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We derive an effective field theory describing a pair of gravitationally interacting point particles in an
expansion in their mass ratio, also known as the self-force (SF) expansion. The 0SF dynamics are trivially
obtained to all orders in Newton’s constant by the geodesic motion of the light body in a Schwarzschild
background encoding the gravitational field of the heavy body. The corrections at 1SF and higher are
generated by perturbations about this configuration—that is, the geodesic deviation of the light body and
the fluctuation graviton—but crucially supplemented by an operator describing the recoil of the heavy body
as it interacts with the smaller companion. Using this formalism we compute new results at third post-
Minkowskian order for the conservative dynamics of a system of gravitationally interacting massive
particles coupled to a set of additional scalar and vector fields.
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Introduction.—The landmark observation of gravita-
tional waves by LIGO and Virgo [1] has sparked a scientific
revolution in the fields of astrophysics and gravitation. The
recent discovery of a stochastic gravitational wave back-
ground by NANOGrav [2] has added fuel to this fire.
In parallel with these longstanding experimental efforts

is a decades-long theoretical program to derive the ab initio
predictions of general relativity (GR). This endeavor has
generated numerous lines of attack, including numerical
relativity (NR) [3–5], effective one body (EOB) theory [6],
self-force (SF) methods [7–9], and perturbative post-
Newtonian (PN) calculations using traditional methods
in GR [10] and effective field theory (EFT) [11]. More
recently, the modern scattering amplitudes program [12–
17] has been retooled towards these efforts in what is
known as the post-Minkowskian (PM) expansion [18–39].
Of course, all of these approaches are highly complemen-
tary (see, e.g., [40–57]).
Looking to the future, we can expect new insights into

the physics of ultracompact binaries and extreme mass ratio
inspirals (EMRIs) from the proposed LISA experiment
[58,59]. However, the EMRI problem is intractable in the
vast majority of theoretical approaches, including NR, PN,
and PM. The only extant theoretical approach to the EMRI
problem is SF theory, which uses a hybrid of analytical and

numerical approaches to calculate the motion of a small
companion orbiting a much heavier body, as an expansion
in their mass ratio,

λ ¼ mL

mH
: ð1Þ

In SF theory, the light body induces a perturbation of the
black hole spacetime, which then reacts back onto the light
body, and so on and so forth (cf. some reviews [7–9] and
state of the art computations at OðλÞ, or 1SF, for generic
bound orbits in Kerr [60,61] and at Oðλ2Þ, or 2SF, for
quasicircular orbits in Schwarzschild [62–64]).
In this Letter we revisit the classic problem of describing

the dynamics of a heavy and light body as a systematic
expansion in their mass ratio, λ. Notably, in the limit
of vanishing λ, many physical systems are analytically
solvable. For example, in the textbook solution to the
Rutherford scattering problem, high-energy alpha particles
impinge on a gold nucleus described entirely by a rigid 1=r
background. Of course, this description is only valid in the
limit that the gold nucleus is infinitely heavy—which begs
the question, how does one systematically compute the
leading nontrivial correction in λ? Can this effect be
encoded as an operator added to the theory of a 1=r
background?.
Analogous logic holds for gravity. The limit of vanishing

mass ratio corresponds to the 0SF dynamics of a probe
particle in geodesic motion on a Schwarzschild back-
ground. These background dynamics are understood ana-
lytically to all orders in perturbation theory. But is there an
operator that encodes the 1SF order corrections, and so on
and so forth?.
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Here we offer an affirmative answer to this question in
the context of massive, gravitationally interacting point
particles. At 1SF order, the dynamics are described by a
standard background field theory of a light particle world-
line coupled to graviton fluctuations in a Schwarzschild
background, supplemented by a “recoil operator” encoding
the wobble of the background black hole induced by its
interactions with the light particle:

Srecoil ¼ −
mH

2

Z
dτ δΓμ

Hðx̄HÞ
1

∂
2
τ
δΓHμðx̄HÞ: ð2Þ

Here we have defined δΓμ
Hðx̄HÞ ¼ ˙̄xαH ˙̄x

β
HδΓμ

αβðx̄HÞ and
δΓμ

αβ ¼ Γμ
αβ − Γ̄μ

αβ is the difference between the con-
nection and its background value. Physically, Eq. (2) is
generated by integrating out the fluctuations of the heavy
body trajectory at 1SF. In our framework, the 2SF and
higher order analogs of the recoil operator can be system-
atically computed as well.
The key insight in our analysis is to reinterpret the known

analytic formulas of classical GR—the Schwarzschild
metric and the geodesics of probe particles—as an implicit
resummation of an infinite class of Feynman diagrams in
flat space graviton perturbation theory [21,65,66]. In parti-
cular, the Schwarzschild background, ḡμνðxÞ¼ ημνþ γ̄μνðxÞ,
is given by the infinite sum of flat-space Feynman diagrams
that compute the graviton one-point function induced by a
heavy particle:

ð3Þ

Similarly, the trajectories of geodesics implicitly encode an
infinite set of flat-space Feynman diagrams describing
interactions of light and heavy particles.
Of course, it is far easier to manipulate known analytic

solutions in classical GR than to build them order by order
in perturbation theory. For this reason, we exactly invert the
sequence of logic of [65], and use the Schwarzschild metric
and known geodesic trajectories to extract perturbative
information. In doing so, we can perform PM calculations
in a streamlined way that should pay dividends at high PM
orders.
Crucially, having ascertained which flat space Feynman

diagrams are resummed by the dynamics of a classical
probe, we immediately see that there are missing contri-
butions—and at 1SF order these are entirely accounted for
by the recoil operator in Eq. (2). Furthermore, by explicitly
framing classical GR in terms of flat space perturbation
theory, we can use standard tools such as dimensional
regularization to deal with pointlike or self-energy
divergences.

Applying our framework—which at 1SF is simply the
background field method plus a recoil operator—we derive
old and new results governing conservative gravitational
dynamics up to 3PM accuracy. In particular, we compute
the radial action for two massive, gravitationally interacting
particles without spin, including the effects of scalar or
vector fields which are coupled directly to the light body.
While the results of the present work are limited to 1SF
gravity, a longer forthcoming work [67] will contain many
technical details on the systematic derivation of the EFT at
1SF, 2SF, and beyond, as well as applications to non-
gravitational theories.
Basic setup.—We begin with the Einstein-Hilbert action

coupled to a pair of massive particles [33,37,68],

S ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R −

X
i¼L;H

mi

2

Z
dτ ẋμi ẋ

ν
i gμνðxiÞ;

ð4Þ

where we work in mostly minus metric throughout. Here
we have gauge fixed the einbein to unity, so ẋ2i ¼ 1.
Our construction is based on expanding the trajectories

and metric about their 0SF values,

xμi ¼ x̄μi þ δxμi and gμν ¼ ḡμν þ δgμν: ð5Þ

Here x̄μi ∼ ḡμν ∼Oðλ0Þ are explicit functions describing
0SF dynamics of a probe in a Schwarzschild background.
Meanwhile, δxμi ∼ δgμν ∼Oðλ1Þ are dynamical modes con-
trolling all contributions at 1SF and higher [69]. In parti-
cular, δxμi is the deviation from geodesic motion, while δgμν
is the graviton perturbation propagating in a Schwarzschild
background. Inserting Eq. (5) into Eq. (4), the action
becomes literally that of the background field method,
so S ¼ SBF½ḡ; δg; x̄L; δxL; x̄H; δxH�.
An important conceptual point now arises. In standard SF

theory, the totality of the dynamics is described by a
background field action SBF½ḡ; δg; x̄L; δxL� in which the
only degrees of freedom are the geodesic deviation of the
light worldline, δxμL, and the fluctuation graviton, δgμν. How
can such a theory emerge from our starting point of a pair of
gravitationally interacting point particles, which we have
just shown is described by SBF½ḡ; δg; x̄L; δxL; x̄H; δxH�?
What happened to the heavy particle? Furthermore, how
do we make sense of singular self-force contributions in a
background field method such as ḡμνðxHÞ? As we will see,
while the standard SF theory is perfectly fine, these naive
confusions can be explained and handled quite simply in
our setup.
Background field theory as resummation.—Let us first

consider the dynamics at 0SF order, corresponding to an
infinite mass ratio between the heavy and light particles. In
this limit the heavy particle is undeflected, so it travels on
an inertial trajectory,
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x̄μHðτÞ ¼ uμHτ; ð6Þ
while serving as a point source for the background gravi-
tational field, which is the boosted Schwarzschild metric.
Famously, this metric can be computed order by order

using graviton perturbation theory about flat space [65].
Concretely, the Feynman diagrams shown in Eq. (3) form
the one-point function of the flat space graviton, which is
equal to the difference between the Schwarzschild metric
and the flat metric. The precise choice of coordinates for the
resulting metric is dictated by the choice of field basis and
gauge fixing in the original flat space perturbative formu-
lation. This essential procedure has been refined and
reformulated in many contexts, for instance using modern
amplitudesmethods [21,66]. In the presentwork,wewill use
the boosted Schwarzschild metric in the isotropic gauge,

ḡμνðxÞ ¼ fþðrÞ4ημν þ
�
f−ðrÞ2
fþðrÞ2

− fþðrÞ4
�
uHμuHν; ð7Þ

where f�ðrÞ ¼ 1� ðrS=4rÞ. Here r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuHxÞ2 − x2

p
is the

boosted radial distance from the black hole center and rS ¼
2GmH is the Schwarzschild radius. Expanding the metric in
powers of Newton’s constant,

γ̄μνðxÞ ¼
rS
r
ðημν − 2uHμuHνÞ

þ 1

8

�
rS
r

�
2

ð3ημν þ uHμuHνÞ þ � � � ; ð8Þ

we obtain the one-point function of the flat space graviton at
all orders in the PM expansion.
Note that none of this implies that the Schwarzschild

solution of GR is not a vacuum solution. Rather, the claim
is that the PM expansion of the Schwarzschild metric
coincides order by order with the gravitational field of an
inertial point source.
Now let us move on to the light particle, whose 0SF

trajectory is a probe geodesic in a Schwarzschild spacetime.
While these trajectories are analytically soluble [70,71],
their closed-form expressions are better known in para-
metric form, i.e., rðθÞ, rather than in explicit time domain,
i.e., rðτÞ and θðτÞ. Nevertheless, starting from the known
parametric solutions one can mechanically extract the time
domain expression for the probe trajectory order by order in
the PM expansion, x̄μL ¼ P∞

k¼0 x̄
μ
k, where the first few terms

in isotropic coordinates are

x̄μ0 ¼ bμ þ uμLτ

x̄μ1 ¼
rSarcsinhðvτb Þ½σð2v2 − 1ÞuμH þ uμL�

2v3

−
rSð2v2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ v2τ2

p
bμ

2b2v2
: ð9Þ

Here σ ¼ uHuL, v ¼ ðσ2 − 1Þ1=2, b ¼ ffiffiffiffiffiffiffiffiffiffiffiffijbμbμj
p

is the
impact parameter, and the trajectories have been computed

with time-symmetric boundary conditions. As we will
see, the above 0PM and 1PM expressions are sufficient to
compute up to 3PM in the conservative dynamics. As
described in the Supplemental Material [72], these geodesic
trajectories can be used to directly extract data about
corresponding perturbative Feynman diagrams in flat space.
In summary, known background metrics and geodesic

trajectories can be straightforwardly distilled into remark-
ably simple PM integrands for perturbative calculations at
higher orders. This will be explained in detail in Ref. [67].
Black hole recoil.—The last puzzle piece is the recoil of

the black hole background. When we center a static
Schwarzschild black hole at the origin, it stays there for
all eternity, past and future. As a result, the background
metric is secretly defined in the rest frame of the physical
black hole, which need not be an inertial frame. Indeed, at
1SF order, the light particle should induce a nonzero de-
flection of the heavy particle.
In the context of standard SF theory, this subtle effect is

accounted for by the nonradiating part of the metric per-
turbations, captured in the low multipole moments [73,74]
whose computation requires imposing suitable boundary
conditions at the event horizon.
Since our starting point is a point particle effective field

theory, there is an easier way: simply compute the path
integral over the geodesic deviation of the heavy particle,
δxμH. At 1SF order this is a Gaussian integral which can be
done exactly, yielding exactly the recoil operator in Eq. (2).
The corrections at 2SF order and higher are similarly
computed in a mechanical fashion.
To summarize, the background field theory defined by a

light particle worldline interacting with fluctuation grav-
itons in a Schwarzschild background is not equivalent to a
theory of heavy and light particles interacting gravitation-
ally. To match the latter, one must supplement the former
with the recoil operator. Doing so yields our main result,
which is the action for our EFT of extreme mass ratios at
1SF order,

SEFT ¼ SBF½ḡ; δg; x̄L; δxL� þ Srecoil: ð10Þ

This quantity is precisely the standard background field
action for the light particle interacting with fluctuating
gravitons in a Schwarzschild background, plus the recoil
operator in Eq. (2). See the Supplemental Material [72] for
a summary of the Feynman rules in this EFT. Note that a
key advantage of the recoil operator is that it obviates the
need to iteratively solve for the deflection of the heavy
particle and its concomitant corrections to the background
spacetime.
Since the recoil operator has a 1=∂2τ pole, it requires a

choice of boundary conditions, which corresponds to an iϵ
prescription for the δxμH propagator. For the present work,
we only consider conservative scattering, for which the
propagator for the heavy particle fluctuation never goes
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on-shell and the choice of iϵ is thus immaterial (see [67] for
details). Here we use the Feynman prescription for sim-
plicity, but more generally one should deploy the recoil
operator with the iϵ prescription appropriate to the physical
process in question.
From the viewpoint of traditional EFT, it is somewhat

peculiar to integrate out states to generate a nonlocal
operator. One usually restricts consideration to a kinematic
regime in which such effects become effectively local—and
indeed for the conservative region this is the case. Still, one
might reasonably worry about power counting ambiguities
stemming from these nonlocal interactions. Nevertheless,
since the masses of particles are effectively coupling
constants in the worldline formalism, higher order inser-
tions of nonlocal operators such as the recoil operator are
suppressed in the SF expansion.
Self-energy and regularization.—Our derivation of the

recoil operator in Eq. (2) actually entails a critical subtlety
involving self-energy and its regularization. Strictly speak-
ing, the equation for the heavy particle geodesic in its own
Schwarzschild background is

̈x̄μH þ Γ̄μ
αβðx̄HÞ ˙̄xαH ˙̄xβH ¼ 0: ð11Þ

The second term is singular because it involves the back-
ground connection at the position of the heavy particle.
In traditional SF theory, self-energy divergences of this

type afflict the light particle dynamics. However, in the
present context of point particle effective field theory, all
such divergences are trivially eliminated using dimensional
regularization. In particular, any self-energy divergence
ultimately arises in perturbation theory as a self-energy
diagram. For example, the self-energy contribution from
the Newton potential arises from the r → 0 limit of 1=r∼R
d3−2ϵqeiqr=q2. However, taking the limit inside the

integral yields a scaleless integrand that vanishes by
definition in dimensional regularization.
The upshot here is that we can simply drop all PM

corrections involving the background metric evaluated at
xH, so dimensional regularization effectively sets ḡμνðxHÞ ¼
ημν and Γ̄μ

αβðx̄HÞ ¼ R̄μναβðx̄HÞ ¼ 0. While these equations
may appear at odds with general covariance, they are not.
Rather, the statement is that formally ḡμνðxHÞ is generally
covariant, but its difference from ημν at the point xH is zero in
dimensional regularization. Note that numerous terms have
been dropped in the recoil operator in Eq. (2) on account of
dimensional regularization. Furthermore, the indices of the
recoil operator are implicitly contracted with flat space
metrics, rather than the divergent background metric. As we
will see later on, this prescription exactly yields known
correct results for the conservative dynamics.
Gravitational scattering with additional fields.—Our

effective field theory can also be used to compute new
results at 1SF order. As it turns out, the SF theory
community has a particular interest in a model in which

the gravitational action in Eq. (4) is supplemented with a
massless scalar or vector which couple directly to the light
particle but interact only gravitationally with the heavy
particle [e.g., [71,75]]. This is a well-known toy model for
the full gravitational SF problem. Thus we add to Eq. (4)
the additional scalar and vector contributions,

SΦ;A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∇μΦ∇μΦþ 1

2
ξRΦ2 −

1

4
FμνFμν

�

−mL

Z
dτ½yLΦðxLÞ þ zLAμðxLÞẋμL�: ð12Þ

For generality we have included a nonminimal coupling of
the scalar to gravity.
Since the heavy particle does not couple directly to the

new fields, the recoil operator is unaffected. However, new
contributions to scattering are induced by the gravitational
interactions of the scalar and vector fields sourced by the
light particle. At 1SF these arise solely from the back-
ground field diagrams.
Calculation of the radial action.—As a consistency

check of our formalism, we will calculate the radial action
for conservative dynamics at 1SF order. The radial action is
a convenient gauge-invariant quantity encoding the conser-
vative scattering dynamics. Moreover, it is a generating
function for the time-delay and scattering angle. Common
approaches to the PM radial action involve applying simple
maps to scattering amplitudes [25,26] or to momentum
impulses [76,77]. Here, we will instead directly calculate
the radial action by evaluating the “on-shell” value of the
EFT action in Eq. (10), which physically corresponds to
plugging in the solutions to the classical equation of
motion. The resulting object is the radial action, which
takes the form

SEFTjon-shell ¼ rSmL

X
n¼0

λnIn; ð13Þ

where n labels the order in the SF expansion and each In
contains all orders in G. In what follows we perturbatively
expand the 1SF contribution I1 in powers of G.
In the language of quantum field theory, Eq. (13) is

calculated by evaluating the path integral over all the particle
and graviton degrees of freedom. At 1SF order, the radial
action is equal to the sum of connected tree diagrams in
which the light body sources a graviton, which propagates in
the full Schwarzschild background, has an arbitrary number
of recoil operator insertions, and then returns to the light
body. These manipulations are equivalent to the Feynman
rules in the Supplemental Material [72].
Notably, the resulting tree diagrams effectively generate

loop integrals arising from Fourier transforms in the world-
line trajectories. These integrals can be easily evaluated in
dimensional regularization using integration-by-parts (IBP)
identities [15] and canonical differential equations [16], as
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explained, e.g., in [78]. Since we are focusing on
conservative dynamics, and up to 3PM order, there are
no tail effects to handle; we can expand all loop momenta in
the potential region. Diagrams with more than one recoil
operator insertion vanish in the potential region, and thus
the 1SF dynamics up to 3PM order are computed by the
two diagrams in Fig. 1. At higher PM orders tail effects
mandate that we supplement these diagrams by the appro-
priate number of recoil operator insertions while extending
the loop integration to include contributions from the
ultrasoft region.

The final result for the 1SF-3PM radial action, including
scalar and vector contributions, is

I1 ¼
rS
b
3π

16

5σ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p þ r2S
b2

�
σð36σ6 − 114σ4 þ 132σ2 − 55Þ

12ðσ2 − 1Þ5=2 þ ð−4σ4 þ 12σ2 þ 3Þarccosh σ
2ðσ2 − 1Þ

�

−
rA
b
π

8

3σ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p −
rSrA
b2

�
σð8σ4 − 28σ2 þ 23Þ

12ðσ2 − 1Þ3=2 þ ð2σ2 þ 1Þarccosh σ
ðσ2 − 1Þ

�

−
rΦ
b
π

8

σ2 − 1þ 4ξffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p −
rSrΦ
b2

σ½2σ4 − σ2 − 1þ ξð6σ2 − 3Þ�
6ðσ2 − 1Þ3=2 ð14Þ

where we’ve introduced the scalar and vector charge radii,
rΦ ¼ y2LmH=ð4πÞ, rA ¼ z2LmH=ð4πÞ.
This is in agreement with the radial action inferred from

scattering angles previously reported in the literature
[24,50]. The 3PM scalar result with ξ ¼ 0 agrees with
the recently reported result derived via scattering ampli-
tudes [54], while the 3PM vector result is new. The 2PM
results pass an additional check, which is that taking λ ¼ 1
gives the 2PM radial action in the probe limit for trajecto-
ries in certain charged black hole backgrounds [67].
A highly nontrivial check of our EFT is that the 2SF-

3PM radial action must agree with the 0SF-3PM radial
action [79]. Although we have not presented the 2SF
Feynman rules, they are straightforwardly derived by
expanding the action one further order in the mass ratio.
To check consistency, we have indeed carried out this
expansion and computed the complete 2SF-3PM radial
action for the model above, including gravitation as well as
the toy scalar and photon. The result exactly matches the
probe limit in the appropriate background as required for
consistency of our approach [67].
Conclusions.—Our EFT framework leaves numerous

avenues for future exploration. First and foremost, it is of
utmost importance to see if there is a direct relation, if any, to
current approaches to black hole recoil in standard SF theory,
which involve a so-called “matter-mediated” force [80].
Perhaps by connecting our results with those ideas, our
EFT can have a more direct application to existing SF results.
Second, it would be interesting to generalize our results

beyond the case of Schwarzschild, which corresponds to a
heavy, spinless, minimally coupled particle. Here a natural
extension would be to include spin by considering a
Kerr background. Another option would be to study a

background sourced by a neutron star, or an electrically
charged particle. In all of these cases, the recoil operator
will change, simply because the propagation of the heavy
particle will be modified.
Third, it should be relatively straightforward to apply our

EFT to the nonconservative sector, i.e., to the dynamics of
gravitational radiation. Since the recoil operator is simply a
nonlocal in time correction to the graviton propagator, it
can be readily included in any PM calculation for graviton
emission.
Last but not least, we should note that the general

approach of this work—that we can systematically derive
corrections to the background field method from flat space
perturbation theory—can also be applied outside the
context of gravity. Here a natural target is the study of
fluid mechanics. In this case, the long-range force carrier is
the fluid velocity, the backgrounds are classical solutions to
the Navier-Stokes equations, and the probe particles are
worldlines that are minimally coupled to the fluid.

Note added.—Recently, we learned of the upcoming work
[81] on a framework for self-force using scattering ampli-
tudes in curved space. We thank the authors for coordinat-
ing release of their work.

C. C., N. S., and J. W.-G. are supported by the
Department of Energy (Grant No. DE-SC0011632)
and by the Walter Burke Institute for Theoretical
Physics. J. W.-G is also supported by a Presidential
Postdoctoral Fellowship and the Simons Foundation
(Grant No. 568762). I. Z. R. is supported by the Depart-
ment of Energy (Grants No. DE-FG02-04ER41338 and
No. FG02-06ER41449).

FIG. 1. Background-field Feynman diagrams contributing to
the 1SF radial action. The circles denote the light geodesic
source (L) and the heavy recoil operator (H). The double lines
denote background field propagators for the graviton (wavy) and
the scalar or vector fields (straight).
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