BABAR
. The collaborating insti-
tutions wish to thank SLAC for its support and kind
hospitality. This work is supported by DOE and NSF
(U.S.), NSERC (Canada), IHEP (China), CEA and
CNRS-IN2P3 (France), BMBF and DFG (Germany),
INFN (Italy), FOM (Netherlands), NFR (Norway), MIST
(Russia), MEC (Spain), and PPARC (United Kingdom).
Individuals have received support from the Marie Curie
EIF (European Union) and the A. P. Sloan Foundation.
*
Deceased.
Present address: University of Tabuk, Tabuk 71491, Saudi
Arabia.
Also at: Universita
`
di Perugia, Dipartimento di Fisica,
Perugia, Italy.
§
Present address: University of Huddersfield, Huddersfield
HD1 3DH, United Kingdom.
Present address: University of South Alabama, Mobile,
Alabama 36688, USA.
Also at: Universita
`
di Sassari, Sassari, Italy.
**
Present address: Universidad Te
́
cnica Federico Santa
Maria, Valparaiso, Chile 2390123.
[1] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. Lett.
93
, 131801 (2004)
.
[2] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. D
79
,
072009 (2009)
; I. Adachi
et al.
(Belle Collaboration),
Phys. Rev. Lett.
108
, 171802 (2012)
.
[3] A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, H.
Lacker, S. Monteil, V. Niess, and S. T’Jampens,
Phys. Rev.
D
86
, 033008 (2012)
; J. Charles
et al.
,
Phys. Rev. D
84
,
033005 (2011)
; A. Lenz and U. Nierste,
J. High Energy
Phys. 06 (2007) 072
.
[4] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. Lett.
96
, 251802 (2006)
; E. Nakano
et al.
(Belle Collaboration),
Phys. Rev. D
73
, 112002 (2006)
.
[5] V. M. Abazov
et al.
(D0 Collaboration),
Phys. Rev. D
84
,
052007 (2011)
.
[6] V. M. Abazov
et al.
(D0 Collaboration),
Phys. Rev. Lett.
110
, 011801 (2013)
.
[7] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. Lett.
100
, 051802 (2008)
.
[8] J. Beringer
et al.
(Particle Data Group),
Phys. Rev. D
86
,
010001 (2012)
.
[9] B. Aubert
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
.
[10] J. P. Lees
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
726
, 203 (2013)
.
[11] D. Lange,
Nucl. Instrum. Methods Phys. Res., Sect. A
462
,
152 (2001)
.
[12] G. C. Fox and S. Wolfram,
Phys. Rev. Lett.
41
, 1581
(1978)
.
[13] D. Boutigny
et al.
, SLAC Report No. SLAC-R-504, 1998.
[14] O. Long, M. Baak, R. N. Cahn, and D. Kirkby,
Phys. Rev.
D
68
, 034010 (2003)
.
TABLE I. Principal sources of systematic uncertainties.
Source
ð

CP
Þ
Peaking sample composition
þ
1
:
50

1
:
17

10

3
Combinatorial sample composition

0
:
39

10

3

t
resolution model

0
:
60

10

3
K
R
fraction

0
:
11

10

3
K
R

t
distribution

0
:
65

10

3
Fit bias
þ
0
:
58

0
:
46

10

3
CP
eigenstate description

0
Physical parameters
þ
0

0
:
28

10

3
Total
þ
1
:
88

1
:
61

10

3
PRL
111,
101802 (2013)
PHYSICAL REVIEW LETTERS
week ending
6 SEPTEMBER 2013
101802-7