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Appendix A: Feynman rules

In this section we summarize the Feynman rules for
the EFT defined in Eq. (10), which describes a light
particle worldline coupled to fluctuating gravitons in a
Schwarzschild background—with the addition of the re-
coil operator. Interpreted as a background-field action,
Eq. (10) has a corresponding set of background-field
Feynman diagrams that can be used to compute the
1SF radial action, e.g. as depicted in Fig. 1. To com-
pute in the PM expansion, however, it is natural to fur-
ther expand these background-field Feynman diagrams
order by order in Newton’s constant. In this picture the
fundamental perturbation theory is in flat space, and
the difference of the Schwarzschild metric and particle
geodesics from flat space and straight lines, respectively,
are considered PM corrections.

To begin, let us define the background-field effective
action governing the light particle worldline and the fluc-
tuation graviton in a curved background,

SBF[ḡ, δg, x̄L, δxL] + SGF = S[ḡ, , x̄L] (A1)
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where we have added a Lorenz gauge fixing term SGF =
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the first line of Eq. (A1), the quantity S[ḡ, , x̄L] is just
the probe radial action, which as usual is computed by
plugging in the background metric and light geodesic in
Eq. (4). Starting at the second line of Eq. (A1), we show
the terms needed to compute 1SF corrections, where the
ellipses denote the higher order corrections.

Here T̄
µν
L is the stress-energy tensor for the geodesic

trajectory of the light particle, corresponding to a source
term which implies the momentum-space Feynman rule,
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together with the frequency-domain trajectory, x̄
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subleading order. Case in point, we can trivially recast
the trajectories in Eq. (9) into the form of perturbative
Feynman diagrams. Concretely, using identities such as
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we can write the 1PM time-domain trajectory as
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Powers of the spatial distance (b2 + v2τ2)1/2 can be
rewritten as simple fourier integrals. In the frequency
domain, the trajectory then has a simple form
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projects onto directions orthogonal to the four-velocities.
Note that factor of ω−2 which one would expect from
perturbatively solving the geodesic equation has been
reduced in power to ω−1 in one term, and entirely elim-
inated in the other.

The full background-field propagator can be expanded
perturbatively around flat space as

= +

+ + · · · (A7)

where the circles denote background field insertions and
the leading term is the flat-space graviton propagator,
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16πGi
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(A8)
which is in de Donder gauge on account of our choos-
ing Lorenz gauge the original background-field action
defined in Eq. (A1).

Of course, the true background is the Schwarzschild
metric, but in the PM expansion we can treat these
effects as order by order corrections to the flat space
graviton two-point function. These contributions are ob-
tained by taking the difference of the isotropic gauge
Schwarzschild metric from the flat space metric and ex-
panding in PM, which is simply the momentum-space
version of Eq. (8),
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The corresponding insertion is just the three-point ver-
tex, from standard graviton perturbation theory in flat
space, connecting two graviton lines to a linearized back-
ground metric. Note the appearance of non-zero curva-
tures in Eq. (A1), which also appear as insertions. These
arise because the metric is not a vacuum solution but is
sourced by the heavy particle.
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At low PM orders, we only need the background and
geodesics to linear order and hence the background field
method is not more efficient than performing a flat space
perturbative calculation. However, at higher orders one
sees considerable simplification, since in isotropic gauge,
the background metric insertions are simple powers in
the radius r, whose Fourier transforms yield very simple
dependencies on the momentum transfer q induced by
the insertion. In particular, the resulting Feynman rules
are the same as for simple loop integrands with numer-
ator structures that depend solely on ηµν and uH µuH ν

and are thus effectively scalar. Hence, the background

field method effectively performs tensor reduction on
subdiagrams within multiloop Feynman diagrams.

Finally, as explained in the main text, the background
field action must be supplemented by the recoil operator
in Eq. (2). It is trivial to compute the corresponding
two-point vertex, which is

H (A10)

=
imH

2

δ(uHp1 + uHp2)

(uHp1)(uHp2)
Oαµ1ν1 (uH , p1)O µ2ν2

α (uH , p2) .

The above Feynman rules are sufficient to compute the
1SF radial action for point-like compact bodies order by
order in the PM expansion.
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