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Cosine-Modulated FIR Filter Banks Satisfying
Perfect Reconstruction

R. David Koilpillai, Member, IEEE, and P. P. Vaidyanathan, Fellow, IEEE

Abstract—I1t is well known that FIR filter banks, satisfying
the perfect reconstruction (PR) property, can be obtained by
cosine modulation of a linear-phase prototype of length N =
2M (M is the number of channels) when certain constraints are
imposed on the prototype. Recently, this result was extended
for the case when N = 2mM (m is an arbitrary positive integer).
In this paper, we obtain a necessary and sufficient condition on
the 2M polyphase components of a linear-phase prototype filter
of length N = 2mM, such that the polyphase component matrix
of the modulated filter bank is lossless. The losslessness of the
polyphase component matrix, in turn, is sufficient to ensure that
the analysis /synthesis system satisfies PR. Using this result, a
new design procedure is presented (based on the two-channel
lossless lattice). This enables the design of a large class of FIR-
PR filter banks (and includes the N = 2M case). It is shown
that this approach requires fewer parameters to be optimized
than in the pseudo-QMF designs and in the lossless lattice based
PR-QMF designs (for equal length filters in the three designs).
This advantage becomes significant when designing long filters
for large M. The design procedure and its other advantages are
described in detail. Design examples and comparisons are in-
cluded.

I. INTRODUCTION

N multirate digital signal processing (DSP), the topic

of quadrature mirror filters (QMF’s) has received wide-
spread attention [1]-[21]. An M-channel maximally de-
cimated QMF bank is shown in Fig. 1(a). QMF banks are
used in a wide range of speech, image, and other appli-
cations [1], [2], which involve the splitting of an input
signal x(n) into subbands and, finally, the reconstruction
of the original signal. The two familiar approaches to M-
channel QMF design are the perfect reconstruction QMF
banks [4]-[15] and the pseudo-QMF banks [16]-[21]. The
tradeoffs between the two are that the latter has an effi-
cient design procedure (only the prototype filter is de-
signed) while the former achieves perfect reconstruction
(PR) of the input (i.e., without aliasing, magnitude, or
phase distortions). Owing to their attractive features, PR-
QMF banks are of particular interest. However, the con-
ventional approaches for PR-QMF design [4], [5], [7],
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Fig. 1. (a) The M-channel maximally decimated QMF circuit. (b) The de-
sired response of the prototype H(z). (c) Polyphase implementation of the
cosine-modulated analysis filter bank.

[8], [15] require the optimization of a nonlinear objective
function of a large number of parameters (particularly for
large values of M). In this paper, we present a method,
which, while retaining all the attractive featurs of modu-
lated filter banks (e.g., only the prototype filter is de-
signed), also satisfies the PR property. The analysis and
synthesis filters are of equal length (an arbitrary multiple
of 2M).

It is a known result [10]-[12] that FIR filter banks sat-
isfying PR can be obtained by the modulation of a linear-
phase prototype of length N = 2M, when certain con-
straints are imposed on the prototype. Recently, in [13],
this result was extended for the case N = 2mM (m is an
arbitrary positive integer) and a necessary and sufficient
condition for PR was obtained (in the time domain). We
understand that a manuscript [28], describing the full de-
tails, is currently under review.

In this paper, we derive an equivalent necessary and
sufficient condition involving the 2M polyphase compo-
nents of a linear-phase FIR filter H(z) (length N = 2mM).
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This approach throws additional light on the problem and
places in evidence its relation to lossless QMF banks [4].
It also yields an efficient design method where pairs of
polyphase components are designed using the two-chan-
nel lossless lattice structure [22]. This enables the design
of a large class of FIR-PR modulated filter banks (with N
=2mM).

The main advantages of the proposed method are sum-
marized below.

1) These filter banks satisfy the perfect reconstruction
(PR) conditions.

2) The technique can be used to design filter banks for
an arbitrary number of channels (M).

3) The analysis and synthesis filters are of equal length
(N).

4) The analysis and synthesis filters are obtained by co-
sine modulation of the prototype filter. Hence they can be
implemented very efficiently. Owing to the modulation
that is used, the analysis and synthesis filters do not have
linear phase even though the prototype has linear phase.

5) This method requires half as many parameters to be
optimized compared to the pseudo-QMF method. This is
also many fewer parameters than optimized in the lossless
lattice based PR-QMF designs.

6) The objective function used in the optimization is
very simple and it involves only the stopband energy of
the prototype. In comparison, the objective function in
pseudo-QMF designs includes the stopband energy of the
prototype and a ‘‘flatness constraint,”” while in the loss-
less lattice based PR-QMF designs, it includes the stop-
band energies of all the M filters in the filter bank. Hence,
the evaluation of the objective function (which is required
at every iteration of the optimization) is simpler.

7) The new scheme is such that the 2M polyphase com-
ponents of the prototype H(z) can be grouped into M power
complementary pairs. If each pair is implemented in a
structurally power complementary manner, then the PR
property is retained even in the presence of coefficient
quantization. This is achieved by implementing each
power complementary pair by a two-channel lossless lat-
tice.

8) The optimization (to obtain the prototype filter) is
done directly on the lattice parameters. This enables us to
optimize the prototype response (while it is guaranteed
that the modulated filter bank will satisfy the PR prop-
erty).

It has been verified by explicit computation that good
pseudo-QMF designs [16]-[21] are such that the poly-
phase component matrix E(z) of the analysis filter bank is
‘‘almost’” lossless. This is consistent with the ‘‘almost’
perfect reconstruction property of these cosine-modulated
filter banks (see Section II-B). We can summarize by say-
ing that this paper incorporates ‘‘exact’’ losslessness into
pseudo-QMF techniques and, thereby, enables the PR
property to be satisfied, while retaining all the attractive
features of modulated filter banks.

Outline: The paper is outlined as follows. In Section II,
the cosine modulation used in pseudo-QMF banks is men-

tioned. An important observation about pseudo-QMF
banks is presented. The polyphase representation of the
analysis /synthesis bank in terms of the modulation ma-
trix and the polyphase components of the prototype filter
is introduced. This notation is used in the subsequent sec-
tions, which deal with cosine-modulated PR filter banks.
In Section III, we consider modulated filter banks which
satisfy the PR property. In this section, it is shown that
for E(z) (the polyphase component matrix of the analysis
filter bank) to be lossless, it is necessary and sufficient
that appropriate pairs of polyphase components of the
prototype H(z) are power complementary. The lossless-
ness of E(z) is sufficient to ensure that the analy-
sis /synthesis system satisfies the perfect reconstruction
(PR) property.

The design of prototype filters of modulated PR banks
is considered next. Section IV-A contains a description of
the two-channel lossless lattice. In Section IV-B, it is
shown how the two-channel lossless lattice can be used to
ensure that the prototype filter satisfies the condition for
PR obtained in Section IV. Sections IV-C to -E deal with
the design procedure (for the prototype filter) based on the
two-channel lossless lattice. In Section IV-F, an efficient
implementation of the modulated PR filter bank is pre-
sented along with a comparison of its implementation
complexity with that of pseudo-QMF banks. Section V
includes design examples to demonstrate the various as-
pects of the design procedure and a detailed comparison
between modulated PR filter banks (designed by the ap-
proach proposed in this paper) and pseudo-QMF banks.

Appendix A contain the proofs of some identities (per-
taining to the properties of the cosine-modulation matrix)
which are essential in the derivation of the necessary and
sufficient condition in Section III. In Appendix B, the
properties of the two-channel modulated PR filter banks
are discussed. It is shown that these filters satisfy the same
condition as the ones in the the well-known two-channel
PR-QMF design approach {6].

Notation: Boldface letters indicate vectors and ma-
trices. Superscript T and 1 denote transposition and trans-
posed conjugation, respectively. The tilde accent on a
function F(z) is defined such that F(z) = Fik(z™"), vz,
where the asterisk (*) subscript denotes the conjugation
of coefficients. Further, J,, stands for the M X M “‘re-
verse operator.”” For example,

0 01

II. MopuLATED FILTER BANKS

In this section, we briefly mention the cosine modula-
tion used in pseudo-QMF banks. An important observa-
tion about pseudo-QMF banks is presented and this serves
to motivate the work presented in this paper. The poly-
phase implementation of cosine-modulated filter banks
and the related notation are also introduced.



772

A. Pseudo-QMF Banks

Pseudo-QMF banks belong to the family of modulated
filter banks. Pseudo-QMF theory is well known [16]-[21]
and is widely used. In pseudo-QMF banks, the analysis
filter Hy(z) and the synthesis filters F, (z) are obtained by
the cosine modulation of a linear-phase, low-pass proto-
type filter H(z) = ZN_} h(n)z™", as shown below:

N -1
2 +0k7

he(n) = 2h(n) cos <(2k + 1) 2%4 ( —~

O=sn<N-1 e))

N-1
fuln) = 2h(n) cos <(2k+ 1)%4@——2—) —9k>,
O<ns=N-1I )

where h; (n) and f; (n) are the impulse responses of H,(z)
and F,(z), respectively. In this paper, we will use the
choice

b= (17, 0

IA

k=M-1 3

which yields the same modulated filters as in [10], [16]
(except for a possible scale factor of —1 on some of the
filters). From (1) and (2), we can verify that the analysis
and synthesis filters are related as

i)y =m(N -1 -n and F&) =z Y "A@)

4)

forO0 < k = M — 1. T(2), the overall transfer function
of the analysis /synthesis system, has linear phase. How-
ever, the filters H(z) and F,(z) do not have linear phase.

B. A Key Observation About Pseudo-QMF Banks

Let h(z) = [Hy(z) H\(z) * - Hy-,(z)]" be the anal-
ysis filters of a pseudo-QMF bank. Using type 1 poly-
phase decomposition [2], h(z) can be expressed as

h(z) = Ez")ey(z) (5

where E(2) is the polyphase component matrix of the filter
bank and el;(z) = [1 77! - z7™=1] The new ob-
servation is a property of the matrix E(z) of pseudo-QMF
banks. We have the following result from [4].

Fact: In any perfect reconstruction QMF bank, if the
analysis and synthesis filters are related as

F@=c " @, O0=<sk=M-1 (6

where ¢ is a nonzero constant, then E(z), the polyphase
component matrix of the analysis filter bank is necessarily
lossless. ¢

Based on the known pseudo-QMF design techniques, it
is possible to obtain designs such that the aliasing error
and the reconstruction error of the analysis /synthesis can
be made very small. The overall transfer function T(z) has
approximately unit gain at all frequencies. Hence, it is
intuitively expected (by using the Fact mentioned above)
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that the matrix E(z) of the pseudo-QMF bank will be ‘‘ap-
proximately’’ lossless, i.e., E(z) satisfies the condition
E(z)E(z) = I, with the nondiagonal terms of the LHS
being small, but not necessarily zero. This result was ver-
ified using a number of design examples, one of which is
shown next as an illustration.

Example: Consider a 3-channel pseudo-QMF design.
The prototype filter, which is a linear-phase filter of length
N = 36, is obtained by optimization. It has stopband at-
tenuation A, = 51.1 dB and its stopband edge w, = 0.2967
rad. Each entry of the 3 X 3 matrix E(z) is a polynomial
of length 12. The product E(z) E(z) was computed, which
is also a 3 X 3 matrix whose elements are polynomials of
length 23. The entries of the first row of this product are
shown in Table I. (In order to save space, the second and
third rows are not shown.) Hence, it can be verified that
the matrix E(z) of this pseudo-QMF design is approxi-
mately lossless.

Three other related results are:

1) If the matrix E(z) of a pseudo-QMF bank is lossless,
then the pseudo-QMF bank (whose filters satisfy (4)) will
necessarily satisfy the PR property (by using Lemma 3.1
[4D).

2) In [10]-[12], it is shown that M-channel pseudo-
QMF banks can satisfy the PR property, when the length
of the linear-phase prototype filter N is constrained to be
N = 2M.

3) In [13], it is shown that the above result can be ex-
tended for the case when the prototype filter has length
N = 2mM, where m is arbitrary.

The first result gives the condition that must be satisfied
for pseudo-QMF banks to satisfy PR and raises the ques-
tion, “‘Is it possible for the matrix E(z) of a pseudo-QMF
bank to be lossless?’’ The latter two results show that this
is indeed possible (when the length of the prototype is N
= 2mM, where m = 1). In this paper, we present an ap-
proach to design cosine-modulated filter banks satisfying
the PR property. The design procedure is based on a nec-
essary and sufficient condition for the losslessness of the
polyphase component matrix of the modulated filter bank.
This condition is equivalent to the necessary and sufficient
condition presented in [13]. The first step is to obtain a
polyphase component representation of the cosine-mod-
ulated filter banks.

C. Polyphase Implementation of Modulated Filter

Banks
N -1 g
+ (=D =
;) )

If we denote
then, using the periodicity of the cosine modulation, we
get the relation

Ck,

~

ézcos<(2k+ 1)%4(1—

Chgrapmy = (=D (N

From this point onwards, the length of the prototype filter
(N) will be assumed an even multiple of M, i.e., N =
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TABLE 1
EXAMPLE [N SECTION II-B. THE FiRsT Row OF E(z) E(2) OF A 3-CHANNEL
Pseupo-QMF DESIGN

TABLE 1I
COMPARISON OF MODULATED PR DESIGNS WITH PSEUDO-QMF AND
LossLEss LATTICE BASED PR-QMF DESIGNS

[EQ@) E(D)]o.o [E@)E(2)]o. [EQE@).»
0.93968 D — 21 -0.13235D — 22 —0.89997 D — 21
—0.69590 D — 05 —-0.23399D — 19 0.59822 D — 20
0.15585 D — 18 -0.63951 D — 19 0.81315D — 19
0.21736 D — 03 0.69457 D — 18 -0.77927D —- 19
0.82339D — 17 —-0.27376 D — 17 -0.67593 D — 18
0.60492 D — 04 0.56921 D — 17 -0.35779 D —- 17

0.85869 D — 16
—0.70648 D — 04
0.11102 D — 15

-0.35020D - 16
0.43368 D — 16
-0.29490 D — 16

0.19516 D — 17
—0.36429 D - 16
—0.46838 D — 16

0.68909 D — 04 0.20470 D — 15 -0.79797 D - 16
—0.27756 D — 16 0.31225D — 16 0.11796 D — 15
0.99994 D + 00 0.19429D - 15 0.00000 D + 00
—0.27756 D — 16 -0.83267D - 16 0.22204 D - 15
0.68909 D — 04 0.18041 D — 15 -0.15266 D — 15

0.11102 D — 15 —0.48572 D — 16 —0.58981 D — 16

—0.70648 D — 04 0.58981 D — 16 -0.69389 D — 16
0.85869 D — 16 -0.79797 D - 16 0.14745 D — 16
0.60492 D — 04 0.47705D — 17 -0.32960 D — 16
0.82399 D — 17 —0.10734D — 16 0.43368 D — 17

0.21736 D — 03
0.15585D — 18
—0.69590 D — 05
0.93968 D — 21

—0.40658 D — 19
-0.76572 D — 18
—0.34305D — 19

0.38066 D — 21

—0.20600 D — 17
0.93512D — 18
0.10164 D —~ 18

-0.13764 D — 20

2mM, where m is any positive integer (because in this
paper, we will be dealing solely with prototypes satisfy-
ing this length constraint).

We shall now obtain a polyphase structure for the anal-
ysis filter bank. For this, first we express the prototype
H(z) as

M—1 m—1

H@) = 2 2 h(g + 2pM)z 7%
q=0 p=0

2M -1
= 2 G, (8)
g=0

where G, (z) are the type 1 polyphase components [2] of
H(z). Using (1), the analysis filters can then be expressed
as

N—-1 2mM — 1
H@ = X bz "= 2 hme,:"
2M-1 m-1
= 2 Bt 2pM)cgepm T O)

Using (7), we can simplify (9) as

2M-1 m
H@ = X e, 5 (~D'hg + 2pM)z~ "
4= p=
2M—1
= 2 gt G (=M. (10)

The analysis filter bank can be expressed in matrix form
as

Modulated Pseudo- Lattice
Comparison Feature PR Bank QMF PR-QMF
Distortions eliminated
a) Magnitude yes no yes
b) Phase yes yes yes
c) Aliasing yes no yes
Design
a) Low complexity yes yes no
b) Few parameters yes yes no
Efficient Implementation yes yes yes
M
Hy(2) Go(—27")
-1 M
H,(2) 12 Gi(=z7)
h(z) = . =C .
-(2M -1 M
Hy - (2) Z "Gy (—27)

(an
where € is a M % 2M cosine-modulation matrix and
(€, = ,0<ksM-10=<1=<2M—1 Ths
implementation of the analysis filter bank (11) is shown
in Fig. 1(c). An efficient implementation of C will be de-
rived in Section IV-F. Using the relationship in (4), a sim-
ilar implementation can be obtained for the synthesis filter
bank. Equation (11) can be compactly expressed as

N 7go(ZZM) 0 } {EM(Z) }
h(iz) = C (12)
® l 0 &MLz Meu

where el(z) = [1 27" - 2™ V], and g,(2), £ (2
are M X M matrices defined as

g(2) & diag [Gy(—2), Gi(—2), -+ Gy (=2
£ () diag [Gy(—2), Gy1(—=2), " - Gy -1 (—2)].
(13)

The notation introduced in this section will be used in
deriving PR filter banks (which use the same modulation
as in pseudo-QMF banks). 1t must be mentioned that, in
pseudo-QMF banks, the AC constraint ensures the can-
cellation of the significant aliasing terms, but there will
always be a residual aliasing error due to the uncanceled
aliasing terms. In the same manner, the flatness constraint
minimizes the overall distortion (between the output and
the input), but does not eliminate it. On the other hand,
in PR filter banks, both these errors are completely elim-
inated. These facts are indicated in Table II, which high-
lights the differences between pseudo-QMF banks and PR
filter banks.

e

1=

III. MobULATED PR FILTER BANKS WITH N = 2mM,
m = 1

In this section, we derive the conditions on a linear-

phase prototype H(z) (length N = 2mM, where m is an

arbitrary positive integer) such that the M-channel mod-
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ulated filter bank satisfies the PR property. It must be
noted that though H(z) has linear phase, the modulated
filters do not have linear phase. Substituting N = 2mM in
the expression for ¢, ; (defined in Section I), we get

1
Crp = 2 cos <(2k + 1) 2%/{(! - mM + 5> + (_1)k§>_
(14)

The matrix € (in (11)) can be expressed as ¢ =

[A; Aj], where Aj, A| are given by
(Aol = ¢y and [All; = Craemy
O<kl<M-1. (15)

The analysis filter bank (12) can then be written in terms
of Ag and Aj as

h(2) = [Ajgo ™) + 27" A{ g, (2*™)] eyx)  (16)
— 7

E(z)

where E(z) is the polyphase component matrix of the anal-
ysis filter bank.

Note that Aj and A{ depend on the value of m. In Ap-
pendix A it has been proved that these matrices satisfy the
following properties (for all values of m):

ASTAG = 2MIL, + (=)™ V) (17)
A{TA] = 2ML, - (-1 Vg, (18)
ATAL = ATA =0 (19)

where I is the identity matrix and J,, is the ‘‘reverse
operator,”’” defined in the introduction.

From [4, lemma 3.1], we know that if E(z), the poly-
phase component matrix of the analysis bank is lossless,
i.e., E(2)E(z) = I, then we can always find a synthesis
bank such that the overall analysis /synthesis system sat-
isfies perfect reconstruction (PR). So our aim is to obtain
the conditions under which E(z), the polyphase compo-
nent matrix of the modulated filter bank, is lossless. We
will now prove the following lemma.

Lemma I: Let h(z) be the analysis filter bank (11) ob-
tained from H(z), a real coefficient, linear-phase proto-
type filter of length N = 2mM (m = 1). Then, E(z), the
polyphase component matrix of h(z) is lossless if and only
if

~ - 1
GG (@) + Gy i@ Ghyri(2) = w

O=<sk=M-1 (20

where G, (z) are the type 1 polyphase components [2] of
H(z). o
Proof: From (16) and (19), we can write
EQER) = g(") A 450D + &1 AI Alg (D).

(21

Since the prototype H(z) is linear phase and its length is
N = 2mM, we have the following relation [14] between
the polyphase components of H(z):

G@=2"""6py_ 1+, O<ks<M-1
(22)
Using (22) we get, Jug:(®) = (==Y
27" Vg, @)y, i = 0, 1, which in turn yields the
result
£ JIug?)

= (=)™ 272" Vg2 g1 @) I
= 2@ Jugi @) (23)
Substituting (17), (18) in (21) and using (23), we get
EQ)ER)

2M[80(2*)g0(27) + 81D & ()]

+ (=DM [80@*)Iugo(@®) — 8@ ugi @),

=0

= 2M[g(z*)8o(2*) + &2 g1 ()] (24)
From (24) we get
E(2) is lossless

& Mg (1) gc®) + £ D)) = Iy.  (25)

The matrix equation (25) can be rewritten as M scalar
equations (and since (25) holds for all values of z, we can
replace —z2 by z), which are precisely the conditions in
(20). Thus, the lossless property of E(z) has been shown
to be equivalent to the much simpler power-complemen-
tary condition in (20). This result can be summarized as
*‘E(z) is lossless if and only if appropriate pairs of poly-
phase components of H(z) are power complementary.’’
vvv

Note that it can be verified that the condition of the
above Lemma as expressed in (20) is the Z-domain equiv-
alent of the necessary and sufficient condition given by
[13, eq. (1D)].

The above Lemma covers all cosine-modulated filter
banks which are derived from a linear-phase prototype,
whose length N = 2mM. Owing to the linear-phase sym-
metry of H(z), approximately half of the M constraints
given in (20) are redundant. For example, using (22) it
can be verified that the condition in (20) for k = k,, where
0 < k; = (M — 1), is the same as the condition for k =
M — 1 — k. Removing the redundant constraints, (20)
can be expressed as

1) For M even

¢ ~ 1
G (G(@) + CGyir(@Gyi(2) = o

OsksA—/I~1.

> (26)
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2) For M odd

- . 1
GG (@) + Gy i@ Gy 4R = 573

2M’°
M
O<k=<|—|—
M !

. 1
2Gp-1y2@D G- 1,20 = 57

M @D

The total number of independent constraints is | M/2 |,
for M even/odd. From (27), we see that for M odd, the
polyphase component Gy _ ,/,(z) is forced to be a pure
delay. However, the value of the delay is not arbitrary.
Since Gy -1,/2(2) is a polyphase component of H(z),
which is a low-pass filter, the value of the delay is
uniquely determined by the length of H(z). By symmetry,
the polyphase component Gy, - 1)/2(2) is also a pure
delay. A simple procedure to obtain G, -y/2(z) and
Gy + - 1y/2(2) is mentioned in design example 1.

Further, for the special case with N = 2M, all the 2M
polyphase components are constants, i.e., G, (z) = h(k),
0 < k < 2M — 1. If H(z) has real coefficients, the linear-
phase symmetry yields h(k) = h(2M — 1 — k). So we can
express (20) as

h (k) + h*(M + k) = h* M1 -k =
k) + RPM + k) = Bk + BPM =1 = k)=
(28)

which is exactly the condition obtained in [10]-[12]. If
H(z) has complex coefficients satisfying h(n) = h* (N —
1 — n), Vn, then (28) becomes

O<sk=M-1

R + kM — 1 - k) ===, O0=k=M-1

M’
29)

For the rest of this paper, we will consider prototypes with
real coefficients only. The following result, which can be
readily verified, will be used later.

Fact 1: Consider a linear-phase prototype of length N
= 2mM whose impulse response coeflicients are

1
NI mM —M)<=k<smM+M-1)

0, otherwise.

hk) =

(30)

This prototype satisfies the conditions given in (20). <

IV. DESIGN OF PROTOTYPE (N = 2mM)

In this section we focus on the design of the prototype
(length N = 2mM) for modulated filter banks satisfying
the PR property. The approach is to obtain a prototype
filter H(z) satisfying the conditions in (26), (27) which,
by Lemma 1, are sufficient to ensure PR for the overall
system. Further, H(z) should have high stopband atten-

uation and a narrow transition bandwidth. So, H(z) must
be obtained by optimization.

One way of satisfying the conditions in (26), (27) dur-
ing optimization is via spectral factorization. Suppose
G.(z), one of the polyphase components of the power
complementary pair {G, (z), Gy +«(2)} is optimized, then
Gy + 4 (2) can be computed by spectral factorization. This
must be done for each of the power complementary pairs,
and the same process must be repeated in every iteration
(during the optimization). This would then amount to
| M /2 spectral factor computations per iteration. How-
ever, there is a way to completely avoid this extensive
amount of computation. This is achieved by using the two-
channel lossless lattice which is discussed next. We will
fully exploit the advantage of these lattices in our design
approach.

A. Two-Channel Lossless Lattice

We have the following result from [22], which intro-
duces the two-channel lossless lattice.

Fact 2: A stable digital filter transfer function P(z) with
real coefficients is said to be bounded real (BR) if |P(e’*)|
< 1, Vw. And any FIR BR pair {P(z), Q(2)} satisfying

PPz + 0@0@ =1, vz (31)

can always be realized as a nonrecursive, cascaded, two-
channel lossless lattice structure shown in Figs. 2(a),
(b). ¢

In Fig. 2(a), the two-channel lossless lattice is made up
of a cascade of normalized, four-multiplier lattice sec-
tions. Each lattice section is characterized by one param-
eter 6;, where the index j refers to the particular lattice
section. In Fig. 2(b), the lattice is made up of a cascade
of the denormalized, two-multiplier lattice sections char-
acterized by the parameter §8; and the overall scaling mul-
tiplier a which is defined as o £ II_o 1/¥1 + B;.

In this paper, we use the structure of Fig. 2(a) in ob-
taining the design procedure. However, since the two
structures are equivalent [22], the design procedure can
be readily translated to the structure of Fig. 2(b). Both
lattices have the same number of parameters but the latter
is used in the implementation of the filter bank since it
requires approximately half the number of multipliers as
the former.

B. Satisfying the Pairwise Power Complementary
Property

From Lemma 1, we have the condition that requires
pairs of polyphase components to satisfy the power com-
plementary (PC) property. From Fact 2, we see that each
of these pairs {G(z), Gy +4(2)}, can be designed (to
within a scale factor) by using a separate two-channel
lossless lattice. During the optimization, we work directly
with the lattice parameters. Hence the polyphase compo-
nent pairs are guaranteed to satisfy the pairwise PC prop-
erty which, in turn, ensures PR. The same is true even in
the presence of coefficient quantization. So, in other
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Fig. 2. (a) The two-channel lossless lattice with four-multiplier lattice sec-
tions (¢, = cos 6, and 5, = sin ;). (b) The two-channel lossless lattice
with two-multiplier lattice sections. « is the scaling multiplier. (c) Typical
four-multiplier implementation of the pth lattice section of the kth lattice.
(d) A block diagram of the lattices used in the design of a M-channel pro-
totype H(z). The total number of lattices = r + 1 = [M/2].

prototype length by 2M

words, the advantage of using the two-channel lossless
lattices is that the PR condition is inherently satisfied and
hence, it need not be included as one of the constraints in
the design of H(z).

For M even (refer to (26)), we design M /2 pairs of
polyphase components, with the rest being determined by
symmetry. For M odd (refer to (27)), we design | M/2 ]
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pairs of polyphase components, with Gy _/2(2),
Gy + - 1y/2(2) being forced to be pure delays and the re-
maining | M /2| pairs of polyphase components being
determined by symmetry. So, for any M, the number of
two-channel lossless lattices needed for the design of the
prototype is | M/2 ] .

In Fig. 2(d), we have a block diagram representation
of the | M /2| two-channel lattices. The kth lattice yields
the PC pair {G,(2), Gy 4« (2)}. Its parameters are denoted
as 0, ;, where the index j refers to the particular lattice
section. The transfer function between the input of the
lattice and the output of the pth lattice section is denoted
by a superscript p. The lattice transfer functions are ini-
tialized as

G{¥(@) = cos bo and Gif.y(2) = sin O,

M
Osks{—J—l.

2 (32)

In Fig. 2(c), we have a typical four-multiplier implemen-
tation of the pth lattice section of the kth lattice. Let
(G "), G}é’:k”(z)} be the transfer functions from the
imput to the output of the (p — 1)th section of the kth
lattice. We can then write {G{”(z), G ((2)} as

[Gif”(@ J [cos 6, sin 9k<pHGz"”(z) }
Gl (2) - sin 6, —cos 0,1 127" G @]

pal,OskngJ—l. (33)
Hence we get a recursive relation for the transfer function
when a new lattice section is added. From (33), it can be
seen that the addition of each lattice section increases the
order of the transfer functions by one.

1) Number of Parameters to be Optimized: From the
preceding discussion, we know that | M /2 | two-channel
lattices are used in the design of the prototype H(z) for a
M-channel modulated PR filter bank. If the length of the
prototype is N = 2mM, then each of 2M polyphase com-
ponents has length m (and hence, order (im — 1)). This
implies that each lattice has (m — 1) sections, involving
a total of m unknown parameters {6, ¢, 6, |, = * * 8 (- nl
Hence the total number of parameters to be optimized is
m|M/2].

On the other hand, a pseudo-QMF design [16]-[21]
(same length prototype) requires mM parameters while the
lossless lattice approach to PR-QMF design [4], [8], [15]
requires many more, viz., [2m — I)(M — 1) + M(M —
1)/2]. A comparison of the number of parameters to be
optimized in each of the three design approaches—the
modulated PR bank, pseudo-QMF, and lossless lattice
based PR-QMF banks, is shown in Table III.

From Table III, we see that modulated PR filter bank
approach requires approximately half the number of pa-
rameters as the pseudo-QMF design and much fewer pa-
rameters when compared with the traditional PR-QMF
approach. This advantage becomes significant, particu-
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TABLE III
COMPARISON OF THE NUMBER OF PARAMETERS OPTIMIZED IN THE DESIGN OF
MOoDULATED PR BANKS, PSEUDO-QMF BANKS, AND LOSSLESS LATTICE
Baseb PR-QMF BANKS

# of Parameters Optimized

# channels Length Modulated Pseudo- Lattice
M N PR Banks QMF PR-QMF

3-channels 48 8 24 33
60 10 30 41
5-channels 40 8 20 38
60 12 30 54
7-channels 42 9 21 51
84 18 42 87
16-channels 64 16 32 165
96 24 48 195
17-channels 68 16 34 184
102 24 51 216

larly for large M. In the next section (in design example
2), we will present design comparisons between the pro-
totypes of modulated PR banks and pseudo-QMF banks.

C. Design Steps

The procedure for designing the M-channel prototype
filter (length N = 2mM) involves the initialization of the
parameters of the |M /2] lattices and the optimization
of these parameters. We discuss each aspect separately.

1) Initialization: The following is a simple initializa-
tion scheme for all the parameters of the |[M/2] two-
channel lattices (each two-channel lattice has (m — 1)

sections)
%’ p =0, OsksB—llJ—l
0;"[,:
T l=p=m-1, o<k= |-
5 =p < , =k=|> .
(34)

It can be verified that this initialization corresponds to a
prototype H(z) with

1, — < < _
h(k):{ mM—M)<k<@mM+M-1)
0,
(35)

With appropriate scaling, this prototype satisfies (26), (27)
(as mentioned earlier in Fact 1). This prototype H(z) has
stopband attenuation A, = 13 dB and stopband edge w,
< 7 /M rad. This approach is independent of the value
of m (i.e., independent of N) and from (35) we see that
exactly 2M coefficients of H(z) are initialized to be non-
zero while the remaining 2mM — 2M) coefficients are
set to zero. As a result, this scheme works well for smaller
values of m whereas for larger values of m, a different
approach (which is described in Section IV-E) works bet-
ter.

otherwise.

2) Optimization: Having initialized all m [M /2] pa-
rameters, they are then optimized using standard optimi-
zation routines (e.g., EO4JAF [27], based on the quasi-
Newton algorithm) to minimize the objective function,
either ¢, or &, given below:

max
wel(m/2M) + 8. 7)

P, = S [H(e’)|* dow, &, = |H(e™)]
(x/2M)+5

(36)

where 6 < 7/2M. Using &, the problem involves the
minimization of the stopband energy (yielding a minimum
energy solution) while with &,, it involves the minimi-
zation of the maximum of the filter response in the stop-
band (yielding a minimax solution). In all the examples,
it was observed that using ®, produces quicker conver-
gence whereas using ®, gives a prototype with lower stop-
band attenuation A, (nearly equiripple solution). In order
to combine the advantages of both objective functions &,
®,, the following heuristic scheme works well.

Step 1: After initialization, optimize using &, and ob-
tain the minimum energy solution.

Step 2: Using the prototype obtained in step 1 as the
starting point, run the optimization using ¢, and obtain
the minimax solution.

For step 2, it was observed that the optimization can be
terminated after approximately 100 * m |M /2] itera-
tions. (Note that m | M /2 | = total number of parameters
being optimized.) Doing step 2 is optional. However, in
most cases, the prototype obtained by doing step 2 after
step 1 had higher stopband attenuation than the prototype
at the end of step 1. All the above-mentioned features are
demonstrated in the design examples in Section V.

D. Increasing the Length of the Protorype

Another attractive feature of this design approach is the
ease with which a prototype H(z) of a particular length N
= 2mM can be used to obtain a prototype H' (z) of longer
length (increments in length are in multiples of 2M). Let
the length of H'(z) be 2mM + 2M. The increase in the
length of the prototype by 2M directly translates into a
unit increase in the lengths of each of the 2M polyphase
components. This implies that precisely one lattice sec-
tion must be added to each of the |M /2] two-channel
lattices (which are used in the design of the prototype).
In this sense, the structure has a hierarchical property.
This is shown schematically in Fig. 2(d). The procedure
to obtain H'(z) is as follows. First, the values of all the
m| M /2| lattice parameters used to obtain H(z) are re-
tained. Then, for the newly added lattice sections, we set
8, ,, = /2, Vk. Finally, all the (m + 1) [M /2] param-
eters are optimized to yields the new prototype H'(2).

E. Two Stage Design of Long Length Prototypes

The above feature, which allows the length of the pro-
totype to be increased, also gives an approach to design
prototypes of long length (i.e., large values of m). Let the
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Fig. 3. (a) Implementation of a cosine-modulated filter bank derived from
a linear-phase prototype filter of length N = 2mM (including pseudo-QMF
banks). C is the type IV discrete cosine transform (DCT). (b) Implemen-
tation of cosine-modulated PR analysis filter bank. Each polyphase com-
ponent pair {G,(—z°"), G, , ((—z**)} is implemented by a two-channel
lossless lattice. (A total of M lattices are used.) The cosine- modulation
block is given in Fig. 3(a).

desired length of the prototype be N, = 2m; M, where m,
> 3. The design steps are summarized below.

a) Design a prototype for m = 2 or 3 by doing step 1
of the optimization. Then use this as an initialization for
the next design.

b) Add (m; — m) additional sections to each of the

[ M /2| lattices used in the design and initialize the pa-

rameters of these added sections by setting them to 7 /2.

¢) Optimize (using step 1) to obtain the desired proto-
type filter.

d) Rerun the optimization (using step 2), if needed.

The above two stage approach has been extensively
tested and has been found to work well.

F. Implementation and Complexity of Modulated PR
Banks

We will now obtain an efficient implementation which
is applicable to cosine-modulated filter banks satisfying
(1) obtained from a linear-phase prototype of length N =
2mM. (There are no restrictions on M or m.)

TABLE 1V
COMPARISON OF IMPLEMENTATION COMPLEXITY OF MODULATED PR BaNKS
AND PSEUDO-QMF BANKS

MPU APU

Modulated M even 2(m + 1) 2(m = 1)
PR Banks M odd 2a0(m + 1) 2a(m — 1)

Pseudo-QMF Banks 2m 2m — 1)

Where o = <2 %) < L.

MPU (APU)—Multiplications (additions) per unit time.

The modulation matrix C is expressed as C =
[A) Aj] and using the relations in Table X along with the
results in (A.10), (A.11), and (A.15), we have

VM(-n™cld - J) -+ J)
¢ for m even (m = 2m,) 37)
) NM-nmad + 0 d - Dl

for m odd (m = 2m; + 1),

where C is the type IV discrete cosine transform [25]
whose definition is given in (A.6). Using (37) in (11), we
get the implementation in Fig. 3(a) (where the constant
scale factor VM (—1)™ has been omitted). For the special
case when M is even and m is even, Fig. 3(a) can be fur-
ther simplified to obtain the implementation in [17]. The
complexity of the entire modulation section is 3M adders
along with the complexity of the DCT. Since the modu-
lation part is identical for modulated PR banks and
pseudo-QMF banks, in the following comparison, we
will consider only the complexity of implementing
the polyphase components [Gy(—z2), G,(—z7)
GZM—l(*Zz)L

In pseudo-QMF designs, the 2M polyphase compo-
nents (each of length m) are implemented in direct form
requiring 2mM multipliers and 2M(m — 1) adders. For
modulated PR banks, the 2M polyphase components are
implemented as 2 [ M /2] two-channel lossless lattices
(Fig. 3(b)). Using two-multiplier lattice sections, each
lattice requires (2m + 2) multipliers (including the two
scaling multipliers) and 2(m — 1) adders. The multipli-
cations per unit time (MPU) and additions per unit time
(APU) are two measures of implementation complexity.
The corresponding MPU and APU values for modulated
PR banks and pseudo-QMF banks are given in Table IV.

V. ExaMPLES OF MoDULATED PR FILTER BANKS

Design Example 1: This example demonstrates the dif-
ferent aspects of the new approach to design of the pro-
totype filter H(z) of a modulated PR filter bank. We will
consider the case M = 17 channels. (As M is a prime
number, the filter bank cannot be implemented as a tree
structure.) Since | M /2] = 8, we require 8 two-channel
lossless lattices in order to design the eight pairs of power
complementary (PC) polyphase components (which sat-



KOILPILLAI AND VAIDYANATHAN: COSINE-MODULATED FIR FILTER BANKS 779

TABLE V
DESIGN EXAMPLE 1. DESIGN OF A 17-CHANNEL MODULATED PR BANK PROTOTYPE

Lattice Number

0 1 2

4 5 6 7

Polyphase
Components

Go (@), Gi71(2) G, Gis(d) G2(2), G5(2)

G1(2), Gy (2)

G4(2), Gy (D) Gs(2), G12(2) G (2), G (2) G1(2), G2 ()

isfy (27)). Table V shows the particular polyphase com-
ponents designed by each of the eight lattices. Since M is
odd, two of the polyphase components are forced to be
pure delays (as mentioned in Section III). They are Gg(2)
and G,s(z), which are obtained by using a separate two-
channel lattice with the parameters chosen as in (34). This
ensures that these two polyphase components are pure de-
lays (of appropriate values). The remaining eight pairs of
polyphase components are obtained by symmetry rela-
tions (given in (22)), owing to the linear-phase property
of the prototype.

The length of the prototype filter H(z) is N = 2mM. We
now present three designs—for prototype of length N =
68, N = 102, and N = 136. The corresponding values of
m are 2, 3, and 4, respectively. The total number of pa-
rameters to be optimized in each design is 8m(= m

| M/2]). First we design the prototype with N = 68. In
this design, the parameters are initialized as in (34). After
optimization, we obtain the desired prototype filter. Then
we increase the length (as explained in Section IV-D) to
obtain prototypes of length N = 102 and 136. In each
case, after initialization of the lattice parameters, the de-
sign is completed by doing both Steps 1 and 2 of the op-
timization. For each of the three designs, the magnitude
response of the prototype at the end of step 1 (minimum
energy design) and at end of step 2 (Minimax design) are
plotted in Figs. 4(a)-(c). To facilitate comparison, the
minimum energy design is shown by a broken line while
the minimax design is shown by a solid line. The corre-
sponding values of stopband attenuation (4,) and the
stopband edge () for each design are presented in Table
VI. Hence it can be readily seen that in each instance,
doing step 2 of the optimization (i.e., rerunning the op-
timization with &, as the objective function) improved the
A, of the prototype. The impulse response coefficients of
the prototype filter (with N = 102) are given in Table VII.
Its frequency response is shown in Fig. 5(a) and the re-
sponses of all the filters in the PR bank, obtained by the
cosine-modulation of H(z) as in (1), are plotted in Fig.
5(b).

Design Example 2: In this example, we present a com-
parison between the modulated PR filter banks and
pseudo-QMF banks. One of the differences between the
two approaches must be mentioned at the outset. That is,
in pseudo-QMF banks, an assumption is made that filters
belonging to nonadjacent channels do not overlap (i.e., in
a seven channel pseudo-QMF bank, H, (¢’*) has overlaps
with H,(¢’*) and H, (¢’*). The passbands of all the other

0 - Min. energy
——  Minimax

(dB)

MAGNITUDE

Min. energy

MAGNITUDE (dB)

0 Min. energy
—— Minimax

MAGNITUDE (dB)

0.0 0.1 02 0.3 0.4 0.5
NORMALIZED FREQUENCY

(c)
Fig. 4. Design example 1. Magnitude responses of 17-channel prototype
after step 1 (minimum energy) and step 2 (Minimax). (a) N = 68, (b)) N =
102, and (¢) N = 136.

TABLE VI
DEsIGN EXAMPLE 1. COMPARISON OF THE 17-CHANNEL MODULATED PR
BANK PROTOTYPE AFTER STEPS 1 AND 2 OF THE OPTIMIZATION

Step 1 (Min. Energy) Step 2 (Minimax)

Length
N A, (dB) w, (Rad) A, (dB) w,; (Rad)
68 30.51 0.06447 32.45 0.0644 7
102 35.72 0.06207 42.16 0.0644 1
136 37.22 0.0614x 44.51 0.06447

filters lie in the stopband of H;(e’*)). This places a con-
straint on the transition bandwidth of the prototype filter.
Such a constraint is not necessary in the case of modulated
PR banks. For purposes of comparison, we will look at
prototypes (designed by both methods) with the same
transition bandwidth.

The performance of a QMF bank is measured by fol-
lowing two quantitative criteria.
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TABLE VII
DESIGN EXAMPLE 1. IMPULSE RESPONSE COEFFICIENTS OF PROTOTYPE (N =
102) oF A 17-CHANNEL MODULATED PR FILTER BANK

IEEE
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TABLE VII1
DESIGN EXAMPLE 2. COMPARISON BETWEEN MODULATED PR-BANKS AND
PSEUDO-QMF BANKS—7 CHANNEL (N = 42)

n h(n) n h(n) n h(n)

0 —4.272049E — 04 34 1.37667SE — 02 68 1.316380 E — 02
1 —4.853395E - 04 35 1.633310E — 02 69 1.082142 E — 02
2 —4.997748 E — 04 36 1.759948 E — 02 70 9.552895 E — 03
3 —5.129669 E — 04 37 2.034467E — 02 71 7.256847 E — 03
4 —5.288108E — 04 38 2.191992E — 02 72 6.355320 E — 03
5 —3.490611 E — 04 39 2431080 E — 02 73 3.784142 E — 03
6 —3.878599E — 04 40 2.595075E — 02 74 3.757966 E — 03
7 —2.579029E — 04 41 2.742702E ~ 02 75 3.160015E — 03
8 1.105338E — 34 42 2.948043E — 02 76 —1.805155E — 18
9 —2.180628 E — 03 43 3.116092 E — 02 77 —3.737350 E — 04

10 —1.960596 E — 03 44 3.234317E — 02 78 —7.434280 E — 04
Il —1.714884 E — 03 45 3.360359 E — 02 79 —-7.702541 E — 04
12 —1.928333 E — 03 46 3.478912E — 02 80 —1.742832 E — 03
13 —1.959910E — 03 47 3.555154 E — 02 81 —1.899333 E — 03
14 —2.102945E — 03 48 3.643303E — 02 82 —2.270290E — 03
15 —2.075392 E — 03 49 3.665203 E — 02 83 —2.530636 E — 03
16 —2.265407E — 03 50 3.693109E — 02 84 —2.482397 E — 03
17 —2.482397 E — 03 51 3.693109E — 02 85 -2.265407 E — 03
18 —2.530636 E — 03 52 3.665203E — 02 86 —2.075392 E — 03
19 —-2.270290 E — 03 53 3.643303E — 02 87 —2.102945E — 03
20 —1.899333E — 03 54 3.555154 E — 02 88 —1.959910 E — 03
21 —1.742832 E — 03 55 3.478912E — 02 89 —1.928333 E — 03
22 —7.702541 E — 04 56 3.360359 E — 02 90 —1.714884 E — 03
23 —7.434280 E — 04 57 3.234317E - 02 91 -1.960596 E — 03
24 —3.737350 E — 04 58 3.116092E — 02 92 —2.180628 E — 03
25 —1.805155E — 18 59 2.948043 E — 02 93  1.105338E — 34
26 3.160015E — 03 60 2.742702 E — 02 94 —2.579029 E — 04
27 3757966 E — 03 61 2.595075E — 02 95 —3.878599 E — 04
28 3.784142E — 03 62 2.431080E — 02 96 —3.490611 E — 04
29  6.355320E — 03 63 2.191992E — 02 97 —5.288108 E — 04
30 7.256847E — 03 64 2.034467E - 02 98 —5.129669 E — 04
31 9.552895E — 03 65 1.759948E — 02 99 —4.997748 E — 04
32 1.082142E — 02 66 1.633310E — 02 100 —4.853395E — 04
33 1.316380 E — 02 67 1.376675E ~ 02 101 —4.272049 E
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Fig. 5. Design example 1. (a) Response of the 17-channel prototype (N =
102). (b) Seventeen-channel cosine-modulated PR filter bank.

1) The Peak-to-Peak Reconstruction Error (E, _p):
The transfer function of the overall analysis /synthesis
system is given by T(z) = (1/M) Z}=)' H(2) F (2). Using
filters whose responses are normalized to unity, we get

(I = 8) <= MITE™)| = (1 + &) (38)

and E, _, is defined as E, _, £ §, + &,.

Prototype

Reconstruction Aliasing

A, (dB) w, (Rad) Error (E,_,) Error (E,)
Pseudo-QMF  39.03 0.14247  1.296E — 03 8.848E — 04
bank 38.55 0.14207  2.095E — 04 9.198E - 04
38.14 0.14147  9.459E — 05 1.022 E — 03
Modulated 34.13 0.14267  1.998E — I5 8.517E - 16

PR Bank

2) The Aliasing Error (E,): The output of the analy-
sis /synthesis system can be expressed in terms of the in-
put as

| M-
X@) =~ X@) 2 H(@F@)
M k=0

1 M-—1 M—1
+— 2 XEW)H 2 HG@WHF(@ (39
M =1 k=0
~— W —
alias terms

and the total aliasing error is given by

S q1/2
E@w) = M{Eﬂ |A1(ef“>FJ (40)
where A,(z) = LY H,zW')F,(z) and E, £ max, E(w).
In the design comparisons, the stopband attenuation (A;)
and stopband edge (w;) of each prototype (modulated PR
and pseudo-QMF) are tabulated along with their respec-
tive E, _, and E, values, first for a 7-channel design and
then for a 17-channel design.

In the 7-channel design, the length of the prototype is
N = 42 (the corresponding value of m is 3). For the mod-
ulated PR prototype, three lattices are used. The lattice
parameters (total = 9) are initialized as in (34) and the
prototype is obtained by doing both steps 1 and 2 of the
optimization. The resulting prototype filter has stopband
attenuation A, = 34.13 dB and stopband edge w, =
0.1426m rad. The values of E, _, and E, are 1.998
E—15 and 8.517 E—16, respectively. In pseudo-QMF
designs, relative weighting is used in the objective func-
tion to trade off between the flatness constraint (affecting
E,_,) and the prototype filter stopband energy (affecting
E,). The three designs are obtained with different values
of relative weights. The parameters of all the designs are
shown in Table VIII.

In the 17-channel comparison, the modulated PR pro-
totype has N = 102 with A; = 35.72 dB and w, = 0.0586~
rad. Its values of E,_, and E,, are 8.216 E—15 and 1.041
E—13, respectively. As in the previous comparison, the
modulated PR prototype is compared with three different
pseudo-QMF prototypes and the results are given in Table
IX. In both the above design examples, we see that ap-
proximately 5 dB (in stopband attenuation) is the price
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TABLE IX
DESIGN EXAMPLE 2. COMPARISON BETWEEN MODULATED PR-BANKS AND
PsEupO-QMF BANKs-—17 CHANNEL (N = 102)

Prototype

Reconstruction Aliasing

A, (dB)  w, (Rad) Error (E, ,) Error (E,)
Pseudo-QMF  40.65 0.05907 6.790E - 03 3.794 E — 04
bank 38.68 0.05857 2.139E — 04 3.193E - 04
38.42 0.0581n 8.749 E — 05 8.113E — 04
Modulated 35.72 0.0586% 8.216E — IS5 1.041 E — 15

PR bank

paid to obtain PR. It must be mentioned that it is not pos-
sible to choose the relative weights (for the objective
function) in pseudo-QMF designs such that either E, _,
or E, can be made arbitrarily small or comparable to the
corresponding values in the modulated PR designs.

VI. CONCLUSION

In this paper, we have presented a derivation of the nec-
essary and sufficient condition on the polyphase compo-
nents of a linear-phase prototype (length N = 2mM, where
m = 1) such that E(z), the polyphase component matrix
of the cosine-modulated analysis filter bank, is lossless.
The losslessness of E(z), in turn, ensures that the analy-
sis /synthesis system (using modulated filter banks for
analysis and synthesis) satisfies the perfect reconstruction
(PR) property. An efficient procedure to design the pro-
totype (satisfying the above necessary and sufficient con-
dition) is presented. This design procedure, based on the
two-channel lossless lattice, involves fewer parameters to
be optimized than pseudo-QMF designs and much fewer
than lossless lattice based PR-QMF designs. This advan-
tage becomes significant for large M (number of channels)
and for long length prototypes. Further, the hierarchical
structure of the lattice, which makes it flexible to increase
the length of the prototype filter, is exploited in the design

_procedure. Using this approach, PR filter banks (FIR) can
be designed for an arbitrary number of channels. Since
both the analysis and synthesis filter banks are obtained
by cosine-modulation, an efficient implementation is de-
rived using the 2M polyphase components of the proto-
type filter and the discrete cosine transform (DCT) ma-
trix. The details of design procedure and complexity of
implementation are discussed and all the above-men-
tioned aspects are demonstrated by the examples and de-
tailed comparisons.

APPENDIX A
PrROPERTIES OF MODULATED PR FILTER BANKS

In this Appendix, we present a proof for the results in
(17)-(19). The proof is given in two parts.

Part I: Let Ay and A, be equal to Aj and A, respec-
tively, for the particular case when m = 1. Hence, using
(14) and (15) we get

m -

T 1
[Apli; = 2 cos ((Zk + 1) M <l -M+ E)
+(—1)"§>, O<kl=M-1 (Al
T 1 N
[A ], = 2 cos <(2k + 1)274<1 + 2> + (=1) 4),
O0<k l=<M-1. (A.2)
Now, we prove the following results:
AlAg = 2MILy,; + Jy] (A.3)
AJA, = 2M[ly — Jy] (A4)
Ald, = AjA, = 0. (A.5)

Proof of (A.3)-(A.5): Let C and S be the type IV
discrete cosine transform (DCT) and type IV discrete sine
transform (DST) [25], respectively, whose definitions are
given below:

, 2 T 1 1
[Cli; & ck, 1) = IT/ICOS v k+—2— l+£

O0<kl=M-1 (A.6)

. 2 . T 1 1
(81 = sk, ) = 7 S0\ k+§ [+i

0=k, Il=M-1 (A7)

From [25], we have the following identities (stating the
unitary and Hermitian properties of C and §):

(1! =c=(cy’
(S17' =8 =1S]"

(A.8)
(A.9)

The matrices A, and A, can be expressed in terms of C
and § as given below:

A, = VM[C + AS]
A, = VM[C - AS)

(A.10)
(A.11)

where A is an M X M diagonal matrix whose diagonal
elements are given by [A], , = (- 0<k=M-1.
For example, for M = 4, A = diag [1, —1, 1, —1]. Using
(A.8)-(A.11), we get

AjA, = M[2I + CAS + SAC] (A.12)
ATA, = M[2I — CAS — SAC] (A.13)
AlA, = M[—CAS + SAC] = —AjA,. (A.14)

From the definitions of C, S, A, and J, we can verify that
ASJ = C, which is a result presented in [26, eq. (56)].
This result can also be expressed as (by using the Her-
mitian property)

AS = CJ and SA = JC. (A.15)
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TABLE X
APPENDIX A. RELATION BETWEEN THE MATRICES
{Aj, A1} anD {4, A, }

m even Ay = (—1)™MA,
(m = 2m,) A} = (_1)("”4”140
m odd Ay = (—1)"MA,
(m=2m, +1) Al =(-DH"A,

Substituting (A.15) in (A.12)-(A.14) and using the uni-
tary property of C and S (given in equations (A.8), (A.9)),
we get (A.3)-(A.5). vvv

Part II:  Proof of (17)-(19): In this proof, we will
use the results proved in part I. Table X is obtained from
the definitions of {Aj, A{} and {A,, A,}. Using the re-
lations in Table X along with (A.3)-(A.5), the results in
(17)-(19) can be readily verified. vvv

APPENDIX B
Two-CHANNEL MoODULATED PR FILTER BANKS

In this Appendix, we consider the cosine-modulated fil-
ter banks satisfying the PR property, for the special case
M = 2,i.e., two-channel designs. We will show that these
filters satisfy the same relations /properties as the filters
of the two-channel PR-QMF solution given by Smith-
Bamwell [6].

As mentioned in Section III, the constraint on the length
of the linear-phase prototype filter is N = 2mM, where m
> 0. In this case, it becomes N = 4m. From (1) and (3),
we obtain the modulation equations for the analysis filters

ho(n) = 2h(n) cos <§ < - 1¥> + ;)
0=sn=N-1 (B.1)
hy(n) = 2h(n) cos CT"( - ﬁ;—1> - g)
0<n=N-1. (B.2)
Using (B.1) and (B.2) it can be verified that
H\@) = -7 “ " VH(-2). (B.3)

As given in (4), the synthesis filters are related to the anal-
ysis filters by

Fy(2)
Fi(2)

I

2 ¥ VH(2)

%" VA (.

(B.4)
(B.5)

Further, since the modulated PR bank prototype is de-
signed to satisfy (20), then by Lemma 1, the polyphase
component matrix E(z) is lossless. We have the following
result from [8].

Fact B.1: Let E(z) be the polyphase component matrix
of the analysis filter bank {Hy(2), H,(2), - * * , Hy_,2)}.
If E(z) is lossless, then each of the filters H,(z), 0 < k <
M — 1, is a spectral factor of Mth band filter and satisfies

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 4, APRIL 1992

M-
2 H@Wi) B@Wy) = ¢, vz (B.6)

where ¢ is a nonzero constant and Wy, = ¢ ~U¥/M ¢

Using Fact B. 1, it can be concluded that the filter H,(2),
of a two-channel modulated PR bank, is a spectral factor
of a half-band filter. Hence, it satisfies

Hy@ Hy(2) + Hy(—)Hy(—2) = ¢, vz. (B.])

From (B.3)-(B.5) and (B.7), it can be verified that the
filters of a two-channel modulated PR bank satisfy the
same conditions as the designs in [6]. However, owing to
the constraints imposed on the prototype, the two-channel
cosine-modulated PR banks are only a subset of all the
possible two-channel Smith-Barnwell designs (with filter
length N = 4m).
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