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Abstract

We present observations of ZTF18abfcmjw (SN2019dge), a helium-rich supernova with a fast-evolving

light curve indicating an extremely low ejecta mass (≈ 0.3M�) and low kinetic energy (≈ 1.2×1050 erg).

Early-time (<4 d after explosion) photometry reveal evidence of shock cooling from an extended helium-

rich envelope of ∼ 0.1M� located at ∼ 3×1012 cm from the progenitor. Early-time He II line emission
and subsequent spectra show signatures of interaction with helium-rich circumstellar material, which

extends from & 5×1013 cm to & 2×1016 cm. We interpret SN2019dge as a helium-rich supernova from

an ultra-stripped progenitor, which originates from a close binary system consisting of a mass-losing

helium star and a low-mass main sequence star or a compact object (i.e., a white dwarf, a neutron star,

or a black hole). We infer that the local volumetric birth rate of 19dge-like ultra-stripped SNe is in the

range of 1400–8200 Gpc−3 yr−1 (i.e., 2–12% of core-collapse supernova rate). This can be compared

to the observed coalescence rate of compact neutron star binaries that are not formed by dynamical

capture.

Keywords: supernovae: general – supernovae: individual (SN2019dge, iPTF14gqr) – stars: neutron

1. Introduction

yyao@astro.caltech.edu

Type Ibc supernovae (SNe Ibc) are believed to be ex-

plosions of massive stars that have lost their hydrogen

envelopes (Filippenko 1997; Gal-Yam 2017). Their typ-

ical rise times (trise in the range of 10–25 d) and peak

luminosities (MR,peak between −17 and −19 mag) sug-
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gest ejecta masses (Mej) of 1–5M� and 56Ni masses

(MNi) of 0.1–0.4M� (Drout et al. 2011; Taddia et al.

2018; Prentice et al. 2019). The relatively low Mej and

high rates of SNe Ibc are not compatible with predic-

tion from the evolution of single massive stars, whose

mass-loss rates are not high enough to strip most of the

outer layers (Smith et al. 2011; Lyman et al. 2016). In

contrast, Wolf-Rayet (WR) or helium star descendants

of massive stars in close binary systems are thought to

be the dominant progenitors for the SN Ibc population

(Dessart et al. 2012; Eldridge et al. 2013).

SNe Ibc with the lowest Mej arise from core-collapse

of a stellar core with a small envelope. This can occur

in tight binaries where a helium star transfers mass to

a companion that is small in size. Such a scenario was

invoked by Nomoto et al. (1994) as one way to explain

the fast evolution of the Type Ic SN1994I with a carbon-

oxygen progenitor star of ∼ 2M� and Mej ∼ 0.9M�.

Should the degree of stripping be even more extreme,

we may expect the so-called ultra-stripped envelope SNe

where Mej and MNi are on the order of 0.1M� and

0.01M�, respectively (Tauris et al. 2013, 2015; Suwa

et al. 2015). These weak explosions are one of the two

channels to form double neutron star (DNS) binaries

that are compact enough to merge within a Hubble time

due to gravitational wave (GW) radiation (Tauris et al.

2017)1. Ultra-stripped SNe are therefore a promising

progenitor channel of multi-messenger sources that can

be jointly studied by the LIGO/VIRGO network and

electromagnetic efforts (Abbott et al. 2017a,b; Goldstein

et al. 2017; Coulter et al. 2017; Hallinan et al. 2017;

Kasliwal et al. 2017).

Compared with canonical SNe Ibc, we expect light

curves of ultra-stripped SNe to be rapidly evolving and

subluminous due to the small amount of Mej and MNi

produced. Among the group of faint and fast objects,

SN2005ek (Drout et al. 2013), SN2010X (Kasliwal et al.

2010), as well as some of the calcium-rich gap transients

such as PTF10iuv (Kasliwal et al. 2012), iPTF16hgs

(De et al. 2018a), and SN2019ehk (Nakaoka et al. 2020)

have been suggested to be good candidates for ultra-

stripped SNe (Moriya et al. 2017). However, properties

of these objects are also consistent with alternative in-

terpretations, including core-collapse of stars with ex-

tended hydrogen-free envelopes (Kleiser & Kasen 2014;

Kleiser et al. 2018a,b), and explosive detonation of a

helium shell on the surface of white dwarfs (Shen et al.

1 The other channel to form compact DNSs is dynamical capture
in a dense stellar environment such as a globular cluster (East &
Pretorius 2012; Andrews & Mandel 2019).

2010; Sim et al. 2012; Polin et al. 2019; De et al. 2020a;

Jacobson-Galán et al. 2020).

The most convincing ultra-stripped event to date is

the Type Ic SN iPTF14gqr (De et al. 2018b). Its

radioactivity-powered emission reveals Mej ∼ 0.2M�
and MNi ∼ 0.05M�, whereas the detection of early-

time shock cooling signatures shows that the progenitor

is an extended massive star instead of a white dwarf,

and therefore pins down its core-collapse origin. Dis-

covered within one day of explosion, iPTF14gqr also

demonstrated the importance of early-time observations

in securely identifying ultra-stripped SNe.

Here we report the discovery, observations and

modeling of the rapidly rising (trise . 3 d) sub-

luminous (Mr, peak ∼ −16.3 mag) helium-rich event

ZTF18abfcmjw (SN2019dge) discovered by the Zwicky

Transient Facility (ZTF; Bellm et al. 2019a; Graham

et al. 2019). SN2019dge is consistent with being a

helium-rich ultra-stripped SN. Section 2 describes the

discovery and follow up observations. Section 3 outlines

the basic properties of the explosion and its host galaxy.

Section 4 shows modeling of this transient. Section 5

provides a discussion on the progenitor system, and Sec-

tion 6 presents the estimated volumetric rates of 19dge-

like ultra-stripped SNe. Section 7 gives a conclusion of

this paper. Calculations in this paper assume a ΛCDM

cosmology with H0 = 70 km s−1 Mpc−1, Ωm = 0.27 and

ΩΛ = 0.73 (Komatsu et al. 2011). All spectra and pho-

tometry will be made available by the WISeREP repos-

itory (Yaron & Gal-Yam 2012) following publication.

2. Observations

2.1. Discovery

SN2019dge was discovered by ZTF, which runs on

the Palomar Oschin Schmidt 48-inch (P48) telescope

(Dekany et al. 2020). The first real-time alert (Patterson

et al. 2019) was generated on 2019 Apr 7 10:18:46 (JD

= 2458580.9297) for a g-band detection at 20.66± 0.34

mag and J2000 coordinates α = 17h36m46.75s, δ =

+50d32m52.2s. On Apr 8, a new alert was flagged by a

science program filter on the GROWTH Marshal (Kasli-

wal et al. 2019) that is designed to look for fast evolving

transients.

2.2. Follow-up Observations

2.2.1. HST Observation

Hubble Space Telescope (HST ) observations were ob-

tained as part of our HST “Rolling Snapshots” pilot

experiment (GO-15675, Fruchter 2018). This new ob-

servational approach requires the PI to update a list

of objects of interest each week before the schedule is

built, giving the scheduler flexibility to choose a possible
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Figure 1. HST image of the field on Apr 22 in the F350LP
filter at two intensity scales. The position of SN2019dge is
marked by the red crosshairs in the right panel.

source for snapshots. Under this program, we obtained

a NUV spectrum using the WFC3 G280 grism, a short

(60 s) direct image of this field in the F300X filter to set

the wavelength scale of the spectrum, as well as a longer

exposure (200 s) in the F350LP filter. The image in the

F350LP filter is shown in Figure 1. It has very similar

throughput to the zeroth order of the G280 grism.

SN2019dge resides in a compact galaxy SDSS

J173646.73+503252.3. From our follow up spectra (see

Section 3.2), we measure a host redshift of z = 0.0213 ,

corresponding to a luminosity distance of DL = 93 Mpc.

Figure 1 shows that there is a surface brightness peak

to the northwest of SN2019dge (∼ 0.2 kpc away), which

might trace a star-forming region.

2.2.2. Optical Photometry

Following Yao et al. (2019), we perform forced PSF

photometry on ZTF difference images generated with

the ZTF real-time reduction and image subtraction

pipeline (Masci et al. 2019). ZTF image subtraction

is based on the Zackay et al. (2016) image subtraction

method. The sky region of SN2019dge is covered by
two ZTF fields with “fieldid” (i.e., ZTF field identifier)

763 and 1799. We exclude all data in field 1799 since

the reference image was constructed using images ob-

tained between 2018 May 25 and 2019 Jul 12, which is

after the explosion of the transient. Although the ZTF

name of this object (ZTF18abfcmjw) may indicate that

the transient was discovered in 2018, this is due to an

alert generated on 2018 Jul 7 from a candidate detection

in negative subtraction (reference minus science) in field

763. We note that the seeing during that night was 4.2′′,

larger than 99% of Palomar nights. The irregularly-

shaped PSF might cause over-subtraction around the

galaxy nucleus in the difference imaging process.

Since field 763 was included in both the Northern sky

survey with two epochs (one epoch each in g and r)

per three nights and the extragalactic high-cadence sur-

vey with six epochs (three epochs each in g and r) per

night (see Bellm et al. 2019b for the design of ZTF ex-

periments), SN2019dge was visited multiple times every

night. Therefore, single-night flux measurements in the

same filter are binned (by taking the inverse variance-

weighted average). This gives a pre-explosion r-band

limit of 18.95 mag (5σ limit computed at the expected

position of the transient) on Apr 4 10:36:34. We convert

5σ detections to AB magnitudes for further analysis.

Following the discovery of SN2019dge, we obtained

follow-up photometry in ugriz with an optical imager

(IO:O) on the Liverpool Telescope (LT; Steele et al.

2004). Digital image subtraction and photometry for LT

imaging was performed using the Fremling Automated

Pipeline (FPipe; Fremling et al. 2016). Fpipe performs

calibration and host subtraction against Sloan Digital

Sky Survey reference images and catalogs (SDSS, Alam

et al. 2015).

LT and P48 photometry are shown in Figure 2. Abso-

lute and apparent magnitudes are corrected for Galactic

extinction E(B−V ) = 0.022 mag (Schlafly & Finkbeiner

2011). We assume RV = 3.1, and adopt the redden-

ing law from Cardelli et al. (1989). We do not cor-

rect for host-galaxy contamination given the absence

of Na I D absorption in all spectra at the host red-

shift. To estimate the epoch of maximum light, we

interpolated the g- and r-band photometry with three-

order polynomial functions, as shown in the inset of Fig-

ure 2. The time window used in the fit is from MJD =

58581.2 to 58585.2. SN2019dge was found to peak at

Mg,peak = −16.45 ± 0.03 mag on MJD = 58583.19, and

Mr,peak = −16.27±0.02 mag on MJD = 58583.39. Here-

after we use phase (∆t) to denote time with respect to

the g-band maximum light epoch, MJD = 58583.2.

We obtained one epoch of late-time imaging with the

Wafer Scale Imager for Prime (WASP) mounted on the

Palomar 200-inch telescope at ∆t ≈ 85 d. The data were

obtained in r band with a total exposure time of 900 s

divided into dithered exposures of 300 s each. The data

were reduced using standard techniques as described in

De et al. (2020b). Image subtraction was performed

using archival reference images from the Dark Energy

Legacy Survey (Dey et al. 2019), using the method de-

scribed in De et al. (2020a). The median 5σ limiting

magnitude of the image is r ≈ 25 mag. However, the

depth at the transient location is limited by the noise

from the bright host galaxy, and the transient was not

detected to a 5σ limiting magnitude of r = 22.1 mag.

We also performed forced photometry on archival

PTF/iPTF difference images spanning 2009 May 07 to

2016 Jun 13 (Law et al. 2009; Rau et al. 2009). No

historical detection was found.
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Figure 2. Galactic extinction corrected optical light curve of SN2019dge. The inset shows the light curve in g and r bands
zoomed around the region of maximum light. Along the upper axis, epochs of spectroscopy are marked with the letter ‘S’ above
of the axis, while two epochs of Swift/UVOT/XRT observations are marked below the axis.

Table 1. Log of SN2019dge spectroscopy.

Start Time Instrument Phase Exposure Time Airmass Resolution (FWHM)

(UTC) (day) (s) (Å)

2019 Apr 09 03:30:28 LT+SPRAT −1.1 500 1.80 18

2019 Apr 10 03:06:10 LT+SPRAT −0.1 500 1.80 18

2019 Apr 10 14:21:44 Keck1+LRIS +0.4 300 1.17 6

2019 Apr 22 05:08:00 HST+WFC3+UVIS +12.0 2×250 — 43

2019 Apr 24 11:06:43 P200+DBSP +14.3 1200 1.05 3–5

2019 Jul 04 11:49:18 Keck1+LRIS +85.3 1740 1.42 6

2019 Aug 31 08:04:58 Keck1+LRIS +143.1 1150 1.41 6

2019 Sep 28 08:14:27 Keck1+LRIS +171.1 600 2.17 6

2020 Feb 18 15:23:40 Keck1+LRIS +314.4 1450 1.38 6

Note—Phase is measured relative to g-band maximum (MJD = 58583.2).
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2.2.3. Swift Observation

Observations with the Neil Gehrels Swift Observatory

(Swift ; Gehrels et al. 2004) was triggered on Apr 9 and

Apr 10. Ultraviolet/Optical Telescope (UVOT; Roming

et al. 2005) data were obtained in the UVW1, UVM2,

UVW2, U , B, and V filters.

UVOT data are reduced using HEAsoft (HEASARC

2014) version 6.17 with a 3′′ circular aperture. To re-

move host-galaxy contribution at the location of the SN,

we obtained a final epoch in all broad-band filters on

2019 Jun 23 and measured the photometry with the

same aperture used for the transient. We present a table

of our optical and UV photometry in Appendix A.

In parallel with the UVOT observations, Swift ob-

served SN2019dge with its X-ray telescope (XRT; Bur-

rows et al. 2005) between 0.3 and 10 keV in the photon

counting mode. We note that no point sources were de-

tected in the XRT event files with SNR > 3. The 3σ

limits (in count s−1) in the Apr 9, Apr 10, and Jun 23

observations are 7.8× 10−3, 5.8× 10−3, and 6.1× 10−3,

respectively. To convert the upper limit count-rate to

flux, we adopted the Galactic neutral-hydrogen column

density of NH = 2.89 × 1020 cm−2 towards SN2019dge

(Willingale et al. 2013) and a power-law spectrum in

the form of N(E) ∝ E−1, where N(E) has the unit of

photons cm−2 s−1 keV−1. Using the PIMMS web tool2,

we obtained unabsorbed flux upper limits in the 0.3–

10 keV band of 5.22, 3.88, and 4.08 ×10−13 erg s−1 cm−2,

corresponding to luminosities of 5.37, 4.00, and 4.20

×1041 erg s−1. We note that these limits are shallower

than X-ray luminosities expected to be seen in SNe

(Ofek et al. 2013b).

2.2.4. Radio Follow-up

Shortly after the discovery of SN2019dge, we initi-

ated radio follow-up observations in order to constrain

the presence of a radio counterpart, as potentially ex-

pected in some rapid-rising transients with circumstel-

lar interaction (Weiler et al. 2007; Horesh et al. 2013;

Ho et al. 2019a). We observed at high frequency radio

bands using the Submillimeter Array (SMA, Ho et al.

2004) on UT 2019 Apr 09 between 15:49:17 and 19:51:26

under its target-of-opportunity program. The project

ID is 2018B-S047 (PI: Anna Ho). We did not detect

SN2019dge in the resulting image, and the 3σ upper

limits are 2.25 mJy at 230 GHz and 8.4 mJy at 345 GHz.

2.2.5. Spectroscopy

2 https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3pimms/
w3pimms.pl

We obtained eight optical spectroscopic follow-up ob-

servations of SN2019dge from −1.1 d to +314.4 d rela-

tive to g-band peak using the Spectrograph for Rapid

Acquisition of Transients (SPRAT; Piascik et al. 2014)

on the Liverpool Telescope (LT), the Double Spectro-

graph (DBSP) on the 200-inch Hale telescope (Oke &

Gunn 1982), and the Low Resolution Imaging Spec-

trograph (LRIS) on the Keck-I telescope (Oke et al.

1995). To extract the LT spectra, we use the automated

SPRAT reduction pipeline, which is a modification of

the pipeline for FrodoSpec (Barnsley et al. 2012). The

DBSP spectrum was reduced using a PyRAF-based re-

duction pipeline (Bellm & Sesar 2016). LRIS spectra

were reduced and extracted using Lpipe (Perley 2019).

A log of our spectroscopic observations is given in Ta-

ble 1. We present our sequence of spectra in Figure 6,

Figure 7 and Figure 10.

2.3. Host Galaxy Photometry

To obtain archival photometry of the host galaxy, we

retrieved images from the Sloan Digital Sky Survey data

release (DR9) (SDSS; Ahn et al. 2012), the Panoramic

Survey Telescope and Rapid Response System (Pan-

STARRS, PS1) DR1 (Flewelling et al. 2016), the Two

Micron All Sky Survey (2MASS; Skrutskie et al. 2006),

and the unWISE images (Lang 2014) from the NEO-

WISE Reactivation Year-3 (Meisner et al. 2017). We

augmented this data set with Swift/UVOT observations

that extend our wavelength coverage to the UV. The

photometry was extracted with the software package

LAMBDAR (Lambda Adaptive Multi-Band Deblending Al-

gorithm in R; Wright et al. 2016), to perform consistent

photometry on images that are neither pixel nor seeing

matched, and tools presented in Schulze et al. (in prep).

The UVOT data were reduced in HEAsoft as described

in Section 2.2.3. The measured host photometry is given

in Appendix A.

3. Properties of the Explosion and its Host

Galaxy

3.1. Light Curve Properties

3.1.1. Peak Luminosity, Rise and Decline Timescale

The g- and r-band peak luminosity of SN2019dge

(≈ −16.3 mag) is around the lower limit of stripped en-

velope SNe (Drout et al. 2011; Taddia et al. 2018; Pren-

tice et al. 2019), and akin to those of the Ca-rich gap

transients, which occupy the luminosity ‘gap’ between

novae and SNe (peak absolute magnitude MR ≈ −15.5

to −16.5 mag, Kasliwal et al. 2012).

To characterize the rise and decline timescales of

SN2019dge, following Ho et al. (2020), we calculate rise

time (trise) defined by how long it takes the r-band light

https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3pimms/w3pimms.pl
https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3pimms/w3pimms.pl
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Figure 3. Comparison of the photometric evolution
timescales (trise and tdecay) and r-band peak absolute mag-
nitudes of SN2019dge (red asterisks) to other fast-evolving
transients (black dots). See the text for details.

curve to rise from 0.75 mag below peak to peak, and de-

cline time (tdecay) determined by how long it takes to

decline from peak by 0.75 mag (corresponding to half

of maximum flux). Since SN2019dge shows no evidence

of hydrogen (Section 3.2) and exhibits a fast rise (Fig-

ure 2), we compare the trise, tdecay, and peak absolute

magnitude between SN2019dge and two other groups of

transients:

• Fast-evolving hydrogen-deficient transients that

are fainter than normal SNe Ia (i.e. < −19 mag),

including SN2002bj (Poznanski et al. 2010),

SN2005ek (Drout et al. 2013), PTF09dav (Sulli-

van et al. 2011), SN2010X (Kasliwal et al. 2010),

PTF10iuv (Kasliwal et al. 2012), iPTF14gqr (De

et al. 2018b), iPTF16hgs (De et al. 2018a),

SN2018kzr (McBrien et al. 2019), and SN2019bkc

(Chen et al. 2020).

• “Fast evolving luminous transients” (FELT, Rest

et al. 2018) or “fast blue optical transients”

(FBOT, Margutti et al. 2019). We select well-

studied representative objects of this popula-

tion, including KSN2015K (Rest et al. 2018),

iPTF16asu (Whitesides et al. 2017), AT2018cow

(Prentice et al. 2018; Perley et al. 2019),

SN2018gep (Ho et al. 2019b), and ZTF18abvkwla

(also known as the Koala; Ho et al. 2020).

In Figure 3, peak magnitudes are given in (observer-

frame) r-band, except for KSN2015K where we only

have observations in the Kepler “white” filter, and

iPTF16asu where the rise was only caught in g band. We

only correct for Galactic extinction to compute Mr,peak

(assuming no host extinction). Note that iPTF14gqr

and iPTF16hgs are SNe exhibiting double peaked light

curves. Since the rise to first peak was not captured,

an upper limit of trise is calculated by taking the time

difference between the first r-band detection and the

latest pre-discovery non-detection3, and absolute mag-

nitude of the first r-band detection is considered to be a

fainter limit of Mr,peak (plotted in the upper panel). In

the lower panel, since observations of iPTF14gqr do not

extend to 0.75 mag below its second peak, we present a

lower limit of its tdecay.

It is clear from the upper panel of Figure 3 that

SN2019dge rose faster than normal Ca-rich events such

as PTF09dav and PTF10iuv. The trise of ≈ 2.0 d is simi-

lar to the population of FELTs/FBOTs, but SN2019dge

is substantially fainter. In the subluminous regime,
iPTF14gqr has trise comparable to SN2019dge, and its

first peak has been postulated to be caused by the diffu-

sion of shock-deposited energy out of an envelope around

the progenitor star (De et al. 2018b).

The bottom panel of Figure 3 shows that tdecay of

SN2019dge is longer than that for the most rapid-

fading SNe Ibc, such as SN2005ek, SN2018kzr, and

SN2019bkc. Its decay timescale is more similar to

SN2002bj, SN2010X, the population of Ca-rich tran-

sients (PTF09dav, PTF10iuv, iPTF16hgs), and likely

iPTF14gqr. It has been suggested that the latter group

of events have radioactivity powered main peak with low

mass of nickel (MNi . 0.1M�).

3 For the second peak, trise ∼ 5 d for iPTF14gqr and 8 < trise <
20 d for iPTF16hgs.
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3.1.2. Bolometric Evolution

41.0

41.5

42.0

42.5

43.0

43.5

lo
g(

L b
b/(

er
gs

1 )
)

0

5

10

15

20

25

30

35

T b
b (

10
3 K

)

SN2019dge
iPTF14gqr
iPTF16hgs

0 5 10 15 20 25 30 35
Rest-frame days since explosion

0

5

10

15

20

25

30

R b
b (

10
3 R

)

Figure 4. Evolution of blackbody properties (luminos-
ity, temperature, radius) over time of SN2019dge compared
to iPTF14gqr and iPTF16hgs. We use the same method
as applied in SN2019dge to derive Lbb, Tbb, and Rbb for
iPTF14gqr and iPTF16hgs.

We constructed the bolometric light curve at epochs

where at least detections in two filters are avail-

able by fitting the spectral energy distribution (SED)

with a blackbody function (see details of model fit-

ting in Appendix B.1). We plot the physical evo-

lution of SN2019dge with comparisons to iPTF14gqr

and iPTF16hgs in Figure 4, where we have adopted

the explosion epoch of iPTF14gqr, iPTF16hgs, and

SN2019dge estimated by De et al. (2018b), De et al.

(2018a), and Section 4.1 of this paper, respectively.

The bolometric luminosity of SN2019dge reaches ∼
5 × 1042 erg s−1 at ∼ 1.5 d after the explosion epoch.

The subsequent decline displays an initial fast drop of

0.36 mag d−1 at age 2–9 d, and transitions to a slower

drop of 0.11 mag d−1 at age 10–30 d.

The bolometric temperature of SN2019dge reaches as

high as ∼ 2.3 × 104 K at age 1.5 d and rapidly falls

afterwards. The maximum Tbb is much hotter than

that observed in normal SNe Ibc (6000–10000 K, Tad-

dia et al. 2018). Its early light curve evolution is slower

than iPTF14gqr, but similar to iPTF16hgs and several

other stripped envelope SNe displaying double-peaked

light curves (e.g., see Figure 2 of Fremling et al. 2019a).

Their first peaks have been modelled by cooling emission

from an extended envelope around the progenitor after

the core-collapse SN (CCSN) shock breaks out (Modjaz

et al. 2019). After ∼ 8 d past explosion, Tbb flattens to

6000 ± 1000 K, similar to the behavior of normal SNe

Ibc at a much later phase (∼ 30 d after explosion, Tad-

dia et al. 2018).

Assuming that the photospheric radius can be approx-

imated by Rbb and linearly expands at early phase, we

fit a linear function to the first few Rbb vs. time measure-

ments of SN2019dge which gives ≈ 8000 km s−1. The

radius then remains flat at ∼ 6.7 × 103R� during age

8–30 d, and even appears to slowly recede. The reason

for this is that the temperature drops to a recombination

temperature for helium and the opacity becomes small.

As a result, the outer layers of SN ejecta becomes more

transparent, and deeper regions of the ejecta are being

probed (Piro & Morozova 2014).

3.1.3. Color Evolution

We compare the color curves of other fast transients to

that of SN2019dge in Figure 5, in corresponding pairs

of B/g − R/r and R/r − I/i colors. For the double-

peaked events iPTF14gqr and iPTF16hgs, “maximum”

time corresponds to epoch of maximum light in the sec-

ond peak.

The early-time blue color of SN2019dge arises from the

high-temperature peak. Among other events, SN2002bj,

iPTF14gqr and iPTF16hgs exhibit early colors as blue as

SN2019dge. Subsequently, SN2019dge displays a color

starting out blue and turning redder with time, consis-

tent with a cooling process.

One unusual feature of SN2019dge is that at ∼ 6–

9 d after maximum light, the g − r color becomes bluer

by ≈ 0.2 mag, while after that the color continues to

redden. We notice that iPTF14gqr exhibits a similar

trend — around 4 d before the second peak, its g − r

color stays flat before getting redder afterwards, while

around 2 d before the second peak, its r − i color also

turns bluer by ≈ 0.2 mag.

3.2. Spectroscopic Properties
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Figure 6. Early-time spectra of SN2019dge. In panel (a), the original spectra are shown in translucent colors, with the overlying
black lines showing the same spectra convolved with an FWHM = 800 km s−1 (for LT) or FWHM = 200 km s−1 (for LRIS)
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3.2.1. Early Spectral Evolution

The very early spectra at −1.1, −0.1, and +0.4 d show

a blue continuum and strong galaxy emission lines from

the underlying H II region (see Figure 6). In addition,

these spectra also show prominent He I λ5876 and high-

ionization He II λ4686 narrow emission lines. We com-

puted the equivalent width (EW) of He II emission us-

ing the spectral line and continuum wavelength ranges

given by Khazov et al. (2016). The EW is found to be

−7.56 ± 1.07 Å, −2.66 ± 1.30 Å, and −3.77 ± 0.16 Å in

the −1.1 d, −0.1 d, and +0.4 d spectra.

In Table 2, we show the measured full width at half-

maximum intensity (FWHM) velocities of some emission

lines by fitting a Gaussian to the line profile. Since the

[S II] λλ6716, 6731 doublet is definitely from the host

galaxy, their line widths serve as a practical measure-

ment of instrumental line-broadening. As shown in col-

umn 2, FWHM velocities of the He II and He I emission

lines are ∼ 550 km s−1 and ∼ 580 km s−1, much broader

than the resolution of ≈ 270 km s−1, whereas Hα is not

well resolved. Thus, we infer that the hydrogen emission
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Table 2. Rest-frame FWHM (km s−1) of narrow
emission lines in the +0.4 d, +85.3 d and +314.4 d
LRIS spectra.

Transition +0.4 d +85.3 d +314.4 d

He II λ4686 552± 36 — —

He I λ5876 582± 86 272± 19 298± 24

He I λ6678 — 282± 28 339± 59

He I λ7065 — 230± 37 218± 26

Hα 291± 49 263± 13 280± 14

[S II] λ6716 285± 52 254± 14 274± 18

[S II] λ6731 263± 78 251± 14 264± 15

[O I] λ6300 — 263± 28 231± 24

is from the host galaxy, while the helium lines are from

photoionized material exterior to the SN.

3.2.2. Photospheric Phase Spectral Evolution

Broad transient features are present in the +12.0

and +14.3 d spectra (Figure 7). These spectra are

taken at the photospheric phase where emission comes

from a photosphere receding (in mass coordinates) back

through freely expanding SN ejecta. The HST spectrum

contains little host-galaxy contamination due to its high

angular resolution. Prominent galaxy emission lines in

the DBSP spectrum are identified and plotted in light

red to emphasize transient features. The existence of

the P-Cygni He I λ5876 profile and non-existence of hy-

drogen nominally classify SN2019dge as a Type Ib SN.

We measure the velocity of the He I λ5876 line by fitting

a parabola to the absorption minimum. The resulting

fits give velocities of ≈ 6000 km s−1 and 5900 km s−1 for

the +12.0 d and +14.3 d spectra, respectively. This is

lower than velocities of normal SNe Ib measured from

the He I λ5876 absorption minimum (∼ 104 km s−1, Liu

et al. 2016), but higher than that in Type Ibn SNe

(∼ 3000 km s−1, Hosseinzadeh et al. 2017).

In Figure 8, we compare the photospheric phase opti-

cal spectra of SN2019dge with other helium-rich events.

Note that the DBSP spectrum has host emission lines

masked. SN2019dge is different from normal helium-

rich stripped envelope SNe Ib/IIb or SNe Ibn in the

sense that its P-Cygni absorption minimum in the He I

λ5876 line is weaker. The feature at ∼ 5000Å is often

attributed to He I λ5016 and Fe II triplet λλλ4924, 5018,

and 5169 (Liu et al. 2016). The shape of this feature in

SN2019dge is similar to those in normal SNe Ib/IIb at

much later phases (∼ 20 d post maximum), indicating

that the spectral evolution of SN2019dge is faster. The

complex absorption profile at ∼ 4500 Å has been iden-

tified as a blend of Fe II, Mg II λ4481 and He I λ4472

(Hamuy et al. 2002). In the DBSP spectrum, we de-

tected O I λ7774 and broad Ca II at ∼ 8500 Å (due to

the λλ 8498, 8542, and 8662 triplet) with clear P-Cygni

profiles; Both are major features of stripped envelope

SNe (Gal-Yam 2017).

In Figure 9, we compare the HST NUV spectrum

with spectra of other types of SNe. The UV part of

SN2019dge is much weaker than a blackbody extrapo-

lation of the optical spectra would predict. This has

also been seen in normal thermonuclear and CCSNe,

and interpreted as strong metal-line blanketing caused

by iron-peak elements, particularly Fe II and Co II (Gal-

Yam et al. 2008). SN2019dge bears a close resemblance

to SN1993J between 2000 Åand 4000 Å. In Figure 9, we

also marked the rest wavelength of Mg I λ2852 and Mg II

λλ2796, 2803. The emission features at ∼ 2760 Å in

SN2019dge and Gaia16apd are similar to the bump at

∼ 2730 Å in SN1993J, which was found to be a NLTE

Mg II emission line (Jeffery et al. 1994). This resonance

line is blueshifted from its rest wavelength, and is sug-

gested to come from a circumstellar region that is dis-

tinctly separated from the SN photosphere in velocity

and excitation conditions (Panagia et al. 1980; Fransson

et al. 1984).

3.2.3. Late-time Spectral Evolution

Figure 10 shows late time spectra of SN2019dge ob-

tained at +85.3, +143.1, +171.1, and +314.4 d. The

general shape of the spectra is determined by the host

galaxy, while possible SN features are marked by the

dashed lines. The right panels (b), (c), and (d) high-

light emission lines at wavelengths of He I, [O I], and

[Ca II]. In panel (c) of Figure 10, the [O I] λλ6300, 6363

feature consists of two narrow emission peaks. This dou-

blet transitions share the same upper level (3P1,2–1D2).

The observed intensity ratio R ≡ F (6300/6364) ∼ 3.1

agrees with the nebular condition, as one would expect

in the optically thin regime (Leibundgut et al. 1991; Li

& McCray 1992). In panel (d), we mark the position of

the [Ca II] doublet in dashed lines, but only the λ7324

line is clearly detected. It presents a double-peaked pro-

file with a peak separation of ∼ 400 km s−1.

From panel (a) of Figure 10, it is also clear that in the

+85.3 d spectrum, the He I and [Ca II] lines have broader

emission components with Lorentzian profiles at the

bases of the narrow emission lines. These Lorentz-shape

components are not visible in the +314.4 d spectrum.

Therefore, to further investigate the broader features,

we subtract the +314.4 d spectrum from the +85.3 d

spectrum. The resulting subtraction (Figure 11) re-

veals intermediate-width (FWHM ∼ 2000 km s−1) com-
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ponents of He I, [Ca II], and the Ca II IR triplet.

It shares a close resemblance to some Type Ibn SNe,

such as SN2011hw (Pastorello et al. 2015) and SN2015G

(Shivvers et al. 2017). These intermediate-width fea-

tures are too narrow to be explained by emission from

SN ejecta. Instead, they are probably emitted by a cold
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Figure 9. HST spectrum of SN2019dge compared with
other SNe, including SN2006jc (Bufano et al. 2009), SN1993J
(Jeffery et al. 1994), SN2011fe (Mazzali et al. 2014), and
Gaia16apd (Yan et al. 2017). The slightly blueshifted Mg II

λ2800 emission feature is observed in SN2006jc, SN1993J,
SN2019dge, and Gaia16apd.

dense CSM shell formed by radiative cooling from the

post-shock material, as has been proposed to be the case

in interacting Type IIn/Ibn SNe (Chugai & Danziger

1994; Smith 2017).

Table 2 (column 3 and 4) gives the measured FWHM

velocities of narrow emissions shown in panel (b), (c),

and (d) of Figure 10. It can be seen that the measured
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FWHM of other emission lines are similar to the [S II]

line-width. Therefore, we conclude that the observed

narrow emissions are not resolved.

Due to the low resolution of our LRIS spectra, we can-

not directly rule out the possibility that the narrow lines

are emanating from the host galaxy. However, there are

evidence indicating that they are not merely a back-

ground contamination of an underlying H II region:

(i) In the +85.3 d spectrum, the He I and [Ca II] nar-

row emissions are on top of intermediate-width

Lorentzian components characteristic of electron

scattering (Huang & Chevalier 2018), which fades

away in the +314.4 d spectrum. However, the hy-

drogen Balmer lines do not have a broader base in

any of our spectra.

(ii) The flux intensities of He I, [O I], and [Ca II] lines

decrease by a factor of approximately two from

+85.3 d to +314.4 d, consistent with the temporal

evolution from an emission mechanism connected

to the aging supernova. As a comparison, the line

strengths of the strongest emissions in normal ion-

ized nebulae (Hα, [O III], [O II], [S II], etc) do not

follow this behavior.

(iii) Although the He I and [O I] lines labelled in panel

(a) of Figure 10 have been observed in H II regions

(Peimbert et al. 2000, 2017), the doublet [Ca II]

λλ7291, 7324 has not been detected in gaseous

nebulae (Kingdon et al. 1995).

Taken together, we suggest that the narrow compo-

nents (. 270 km s−1) of He I, [Ca II], [O I] and Ca II

are also associated with the transient. Their widths

might be consistent with the typical velocities of pre-

shock CSM. The detection of these lines at > 300 d

after the SN explosion suggests that the circumstellar
shell extends to & 2 × 1016 cm (∼ 1000 AU) from the

progenitor.4

3.3. Host Galaxy Properties

We measure properties of the host galaxy using the

spectrum obtained at phase +314.4 d, assuming that

the most prominent nebular line emissions of Hα and

[N II] are from the host. The Galactic extinction cor-

rected emission line fluxes of Hα and [N II] λ6584 are

(24.15± 0.54)× 10−16 erg cm−2 s−1 and (1.92± 0.10)×
10−16 erg cm−2 s−1, respectively. The fluxes were mea-

sured by fitting a Gaussian profile to the emission line

profiles, measuring the integrated flux under the profile.

4 Adopting a conservative shock velocity estimation of vs ≈
104 km s−1, the forward shock travels 2.6× 1016 cm after 300 d.

Using the Kennicutt (1998) relation converted to a

Chabrier initial mass function (Chabrier 2003; Madau

& Dickinson 2014), we infer a star-formation rate of ≈
0.012M� yr−1 from the Hα emission line. Note that this

is a lower limit since the slit width in the LRIS spectrum

is 1.0′′ (∼ 0.44 kpc at the distance of the host) and the

extraction aperture is 0.76′′, whereas the host diameter

is about 4′′.

We also compute the oxygen abundance using the

strong-line metallicity indicator N25 (Pettini & Pagel

2004) with the updated calibration reported in Marino

et al. (2013). The oxygen abundance in the N2 scale is

8.23 ± 0.01 (stat) ± 0.05 (sys). We choose not to use

the O3N2 index6 since it requires line flux measurement

of Hβ. As can be seen in panel (a) Figure 10, there

is substantial stellar absorption around Hβ (4861 Å).

Compared to 12 + log(O/H)solar = 8.69 (Asplund et al.

2009), the derived N2 index suggests a significantly sub-

solar metallicity of ≈ 0.35Z� (Z ≈ 0.005). This esti-

mate places SN2019dge’s host galaxy in the lowest 10%

of the distribution of SNe Ibc host galaxy metallicities

(Sanders et al. 2012), and it is on the lowest 15% in

the range of Type Ic-BL SNe host galaxy metallicities

(Modjaz et al. 2020)
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Figure 12. Spectral energy distribution of the host galaxy
of SN2019dge. The observed photometric data (with 1σ error
bars) are shown in blue open squares, and the model is shown
as a black curve (reduced χ2 = 0.64). The relative residual
flux is shown in the bottom panel.

We determine the stellar mass (M?) of the host

galaxy by SED modeling using CIGALE (Boquien et al.

2019). We adopt the stellar population synthesis models

5 N2 ≡ log{[N II] λ6583/Hα}
6 O3N2 ≡ log{([O III] λ5007/Hβ)/([N II] λ6583/Hα)}
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from Bruzual & Charlot (2003) with the Kroupa IMF

(Kroupa 2001), and assume a double declining expo-

nential star formation history (SFH). In addition, a dust

component is added using the Draine & Li (2007) model

to account for dust emission. Finally, the total SED

model is attenuated by a modified Calzetti extinction

law (Calzetti et al. 2000). It assumes that the young

stellar population is extincted by the normal Calzetti

law, and the old stellar population is extincted less heav-

ily than that by a certain factor (< 1, Charlot & Fall

2000).

The fitted SED is shown in Figure 12. The derived

total stellar mass is log(M?,tot/M�) = 8.5 ± 0.1, the

mass of the stars alive is log(M?,alive/M�) = 8.4 ± 0.1,

and the inferred SFR is 0.030±0.005M� yr−1, about 2.5

times the SFR inferred from the Hα flux measurement.

The host extinction, E(B − V ), is 0.07 ± 0.02 mag and

0.03±0.01 mag for the young and old stellar population,

respectively, both of which are insignificant. The stellar

mass and the SFR of the this galaxy are in the lower half

of the hosts of Type Ibc SN in the PTF sample (Schulze

et al. in prep.).

4. Modeling

4.1. Shock Cooling Powered Fast Rise

Supernovae light curves are mainly powered by shock

energy or radiative diffusion from a heating source. We

first examine if the peak of SN2019dge is likely to be

powered by the radioactive decay of 56Ni→56Co→56Fe.

With a peak luminosity of Lpeak ≈ 5× 1042 erg s−1 and

a rise time of tpeak ≈ 2–4 d, SN2019dge falls into the un-

shaded region of Kasen (2017, their Figure 1), where an

unphysical condition of MNi > Mej is required. There-

fore, we rule out radioactivity as the power source for

the fast rise of the light curve.

There have been clues for the early emission mecha-

nism of SN2019dge,:

(i) The fast trise (Figure 3), high initial high tem-

perature (middle panel of Figure 4), blue color

(Figure 5), and relatively fast color evolution of

SN2019dge are reminiscent of shock cooling emis-

sion (Nakar & Piro 2014; Piro 2015).

(ii) The color jump in g − r is observed 6–9 d after

maximum (left panel of Figure 5). It is roughly

at this phase that the change in bolometric lumi-

nosity decline rate transitions from 0.36 mag d−1

to 0.11 mag d−1 (upper panel of Figure 4). This

supports the idea that the dominant power mecha-

nisms before and after this transition are different.

Therefore, we model the early light curve as cooling

emission from shock-heated extended material, which is
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Figure 13. Bolometric light curve for SN2019dge. Late-
time quasi-bolometric light curve estimated by computing
νLν in r-band is shown as empty grey circles. The dashed
green and dotted blue lines show the best fits of shock cool-
ing and nickel decay models. The solid red line shows the
combination of the two components.

located at the outer layers of the progenitor or outside of

the progenitor. We use models presented by Piro (2015,

hereafter P15) to constrain the mass and radius of the

extended material (Mext and Rext, respectively), where

Mext includes only mass concentrated around Rext. This

model is built on analytical results of Nakar & Piro

(2014). Details of the model fitting to multi-band ob-

servations are illustrated in Appendix B.2.

In Figure 13, the bolometric light curve measured in

Section 3.1 is shown in black. We also show late-time r-

band νLν measurements in grey empty circles as a proxy

of bolometric light curve evolution. The dashed green

line shows the best-fit model of Mext = 9.34 ± 0.36 ×
10−2M�, Rext = 2.71+0.19

−0.17 × 1012 cm (i.e., 39.0+2.7
−2.5R�),

and explosion epoch at phase texp = −3.21±0.04 d (i.e.,

the explosion occurred 0.45 d before the first detection in

g-band). The amount of energy in the extended material

is well constrained to be Eext = (1.15± 0.07)× 1050 erg.

Given the simple assumptions of the model, we ex-

pect the constraints on Mext and Rext to be only ap-

proximately accurate. We thus conclude that the early

shock cooling emission was produced by an extended en-

velope with a mass of ∼ 0.1M� locating at a radius of

∼ 3 × 1012 cm (40R�). There are now numerous cases

of early cooling envelope emission observed in CCSNe,

where the extended material is estimated to have lower

mass (∼ 0.001–0.01M�) and larger radius (∼ 1013 cm)

compared to SN2019dge (Modjaz et al. 2019).
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4.2. Mass-Loss Estimate from He II

Early-time low-velocity He II λ4686 emission (Section

3.2.1) has been detected in nearly twenty hydrogen-rich

CCSNe and one hydrogen-poor SN iPTF14gqr. This

feature often fades away within a few hours to a few

days after the explosion (Yaron et al. 2017). The high

ionization potential of this line requires high temper-

ature or an ionizing flux, which might come from ei-

ther shock breakout or CSM interaction (Gal-Yam et al.

2014; Smith et al. 2015). Due to the rapid decrease in

Tbb at the three epochs of our early-time spectra and

the similarity between SN2019dge and iPTF14gqr, we

favor shock cooling emission as the origin of recombina-

tion helium lines. Therefore, we can use the luminosity

of the He II λ4686 line to make an order-of-magnitude

estimate on properties of the emission material, follow-

ing the procedure given by Ofek et al. (2013a) and De

et al. (2018b).

Assuming that the immediate CSM around the pro-

genitor has a spherical wind-density profile of the form

ρ = Kr−2, where r is distance from the progenitor,

K ≡ Ṁ/(4πvw) is the wind density parameter, vw is

the wind velocity, and Ṁ is the mass-loss rate. The

integrated mass of the emitting material from r to r1 is

MHe =

∫ r1

r

4πr2ρ(r)dr = 4πKβr (1)

where β ≡ (r1 − r)/r is assumed to be of order unity.

We can relate the mass of the He II region to the He II

λ4686 line luminosity using

Lλ4686 ≈
AneMHe

mHe
. (2)

Here

A =
4πjλ4686

nenHe++

, (3)

jλ4868 (in erg cm−3 s−1 sr−1) is the emission coefficient

for the λ4686 transition. mHe is mass of a helium nu-

cleus, nHe++ is the number density of doubly ionized

helium and ne is the number density of electrons.

Assuming a temperature of 104 K, electron density of

1010 cm−3, and Case B recombination, we getA = 1.32×
10−24 erg cm3 s−1 (Storey & Hummer 1995). Using ne =

2nHe++ and the density profile, Eq. (2) can be written

as

Lλ4686 ≈
8πAβ

m2
He

K2

r
. (4)

The location of the emitting region can be constrained

by requiring that the Thompson optical depth (τ) in the

region must be small for the lines to escape. We require

τ = neσT

∫ r1

r

dr =
2σTKβ

mHer
. 1 (5)

Thus

r2 &

(
2σTβ

mHe

)2
Lλ4686m

2
Her

8πAβ
(6a)

r & Lλ4686
σ2

Tβ

2πA
(6b)

The +0.4 d emission line flux is measured to be

F = (8.99 ± 0.71) × 10−16 erg cm−2 s−1, correspond-

ing to Lλ4686 = 9.0 × 1038 erg s−1. Hence, we get

r & 4.8 × 1013β cm, K & 1.2 × 1014 g cm−1, and

MHe & 3.7 × 10−5β2M�. Adopting a wind veloc-

ity of vw ≈ 550 km s−1 as measured from the He II

FWHM, the mass-loss rate can be constrained to be

Ṁ & 1.1 × 10−4M� yr−1. Note that these estimates

can be affected if the CSM cannot be well characterized

by a spherically symmetric ρ(r) ∝ r−2 density profile,

or if the emitting region was confined to a thin shell

(β � 1).

4.3. Constraints from Radio Upper Limits

Radio emission in SNe is produced by shock acceler-

ated electrons in the circumstellar material as they gy-

rate in the post-shock magnetic field when the shock

freely expands. Should the circumstellar medium be

formed by a pre-SN stellar wind, the radio synchrotron

radiation can be used to probe the pre-explosion mass-

loss (Chevalier 1982). High frequency (ν > 90 GHz)

bright (νLν & 1040 erg s−1) radio sources are often found

to be associated with gamma-ray bursts (GRBs), TDEs,

and relativistic transients (see Figure 6 of Ho et al.

2019a). Among normal SNe Ibc, moderate submillime-

ter luminosity at ∼ 5 × 1037 erg s−1 has been observed

in SN1993J (Weiler et al. 2007) and SN2011dh (Horesh

et al. 2013).

Our SMA observations constrain the submillimeter lu-

minosity of SN2019dge to νLν,230GHz < 5.3×1039 erg s−1

and νLν,345GHz < 3.0 × 1040 erg s−1. We place these

upper limits in physical context using the synchrotron

self-absorption model given by Chevalier (1998). The

expected radio luminosities are computed at 230 and

345 GHz for two types of circumstellar environments —

one with a wind-density with the same parameteriza-

tion as that adopted in Section 4.2 and the other with

a constant-density environment (ρ = constant).

Adopting the explosion epoch found in Section 4.1,

our SMA observations were obtained at 2.75 d after ex-

plosion. Given the early time of these observations, we

consider constant shock velocities at 0.1–0.25c, as found
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Figure 14. Maps of expected radio luminosity at 230 GHz.
The x-axis is the shock velocity vs. The y-axis is wind mass-
loss parameter K in the case of ρ ∝ r−2 CSM environment in
the upper panel, while in the bottom panel it is the number
density n0 in the constant-density case. The black contour in
each panel shows the location of 3σ upper limit at 230 GHz
on SN2019dge. The phase space with a luminosity higher
the black line in each panel is ruled out by the observation.

to be typical in SNe Ibc (Wellons et al. 2012). We as-

sume an electron energy power-law index of p = 3, a

volume filling factor f = 0.5, and that the electrons

and magnetic field in the post-shock region share con-

stant fractions of the post-shock energy density, i.e.,

εe = εB = 0.1.

The expected radio luminosity predicted by the

Chevalier model in the two environments at 230 GHz

are shown in Figure 14 by the color maps, and the black

contours indicate our 3σ limits. As can be seen, only

small regions have expected luminosity higher than the

3σ limits (indicated by the hatched regions), and thus

our observations are not deep enough to provide strin-

gent constrains on the circumstellar properties. Com-

pared with 230 GHz, the parameter space is even more

poorly constrained at 350 GHz and are thus not shown.

4.4. Radioactivity Powered Main Peak

After subtracting the shock cooling emission from the

bolometric light curve, the remaining light curve has a

peak luminosity of Lpeak ≈ 6 × 1041 erg s−1 and a rise

time of tpeak ≈ 9 d. In the shaded region of Kasen

(2017, Fig. 1), this falls between the MNi = 0.1Mej

and MNi = 0.01Mej lines, indicating that the remaining

component can be powered by 56Ni decay. Apart from

this, the moderate tdecay of SN2019dge (bottom panel in

Figure 3) is similar to that found in a few Ca-rich tran-

sients, and consistent with coming from radioactivity.

Here we use two methods to estimate Mej and MNi.

First of all, we use analytical models (Arnett 1982;

Valenti et al. 2008; Wheeler et al. 2015) to constrain

the nickel mass (MNi), a characteristic photon diffu-

sion timescale (τm), and a characteristic γ-ray escape

timescale (t0). Details of the model fitting are given

in Appendix B.3. The dotted blue line in Figure 13

shows the best-fit model of MNi = 1.61+0.04
−0.03× 10−2M�,

τm = 6.35 ± 0.18 d, and t0 = 24.04+0.76
−0.73 d. Thus, using

Equation (B9), the ejecta mass can be estimated to be

Mej = 0.36± 0.02
( vej

8000 km s−1

)(0.07 cm2 g−1

κopt

)
M�

(7)

Here we adopt the the mean opacity of SNe Ibc found

by Taddia et al. (2018). In Section 3.2.2, the the photo-

spheric velocity of ≈ 6000 km s−1 is measured at phase

∆t ∼ 12 d (i.e., ∼ 15–16 d post explosion). At that

time, Figure 4 shows that Rbb stays roughly flat, indi-

cating that a certain amount of ejecta in the outer layers

should have a velocity greater than that measured from

the He I absorption minimum. Therefore, we adopt the

≈ 8000 km s−1 measured from early Rbb evolution (see

Section 3.1.2) to be a more appropriate estimate for vej.

The kinetic energy is then calculated to be

Ekin =
3

10
Mejv

2
ej = (1.36± 0.08)× 1050 erg (8)

Khatami & Kasen (2019, hereafter KK19) presented

improved analytic relations (compared with the original

Arnett 1982 model) between tpeak and Lpeak. When

t < 10 d, εNi(t) � εCo(t) (see Equations B5, B6), and

hence we have an exponential heating function

Lheat(t) = L0e
−t/τNi (9)
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where L0 = MNi×εNi. In this case, KK19 (Eq. 21) shows

that the relation between peak time and luminosity is:

Lpeak =
2L0τ

2
Ni

β2t2peak

[
1− (1 + βtpeak/τNi)e

−βtpeak/τNi

]
(10)

where β ∼ 4/3 gives a reasonable match to numerical

simulations. With Lpeak ≈ 6× 1041 erg s−1 and tpeak ≈
9 d, we get an estimate of MNi ∼ 0.017M�.

Mej can be estimated using Eq. 23 of KK19:

tpeak

td
= 0.11 ln

(
1 +

9τNi

td

)
+ 0.36, (11)

where td is the characteristic timescale without any nu-

merical factors

td =

(
κoptMej

vejc

)1/2

. (12)

We derive td ≈ 15.4 d, which implies

Mej ≈ 0.30
( vej

8000 km s−1

)(0.07 cm2 g−1

κopt

)
M� (13)

The kinetic energy of the ejecta is then Ekin ≈ 1.2 ×
1050 erg.

In conclusion, the estimates derived from simplified

model fitting and new analytic relations from KK19 are

roughly the same. The ejecta mass (Mej ∼ 0.3M�),

the nickel mass (MNi ∼ 0.017M�), and the total kinetic

energy (Ekin ∼ 1.2 × 1050 erg) of SN2019dge are very

small.

5. Interpretation

5.1. A Core-Collapse Supernova

At early times, the cooling emission from shock-heated

surrounding material of Mext ∼ 0.1M� and Rext ∼
3 × 1012 cm (40R�) corroborates that the progenitor

of SN2019dge is a star with an extended envelope. In-

deed stellar evolution models predict envelope radii of

10–100R� for helium stars with zero-age helium core

masses within 2.5–3.2M� that have stripped all of the

hydrogen-rich envelope (Woosley 2019; Laplace et al.

2020). Therefore, the early-time shock cooling light

curve serves as strong evidence that SN2019dge is the

explosion of a star with inflated radius (not a compact

object).

The 56Ni mass of ∼ 0.017M� inferred from the

radioactivity-powered decay is much greater than that

produced in electron-capture SNe (∼ 10−3M�, Moriya

et al. 2014), whereas the ejecta velocity of ≈ 8000 km s−1

is larger than that expected in fallback SNe (∼
3000 km s−1; Moriya et al. 2010). Therefore, we con-

clude that SN2019dge is associated with the class of Fe

CCSNe.

5.2. An Ultra-Stripped Progenitor

As noted in the introduction, the majority of SNe

Ibc, with Mej in the range of 1–5M�, are believed to

come from binary evolution. The small amount of ejecta

mass seen in SN2019dge (Mej ∼ 0.3M�) requires ex-

treme stripping prior to the explosion in a binary sys-

tem, which suggests an ultra-stripped progenitor (Tauris

et al. 2013).

Compared with iPTF14gqr, where the second peak of

the light curve suggests Mej ∼ 0.2M�, SN2019dge has

a higher ejecta mass. In particular, the helium-rich pho-

tospheric spectra indicate that SN2019dge has a greater

amount of helium in the ejecta. He I emission lines are

non-thermally excited by collisions with fast electrons,

which result from Compton processes with γ-rays from
56Ni decay (Dessart et al. 2012; Hachinger et al. 2012).

On the other hand, the weak absorption strength in the

He I P-Cygni profile (Figure 7 and Figure 8) suggests

that the helium envelope mass of SN2019dge is substan-

tially lower than that in a canonical Type Ib SN (Frem-

ling et al. 2018). While the stripping in SN2019dge is

less extreme than for iPTF14gqr, the striking similari-

ties between these two events indicate that they proba-

bly originate from similar channels.

The He II λ4686 flash ionized emission comes from op-

tically thin material located at ∼ 5× 1013 cm (700R�).

This is even larger than the expected orbital separa-

tion required for extreme stripping. Therefore, ma-

terial at such a large radius might be ejected prior

to the explosion, with a mass-loss timescale t ∼ 5 ×
1013 cm/(500 km s−1) ∼ 10 d. The inferred mass-loss

rate of Ṁ & 10−4M� yr−1 is much higher than that

observed in Galactic Wolf-Rayet stars (Smith 2014).

Additionally, the photospheric and late-time spectra of

SN2019dge signify interaction with a helium-rich ex-
tended dense shell, which may also consist of gas origi-

nally ejected by the progenitor as a stellar wind or de-

posited by binary interaction. The high mass-loss rate

and short ejection timescale can be achieved in the fi-

nal stages of stellar evolution by several mechanisms:

1. a powerful outflow driven by super-Eddington wave

energy deposition during the last few years before ex-

plosion (Quataert & Shiode 2012); 2. explosive mass

ejection due to violent silicon flashes within a few weeks

before the explosion of low-mass helium stars (Woosley

2019); 3. nonconservative case BB mass transfer in

binary evolution of ultra-stripped stars (Tauris et al.

2015).

5.3. Stellar Evolution Pathways

Here we discuss possible evolution paths of

SN2019dge’s progenitor.
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Table 3. Model parameters for hydrogen-poor subluminous fast-evolving SNe where the bolometric light curve
can be fitted with a shock cooling powered component and a radioactivity powered component.

Name vej τm,A82 Mej,A82 MNi,A82 Mej,KK19 MNi,KK19 Rext Mext

(km s−1) (d) (M�) (10−2M�) (M�) (10−2M�) (1012 cm) (10−2M�)

iPTF14gqr 10000 4.38+0.14
−0.15 0.21+0.01

−0.01 8.01+0.14
−0.15 0.22 8.35 55.33+9.73

−9.68 1.46+0.37
−0.27

iPTF16hgs 10000 11.09+1.08
−1.09 1.36+0.28

−0.25 2.33+0.23
−0.23 0.78 2.29 1.67+2.24

−0.95 8.94+3.77
−2.61

SN2018lqo 8250 9.71+0.52
−0.37 0.86+0.09

−0.06 2.75+0.09
−0.07 0.63 3.08 26.80+108.58

−23.55 4.82+3.23
−1.15

SN2019dge 8000 6.35+0.18
−0.18 0.36+0.02

−0.02 1.61+0.04
−0.03 0.30 1.70 2.71+0.19

−0.17 9.34+0.36
−0.36

We first consider the scenario where SN2019dge comes

from a progenitor more massive than ∼ 15M� in a bi-

nary system that loses its mass in case B mass transfer.

Yoon et al. (2010) showed that subsequent wind mass

loss is weak at subsolar metallicity of Z ≈ 0.004 (sim-

ilar to the Z ≈ 0.005 calculated in Section 3.3), such

that the final mass of the primary at the time of core-

collapse will be higher than 3.8M�. This will lead to

Mej & 2.3M�, assuming that the explosion forms a neu-

tron star of 1.5M�. This inferred ejecta mass is much

higher than that observed (Mej ∼ 0.3M�), so this sce-

nario is not favored.

We next consider the possibility that the primary has

an initial mass M1 . 15M�. In many binary scenar-

ios involving a companion that is a main sequence star,

the primary will experience stable case B mass trans-

fer that strips the hydrogen envelope, followed by case

BB mass transfer that strips most of its helium enve-

lope, resulting in an ultrastripped exploding star. Za-

partas et al. (2017) performed population synthesis sim-

ulations, showing that for the pre-SN helium star to

reach . 2M�, a relatively wide range of companion

mass is possible (initial mass 4–10M�). Therefore, this

scenario is consistent with observations of SN2019dge.

A compact object companion is less likely because its

lower mass would likely lead to unstable case B mass

transfer, with a post-common envelope orbital separa-

tion much smaller than the inferred radius of the pro-

genitor of SN2019dge (Laplace et al. 2020).

The final mass of the helium envelope depends on the

initial mass of the helium star and the orbital period of

the compact binary. To reconcile with the ejecta mass

observed in SN2019dge, we expect a small final envelope

mass (. 0.3M�) but large enough for optical helium

features to be observed in the SN explosion (& 0.06M�,

Hachinger et al. 2012). This can be achieved in a system

where the progenitor is a helium star in a compact bi-

nary with Porb & 0.2 d at the start of the helium burning

phase (Tauris et al. 2015). However, the large inferred

radius of the progenitor requires an orbital separation

a & 40R�, implying an orbital period of tens of days

at the time of explosion, depending on the companion

mass.

5.4. Comparison with Other Ultra-Stripped SN

Candidates

In addition to SN2019dge and iPTF14gqr, we

search the literature for other subluminous fast-evolving

hydrogen-poor SNe whose light curves can potentially

be well fitted by an early-time shock-cooling component

from an extended envelope and a radioactivity-powered

second peak with small Mej. We recover iPTFF16hgs

(De et al. 2018a) and SN2018lqo (De et al. 2020a)

as ultra-stripped SN candidates. Here we apply our

modeling approach described in Section 4.1 and 4.4 to

iPTF16hgs and SN2018lqo to distill the physical param-

eters of these two events. We show the results in Table

3. The ejecta masses of iPTF16hgs and SN2018lqo are

greater than that in SN2019dge and iPTF14gqr by a

factor of ∼ 3, and falls inside the range of Mej expected

in explosions of a helium star orbiting a compact object,

but is at the upper side of the boundaries (Tauris et al.

2015).

A full discussion of the progenitors of iPTF16hgs and

SN2018lqo is beyond the scope of this paper. Here we

refer to a recent study conducted by De et al. (2020a),

which classify these two objects into the “green Ca-

Ib” subclass in the Ca-rich SNe category. This class

of objects is spectroscopically similar to SNe Ib at max-

imum light, and do not exhibit line-blanketed continua

at ∼ 3500–5500 Å. De et al. (2020a) proposed that

pure helium-shell detonations or deflagrations can ex-

plain their photometric and spectroscopic properties.

Although it has been suggested that the existence of

early first peak can distinguish ultra-stripped SNe from

other Ca-rich transients arising from helium dotonation

on the surface of white dwarfs (Nakaoka et al. 2020),

the early-time peak might also be caused by radioactive

decay from short-lived isotopes in the outermost ejecta

(De et al. 2020a). For example, the double-peaked Ca-
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rich transient SN2018lqo occurs in an elliptical galaxy,

which is not expected to be the host for ultra-stripped

SNe.

Although we only include hydrogen-poor events in

this comparison, we note that SN2019ehk, a Ca-rich

transient that exhibits flash ionized hydrogen in its

early-time spectra (Jacobson-Galán et al. 2020) as well

as possible hydrogen photospheric features (De et al.

2020a), has also been suggested to be an ultra-stripped

CCSN (Nakaoka et al. 2020). If both iPTF16hgs

and SN2019ehk are bona fide ultra-stripped SNe, there

might exist a continuum of ejecta mass from nor-

mal stripped envelope SNe (1M� . Mej . 5M�),

to a higher degree of stripping in the progenitors of

SN2019ehk and iPTF16hgs (0.5M� .Mej . 1M�), to

a more extreme degree of stripping seen in SN2019dge

(Mej ∼ 0.3M�), to the most extreme stripping seen in

iPTF14gqr (Mej ∼ 0.2M�). The remaining amount of

helium, the companion mass, and final orbital separa-

tion might become smaller along this sequence.

6. Rates

As progenitors of compact neutron star binaries, the

volumetric rates of ultra-stripped SNe have implica-

tions for our understanding of the evolutionary path-

ways leading to these systems and the gravitational

waves detected by existing and upcoming facilities such

as LIGO/VIRGO (Abbott et al. 2017a).

Based on population synthesis calculation, Tauris

et al. (2015) estimate that the volumetric rates of ultra-

stripped SNe should be ∼ 0.1–1% of the rate of Core-

collapse SNe. Using the properties of the promising

ultra-stripped SN iPTF14gqr (De et al. 2018b), Hijikawa

et al. (2019) estimate the volumetric rates of iPTF14gqr-

like ultra-stripped SNe to be ∼ 2× 10−7 Mpc−3 yr−1, or
∼ 0.2% of the local CCSNe rate (Li et al. 2011a). How-

ever, since existing ultra-stripped SN candidates were

found outside of systematic SN classification efforts,

observationally constraining the rates of ultra-stripped

SNe has not been possible thus far.

6.1. Simple Estimation

6.1.1. Using the BTS Sample

SN2019dge was followed up as a part of the ZTF

Bright Transient Survey (BTS, Fremling et al. 2019b)

that aims to spectroscopically classify all extragalac-

tic transients in ZTF brighter than 18.5 mag at peak.

Since BTS only reads from the ZTF public alert stream

(highlighted with a greater marker size in Figure 15),

SN2019dge peaks between 18.5 and 19.0 mag in the

BTS sample. Thanks to the relatively high spectro-

scopic completeness (≈ 89%) at the brightness limit of

19.0 mag, we can directly place constraints on the rates

of 19dge-like ultra-stripped SNe using the BTS sample.
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Figure 15. Un-binned P48 light curve of SN2019dge. We
highlight observations obtained in the public Northern Sky
Survey in a greater marker size and high-opacity colors, while
observations obtained in the high-cadence survey are shown
in semi-transparent.

SN2019dge peaked at an absolute magnitude of

−16.44 mag in g-band. At the BTS peak brightness

limit of 19.0 mag, objects similar to SN2019dge would

be detectable out to 123 Mpc. Thus, taking only the

local 123 Mpc volume within redshift of z = 0.028, we

compare the number of CCSNe brighter than 19.0 mag

at peak that were found in the BTS experiment in its

first 12 months of operations (between 2018-06-01 and

2019-06-01). In this time period, BTS classified a total

of 116 CCSNe in this volume. As such, the detection of

one object in this sample constrains the rate of ultra-

stripped SNe to be ∼0.86% of the CCSNe rate brighter

than M = −16.44 mag in this volume.

Taking the observed luminosity function of CCSNe in
the local universe (Li et al. 2011b), we find that ≈ 50%

of CCSNe are fainter than M = −16.44 mag. The lu-

minosity function corrected rate of 19dge-like events is

then ∼0.43% of the local CCSNe rate. The inferred rate

is consistent with that estimated in Tauris et al. (2015),

but higher than that inferred for iPTF14gqr-like events

(Hijikawa et al. 2019). Adopting the CCSNe volumet-

ric rate of 0.7 × 10−4 Mpc−3 yr−1 (Li et al. 2011a), the

volumetric rate of 19dge-like ultra-stripped SNe rate is

∼300 Gpc−3 yr−1. This rate estimation is only a lower

limit, since the fast photometric evolution of objects

similar to SN2019dge can be easily missed due to the

slower 3-day cadence of the ZTF public survey.

6.1.2. Using the CLU sample

The ZTF team also conducts a campaign to spectro-

scopically classify all SNe within 200 Mpc by filtering
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transients occurring in galaxies with previously known

redshifts within z ≤ 0.05 in the Census of the Local

Universe (CLU) catalog (De et al. 2020a). Hereafter we

refer this experiment as CLU. The spectroscopic com-

pleteness of transients in the CLU sample that had at

least one detection brighter than 20 mag is 89%. Since

CLU reads from the whole ZTF alert stream (e.g., all

data points shown in Figure 15), the higher-cadence sub-

surveys allow it to better characterize fast-evolving SNe.

However, the uncertainty in this experiment is the in-

completeness of the input galaxy catalog. The redshift

completeness fraction (RCF) is ≈ 80% at the lowest red-

shifts and decreases to ≈ 50% at z = 0.05, as measured

by the BTS experiment (Fremling et al. 2019b).

At the CLU peak brightness limit of 20.0 mag, ob-

jects similar to SN2019dge would be detectable out to

195 Mpc. Between 2018-06-01 and 2019-06-01, CLU

classified a total of 273 CCSNe in this volume, whereas

no good ultra-stripped SN candidates have been identi-

fied. We place an upper limit of ultra-stripped SNe rate

to be ∼5100 Gpc−3 yr−1 following the simple calculation

described in Section 6.1.1. However, it is also susceptible

to the fast evolution of 19dge-like SNe being missed by

the observation gaps. In Section 6.2 we attempt to place

robust estimates of 19dge-like ultra-stripped SNe rate by

running simulated surveys with the ZTF cadence.

6.2. Estimation Based on Survey Simulations

We utilize simsurvey (Feindt et al. 2019), a python

package designed for assessing the rates of transient dis-

covery in surveys like ZTF. To simulate the expected

yield of a specific type of transient given a volumet-

ric rate, simsurvey requires three inputs: 1) A sur-

vey schedule. We use the actual ZTF observing his-

tory in g- and r-band between 2018-06-01 and 2019-

06-01 in any of the public or collaboration surveys as

the input survey plan. 2) A transient model. We con-

struct a light curve template of SN2019dge (see details

in Appendix B.4). Using the template, we generate a

TimeSeriesSouce model in the sncosmo package (Bar-

bary et al. 2016). 3) A function to sample the tran-

sient model parameters. Transients are injected out to

a redshift of z = 0.044, since objects further out are not

expected to peak brighter than 20.0 mag.

We examine the expected number of detected 19dge-

like SNe for a range of input rates. For each input

rate, we performed 300 simulations of the ZTF observ-

ing plan. In order to select transient candidates that

would have passed the selection criteria of the BTS or

CLU experiment and been flagged as an object with

photometric properties consistent with being a 19dge-

like ultra-stripped SN, we apply cuts on the simulated

light curves as described below.

For the BTS filter, we only use public survey point-

ings, and reject SNe at low Galactic latitudes (|b| ≤ 7°)
to be consistent with the BTS experiment (Fremling

et al. 2019b). In either the g- or r-band light curve,

we identify peak light as the brightest detection in the

simulated light curve, and require:

(i) peak magnitude < 19.0 mag

(ii) within 4.1 d before peak, there must be at least one

detection or one upper limit deeper than 1.5 mag

below peak

(iii) within 15 d after peak, there must be at least three

detections, and the measured decline rate must be

greater than 0.07 mag d−1.

Criterion (ii) is set to require that the fast rise of the

light curve can be recognized from the observation. This

is essential since if we only discover SN2019dge at the

radioactive tail, we will probably classify it as a low-

velocity SN Ib. Criterion (iii) is made to ensure that

the rapid decline of the light curve can be captured,

such that the small ejecta mass can be inferred.

For the CLU filter, we use all ZTF pointings, and

require that in either the g- or r-band light curve:

(i) peak magnitude < 20.0 mag

(ii) the light curve must satisfy at least one of the fol-

lowing criteria: 1) within 4.1 d before peak, there

must be at least one detection or one upper limit

deeper than 1.5 mag below peak, 2) within 2.5 d

before peak, there must be at least one detection

deeper than 0.75 mag below peak

(iii) same as criterion (iii) applied in the BTS filter.

We apply the above criteria to the actual observations of

CCSNe in the BTS and CLU sample. We identify one

other SN — ZTF18abwkrbl (SN2018gjx) — that pass

our criteria. However, ZTF18abwkrbl is a SN IIb that

clearly shows hydrogen in the spectra, and can therefore

be excluded as an ultra-stripped SN candidate (Tauris

et al. 2015).

In Figure 16, we show the number of transients that

pass our selection criteria as a function of the input vol-

umetric rate. The solid line and shaded region indicate

the mean and 68% credible region of the 300 simula-

tions. In the actual BTS experiment, there was only

one detected ultra-stripped SN. Therefore, we consider

the range of volumetric rate where one falls within the
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Figure 16. The number of sources passing criteria (de-
scribed in text) as a function of the input volumetric rate,
in both the BTS and CLU experiments. The lines show the
mean of the 300 simulations, and the shaded boundaries in-
dicate the 16th and 84th percentiles.

shaded red region as a constraint on the rate of 19dge-

like ultra-stripped SNe. This gives R19dge in the range

of 1400–28000 Gpc−3 yr−1.

Using the fact that there were zero ultra-stripped

SN detected in the actual CLU experiment, the grey

shaded region in Figure 16 might suggest R19dge .
4500 Gpc−3 yr−1. However, this upper limit needs to

be corrected for offset distribution and galaxy cata-

log incompleteness. First of all, as discussed in De

et al. (2020a), the CLU experiment is restricted to tran-

sients coincident within 100′′ of the host galaxy nuclei.

SN2019dge and iPTF14gqr are 0.5′′ and 24′′ from their

host galaxies (all within 100′′). Although a large sam-

ple of ultra-stripped SNe is needed to examine the host

offset distribution of this class of objects, the fact that

they arise from massive binary evolution suggest that

the correction due to this factor should be small. Sec-

ondly, the incompleteness of the input galaxy catalog

possibly leads to an underestimation of ultra-stripped

SNe rate by a factor of 55–80%, as indicated by the

RCF. We adjust for such an incompleteness by increase

the upper limit from 4500 to 8200 Gpc−3 yr−1.

Combining results from the BTS and CLU experi-

ments, we derive a 19dge-like ultra-stripped SNe rate of

1400–8200 Gpc−3 yr−1, corresponding to 2–12% of CC-

SNe rate.

6.3. Effects of Different Envelope Masses and Radii

Given the low mass of ultra-stripped progenitors, we

expect to see shock cooling emission from the inflated

pre-explosion star, as has been clearly seen in the case

of iPTF14gqr and SN2019dge in the fast early-time evo-

lution and blue colors of the optical light curve. As

is shown by Nakar & Piro (2014, Fig. 2), rise time of

the shock cooling light curve is determined by mass of

the extended material Mext, while the peak luminos-

ity is mainly modulated by Rext. We demonstrate this

dependence in Figure 17. We simulate shock cooling

light curves by varying Mext and Rext, and at the same

time setting Eext = 1.15 × 1050 erg (the value found in

SN2019dge).
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Figure 17. Expected r-band rise time (upper panel) and
g-band peak absolute luminosity (bottom panel) as a func-
tion of shock cooling model parameters Rext and Mext. The
position of SN2019dge is indicated by the black asterisks. In
the upper panel, parameter space that could not pass our
criteria of “rise from 1.5 mag below peak to peak in less than
4.1 d” (Section 6.2) is indicated by the hatched region.
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In the upper panel, trise is defined in the same way as

in Section 3.1.1 (rise time from half-max to max). The

rising part of the cooling light curve can be captured by

a three-day, two-day, and one-day cadence optical sur-

vey at Mext & 0.14M�, & 0.07M�, and & 0.03M�,

respectively. Transients with Mext & 0.15M� will not

pass our selection criteria in Section 6.2. In the bot-

tom panel, we show the expected absolute luminosity

at peak of the g-band cooling light curve. As is readily

shown, for ultra-stripped progenitors with an extended

radius . 2 × 1012 cm, a survey like ZTF is only sensi-

tive to objects in the local universe (. 100–150 Mpc) for

the subsequent evolution of the light curve to be well-

characterized. Taken together, we conclude that our

estimation of the ultra-stripped SNe rate does not in-

clude ultra-stripped progenitors with Mext & 0.15M�
or Rext . 2× 1012 cm.

6.4. Discussion

If the companion of the pre-explosion helium star is a

low mass main sequence star, a white dwarf, or a black

hole, SN2019dge will not be the progenitor of a double

neutron star system, and thus the inferred R19dge is not

connected with RDNS. Even in the case that the com-

panion is a neutron star, if the forming DNS binary has

orbital periods more than ∼ 1 d, it will not merge within

the age of the Universe (Tauris et al. 2015). There-

fore, the above estimation of the ultra-stripped SNe rate

should provide an upper limit to the local coalescence

rate density (RDNS) of double neutron stars not formed

via dynamical capture in a globular cluster (East & Pre-

torius 2012; Andrews & Mandel 2019).

7. Conclusion

In this paper we have presented the discovery, obser-
vation and modeling of the transient SN2019dge. We

summarize the main characteristics of this object below:

(a) Peak absolute magnitudes are Mg,peak ≈
−16.5 mag and Mr,peak ≈ −16.3 mag. In r-band,

rise time (half-max to max) is 2.0 d and decay time

(max to half-max) is 8.6 d. SN2019dge is one of the

most rapidly rising subluminous SNe I discovered

to date.

(b) Early-time spectra show a blue continuum and

flash He II features that indicate a high mass-loss

rate of & 10−4M� yr−1.

(c) Photospheric spectra indicate helium-rich ejecta,

and the prominent NUV Mg II emission suggests

interaction between SN ejecta and CSM.

(d) Late-time spectra show signatures of interaction

with helium-rich CSM, similar to that observed in

Type Ibn SNe.

(e) SN2019dge exploded in a compact low-metallicity

(Z ≈ 0.005) galaxy with small star formation rate

(SFR ≈ 0.03M� yr−1) and stellar mass (M∗ ≈
2.5× 108M�).

(f) The bolometric light curve of SN2019dge peaks at

∼ 5×1042 erg s−1, and can be explained by a com-

bination of two components. The first component

is consistent with shock cooling from an envelope

of ∼ 0.1M� located at ∼ 3×1012 cm (40R�) from

the progenitor. The second component is powered

by ∼ 0.017M� of 56Ni.

(g) We estimate the ejecta mass and kinetic energy of

SN2019dge to be ∼ 0.35M� and ∼ 1.3× 1050 erg,

respectively.

We interpret SN2019dge as a helium-rich ultra-stripped

envelope SN.

Based on the one event, we estimate the rate density

of 19dge-like ultra-stripped SNe (with Mext . 0.15M�
and Rext & 2 × 1012 cm) to be 1400–8200 Gpc−3 yr−1.

This can be compared to the merger rate of DNS sys-

tems not formed via dynamical capture. The first detec-

tion of gravitational waves from the merging DNS binary

GW170817 gave RDNS = 320–4740 Gpc−3 yr−1 (Abbott

et al. 2017a). Detection of GW190425 provides an up-

date of RDNS = 250–2810 Gpc−3 yr−1 (Abbott et al.

2020). Based on an archival search for EM170817-like

transients (known as “kilonovae” or “macronovae”) in

the PTF database, Kasliwal et al. (2017) reported an

upper limit on the rate of 800 Gpc−3 yr−1, which might

be doubled if the typical kilonova is 50% fainter than

EM170817.

It is important to compare ultra-stripped SNe rate and

RDNS constrained by future GW observations. If the for-

mer is smaller than the latter, it will provide evidence

for the dynamical formation channel to be the major

path for forming DNS systems. A better constraint of

ultra-stripped SNe rate is also essential in our under-

standing of the final stages of helium star evolution in

binary systems. As such, further systematic searches for

ultra-stripped SNe are requried to reduce the large un-

certainties of the current estimation. Moving forward,

the discovery of ultra-stripped SNe will still rely on high-

cadence wide-field experiments such as ZTF. In partic-

ular, the upcoming ZTF-II, with a two-day cadence all

sky survey, coupled with higher cadence boutique exper-

iments, is well-positioned to carry out this task.
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Appendix A UV and Optical Data

Table 4. Optical and UV photometry for SN2019dge.

Date (JD) Instrument Filter m σm

58582.1544 LT+IOO g 18.590 0.010

58582.1552 LT+IOO r 18.840 0.020

58582.1575 LT+IOO i 19.110 0.020

Table 4 continued

Table 4 (continued)

Date (JD) Instrument Filter m σm

58582.1583 LT+IOO z 19.280 0.070

58584.2341 LT+IOO u 18.570 0.020

58580.4421 P48+ZTF g 20.828 0.148

58580.4842 P48+ZTF r 20.891 0.139

58582.8289 Swift+UVOT B 18.606 0.193

58582.8280 Swift+UVOT U 18.289 0.113

58582.8346 Swift+UVOT UVM2 18.550 0.068

58582.8261 Swift+UVOT UVW1 18.685 0.108

58582.8299 Swift+UVOT UVW2 18.802 0.103

58582.8337 Swift+UVOT V 18.679 0.404

Note—m and σm are observed magnitude (without extinction
correction) in AB system. A machine-readable table of all 117
photometric data points will be made available online.

Table 5. Photometry of the host galaxy

Instrument/Filter λeff (Å) m σm

UVOT/UVW2 2079.0 20.492 0.124

UVOT/UVM2 2255.1 20.471 0.172

UVOT/UVW1 2614.2 20.081 0.155

UVOT/U 3475.5 19.631 0.145

UVOT/B 4359.1 18.812 0.139

UVOT/V 5430.1 18.194 0.171

SDSS/u′ 3561.8 19.636 0.082

SDSS/g′ 4718.9 18.540 0.015

SDSS/r′ 6185.2 18.056 0.026

SDSS/i′ 7499.7 17.885 0.028

SDSS/z′ 8961.5 17.697 0.089

PS1/gPS1 4866.5 18.538 0.042

PS1/rPS1 6214.6 18.029 0.030

PS1/iPS1 7544.6 17.845 0.033

PS1/zPS1 8679.5 17.755 0.050

PS1/yPS1 9633.3 17.710 0.063

2MASS/J 12410.5 17.653 0.215

2MASS/H 16513.7 17.690 0.420

WISE/W1 34002.6 18.460 0.069

WISE/W2 46520.1 18.953 0.136

Note—m and σm are observed magnitude (with-
out extinction correction) in the AB system.

The full set of photometry of SN2019dge is listed

in Table 4. Photometry of the host galaxy SDSS

J173646.73+503252.3 is listed in Table 5.

Appendix B Modeling of SN2019dge

B.1 Modeling the Physical Evolution

To model the multi-band light curve with a black-

body function, we utilized the Monte Carlo Markov

Chain (MCMC) simulations with emcee (Foreman-

Mackey et al. 2013). We test the performance of three

types of model priors for the blackbody radius (Rbb)

and temperature (Tbb): (i) Tbb and Rbb are uniformly
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Figure B1. Posterior (solid lines) distribution of the black-
body temperature Tbb on Apr 7 (upper panels) and Apr 9
(bottom panels) using three different priors (dotted lines).

Table 6. Physical evolution of SN2019dge from blackbody
fits.

∆t L(1041 erg s−1) R (103R�) T (103 K)

−2.74 2.98+578.84
−1.41 1.45+1.14

−1.14 14.21+101.35
−5.12

−1.72 44.63+43.85
−15.84 2.20+0.44

−0.46 22.75+7.60
−4.14

−0.69 26.96+0.92
−0.87 3.50+0.07

−0.07 15.90+0.28
−0.27

0.24 22.87+0.62
−0.61 4.46+0.08

−0.08 13.51+0.21
−0.21

1.09 17.50+0.40
−0.37 4.89+0.10

−0.10 12.07+0.19
−0.18

3.26 8.34+0.22
−0.20 7.26+0.46

−0.44 8.23+0.31
−0.28

4.24 7.29+0.26
−0.22 7.38+0.88

−0.83 7.88+0.54
−0.46

5.25 6.10+0.16
−0.15 8.77+0.78

−0.73 6.92+0.33
−0.30

6.83 6.18+0.63
−0.46 7.09+1.01

−0.92 7.72+0.75
−0.62

7.98 5.29+0.24
−0.21 8.00+0.75

−0.70 6.99+0.39
−0.35

8.98 5.49+0.44
−0.36 6.79+0.94

−0.85 7.66+0.65
−0.56

10.05 4.55+0.37
−0.27 7.42+1.03

−0.96 6.99+0.63
−0.52

10.92 4.49+0.64
−0.44 6.63+1.25

−1.06 7.37+0.93
−0.75

11.89 4.04+0.24
−0.21 7.42+0.83

−0.75 6.79+0.45
−0.40

13.06 3.34+0.10
−0.10 7.52+0.69

−0.66 6.43+0.32
−0.29

14.05 3.08+0.10
−0.09 7.05+0.63

−0.59 6.51+0.32
−0.29

14.97 2.82+0.15
−0.12 7.30+1.21

−1.06 6.25+0.57
−0.49

16.09 2.45+0.09
−0.09 6.17+0.59

−0.58 6.56+0.33
−0.29

23.96 1.02+0.07
−0.06 5.47+1.23

−1.12 5.59+0.74
−0.54

27.00 0.72+0.08
−0.08 4.08+1.26

−1.01 5.93+0.91
−0.70

27.98 0.78+0.07
−0.06 5.73+1.68

−1.29 5.10+0.68
−0.57

29.23 0.83+0.11
−0.09 4.76+2.47

−1.56 5.64+1.23
−0.93

33.24 1.09+0.16
−0.11 6.99+2.47

−1.74 5.02+0.65
−0.56

distributed in the range of [103, 107] K and [10, 106]R�,

respectively (ii) the two parameters are logarithmically

uniformly distributed in the same ranges (ii) the two

Table 7. Shock cooling model parameters θ and their priors

θ Description Prior

logRext log10 of extented material radius in cm U(−5, 25)

logMext log10 of extented material mass in M� U(−4, 0)

texp explosion epoch in MJD relative to 58583.2 U(−8,−2.76)

E51 SN energy divided by 1051 erg U(0.01, 10)

Eext,49 Eext divided by 1049 erg U(0.1, 100)

Table 8. 56Ni decay model parameters θ and their priors

θ Description Prior

τm characteristic photon diffusion time in day U(1, 20)

logMNi log10 of nickel mass in M� U(−4, 0)

t0 characteristic γ-ray escape time in day U(20, 100)

parameters follow Jeffreys prior (Jeffreys 1946) in the

same ranges.

Within the ensemble, we use 100 walkers, each

of which is run until convergence or 100,000 steps,

whichever comes first. The test for convergence fol-

lows steps outlined in Yao et al. (2019) and Miller et al.

(2020). We adopt the 68% credible region (i.e., 16th and

84th percentiles of posterior probability distributions) as

the model uncertainties quoted in Table 6.

We examine the fitting results under different choices

of priors in Figure B1, which shows the posterior distri-

bution of Tbb using data obtained on Apr 7 (top panels)

and Apr 9 (bottom panels). Early stages of SN evo-

lution often feature extremely high temperatures. At

an epoch where both UV and optical data are available
(Apr 9), the posterior does not depend on the particu-

lar choice of prior, and the model parameter can thus be

well constrained. However, at our first detection epoch

where only optical data is available (Apr 7), the pos-

terior strongly depends on the prior. For a linearly flat

prior, high numbers receive a lot of “weight”, making the

“multi-peaks” shape posterior in the upper left panel of

Figure B1. Log prior and Jeffreys prior generally give

similar results. In this study, we adopted results using

log prior. However, we note that the choice of prior does

not affect final estimates of maximum luminosity, or the

model fits for shock cooling and 56Ni decay.

In Figure B2 we show the photometry interpolated

onto common epochs, and fit to a blackbody function to

derive the photospheric evolution. The resulting evolu-

tion in bolometric lumonosity, photospheric radius, and

effective temperatures is listed in Table 6.
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Figure B2. Black data points are Swift/UVOT and optical photometry of SN2019dge. Solid lines show model fits using
estimated parameters, while 30 random draws from the MCMC posterior are shown with dashed lines.

B.2 Modeling Early Light Curve

We cast the P15 analytical expression for the shape of

the early-time light curve in terms of Mext, Rext, Eext,

and E51:

L(t) =
teEext

t2p
exp

[
− t(t+ 2te)

2t2p

]
erg s−1 (B1a)

te =10−9RextE
−1/2
ext,49

(
Mext

0.01M�

)1/2

s (B1b)

tp =1.1× 105κ
1/2
0.34E

−0.01/1.4
51

× E−0.17/0.7
ext,49

(
Mext

0.01M�

)0.74

s (B1c)

where t is time since explosion in seconds, κ0.34 =

κ/(0.34 cm2 g−1), Eext,49 = Eext/(1049 erg), E51 =

E/(1051 erg), and E is energy of the explosion.Following

P15 we assume the emission is a blackbody at radius

R(t) = Rext + 109

(
Eext

1049 erg s−1

)1/2(
Mext

0.01M�

)−0.5

t

(B2)

and temperature

T (t) =

(
L(t)

4πR(t)2σSB

)1/4

(B3)

We fix κ ≈ 0.2 cm2 g−1 as appropriate for a hydrogen-

deficient ionized gas, and assign wide flat priors for all

model parameters, as summarized in Table 7. We only

include observations up to ∆t = 2 d in the fitting. We

found that this particular choice of ∆t — 2 d instead
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Figure B3. Corner plot showing the posterior constraints
on logRext, logMext, texp, and Eext,49. Marginalized one-
dimensional distributions are shown along the diagonal,
along with the median estimate and the 68% credible region
(shown with vertical dashed lines).
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Figure B5. Corner plot showing the posterior constraints
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butions are shown along the diagonal, along with the median
estimate and the 68% credible region (shown with vertical
dashed lines).

of 1 d or 3 d — in general does not affect the final in-

ference for the model parameters. Figure B3 shows the

corner plot of logRext, logMext, texp, and Eext,49. For

clarity, E51 is excluded as it does not exhibit strong

covariance with the parameters shown here. This can

be understood by Eq. B1c, which gives tp ∝ E
−0.01/1.4
51 ,

suggesting that the shock cooling luminosity only weakly

depends on E51.

The maximum a posteriori model is visualized by solid

lines in Figure B4 color-coded in different filters. The
rising part of the model does not closely match to data

due to the ignorance of the density structure of the stel-

lar profile. Nevertheless, the peak of the light curve is

well captured by this model.

B.3 Modeling the Main Peak

For 56Ni→56Co→56Fe decay powered explosions, the

energy deposition rate is

εrad =εNi,γ(t) + εCo,γ(t) (B4)

εNi,γ(t) =εNie
−t/τNi (B5)

εCo,γ(t) =εCo

(
e−t/τCo − e−t/τNi

)
(B6)

where εNi = 3.90 × 1010 erg g−1 s−1, εCo = 6.78 ×
109 erg g−1 s−1, τNi = 8.8 d and τCo = 111.3 d are the

decay lifetimes of 56Ni and 56Co (Nadyozhin 1994). The
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Figure B6. g- and r-band light curve templates for
SN2019dge obtained from Gaussian process fitting.

effective heating rate is modified by the probability of

thermalization, and thus εheat ≤ εrad.

The bolometric light curve can be generally divided

into the photospheric phase and the nebular phase. The

photospheric phase can be modelled using Equations

given in Valenti et al. (2008, Appendix A), with modifi-

cations given by Lyman et al. (2016, Eq. 3),

Lphot(t) =MNie
−x2

×[
(εNi − εCo)

∫ x

0

(2ze−2zy+z2)dz

+ εCo

∫ x

0

(2ze−2zy+2zs+z2)dz
]

(B7)

where x = t/τm, y = τm/(2τNi),

s =
τm(τCo − τNi)

2τCoτNi
, (B8)

τm =

(
2κoptMej

13.8cvphot

)1/2

(B9)

In the nebular phase the SN ejecta become optically

thin, such that the delay between the energy deposition

from radioactivity and the optical radiation becomes

shorter. The bolometric luminosity is then equal to the

rate of energy deposition: Lneb(t) = Q(t). At any given

time, the energy deposition rate Q(t) is (Wheeler et al.

2015; Wygoda et al. 2019):

Q(t) ≈ Qγ(t)
(

1− e−(t0/t)
2
)

(B10)

where Qγ(t) = MNiεrad is the energy release rate

of gamma-rayst0 is the time at which the ejecta be-

comes optically thin to gamma rays. Here the differ-

ence between energy deposition rate of gamma-rays and

positrons is neglected.

To fit the shock cooling subtracted bolometric light

curve with a simple radioactive decay model, we do

not divide the data into photospheric phase and neb-

ular phase, but instead adopt the following formula for

the whole light curve:

L(t) = Lphot(t)
(

1− e−(t0/t)
2
)

(B11)

Priors or the model parameters are summarized in Ta-

ble 8, and Figure B5 shows the corner plot of τm, logMNi,

and t0.

B.4 Generating a Light Curve Template for

SN2019dge

To construct a template for SN2019dge in the ZTF

g and r filters, we model the observed light curve by

a Gaussian process. We denote the measurements as

(x,y), where x is MJD−58583.2, and y is flux calculated

as 10−0.4m × 108 (m is magnitude). We choose a kernel

in the form of Matern covariance function (Rasmussen

2003, Eq. 4.17):

k3/2(x, x′) = A

(
1 +

√
3r

l

)
exp

(
−
√

3r

l

)
(B12)

where r = |x − x′|. A and r in Eq. B12 are chosen to

minimize the negative log likelihood function (see, e.g.,

Eq. 2.43 of Rasmussen 2003).

We perform the fit from x = −10 d to x = +40 d, and

the obtained templates are shown in Figure B6.
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