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Abstract
Obtaining the free energy of large molecules from quantum mechanical
energy functions is a longstanding challenge. We describe a method that
allows us to estimate, at the quantum mechanical level, the harmonic con-
tributions to the thermodynamics of molecular systems of large size, with
modest cost. Using this approach, we compute the vibrational thermodynam-
ics of a series of diamond nanocrystals, and show that the error per atom
decreases with system size in the limit of large systems. We further show
that we can obtain the vibrational contributions to the binding free energies
of prototypical protein-ligand complexes where the exact computation is too
expensive to be practical. Our work raises the possibility of routine quan-
tum mechanical estimates of thermodynamic quantities in complex systems.

The contributions to the free energy from atomic motion are critically important
to the thermodynamics and kinetics of biological, chemical, and materials systems.
Changes in such contributions govern processes ranging from the affinity of drug
binding to structural phase transitions in crystals. When the internal energy is com-
puted at the quantum mechanical level, a harmonic approximation is often the only
feasible option to describe atomic motion. However, for large systems such as nanos-
tructures and biomolecules, computing free energy contributions is expensive even
within the harmonic approximation. For a system of N atoms, the Hessian matrix
which describes the vibrations requires O(3N) gradient calculations, or O(3N)
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2 Quantum harmonic free energies

times the cost of computing the internal energy. This is clearly prohibitive when N
is large, making free-energy computation in large systems with quantum mechanical
methods a major contemporary challenge [1].

There are many possible strategies to speed up harmonic vibrational analysis,
including methods based on a partial Hessian[2, 3], iterative diagonalization [4], and
Hessian-free methods that use molecular dynamics to approximate the the harmonic
problem[5, 6]. Here we describe a different strategy where we estimate vibrational
thermodynamic quantities directly without ever computing the full Hessian or taking
advantage of any local structure.

The starting point is to express each harmonic thermodynamic quantity as a
matrix function trace. Then, our technique contains three elements. First, we sample
the matrix trace operation using random vectors and stochastic Lanczos quadra-
ture [7]. Second, we compute the Hessian-vector product at the same cost as
the gradient from the difference of gradients at displaced geometries, bypassing
the Hessian construction entirely. Third, we ameliorate the stochastic error, espe-
cially for free energy differences, through a form of correlated sampling. Related
stochastic methods have been used for anharmonic corrections to the harmonic free
energy[8, 9], as well as in stochastic electronic structure[10], but to our knowledge
this is the first time these ideas have been brought to bear on the harmonic ther-
modynamic quantities themselves. As we demonstrate, this allows us to compute at
the quantum mechanical level and with modest cost, vibrational free energy contri-
butions for nanocrystals with more than 600 atoms, and free energy differences in
protein-ligand complexes with more than 3000 atoms.

Theory
We first express the harmonic thermochemical quantities as traces of matrix func-
tions. In particular, we are interested in the zero-point energy (ZPE),

ZPE =
∑
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the thermal contribution to the enthalpy,
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Here β is the inverse temperature, {ωI} is the set of normal mode frequencies, and
D is the mass-weighted Hessian matrix. We refer to ZPE as a non-thermal quantity
as it has no temperature dependence.

The above expressions have the form Trf(D). We now employ a stochastic esti-
mator of the trace. The simplest version writes Trf(D) ≈ M

n

∑n
l=1 v

T
l f(D)vl

where vl are a set of n random vectors with zero mean and unit covariance, and
M = 3N − 6 is the dimension of D. This direct stochastic evaluation requires a
polynomial approximation of f(D), which is typically carried out using a Cheby-
shev expansion [11]. A closely related idea, which we use in this work, is stochastic
Lanczos quadrature[7]. In this technique, the polynomial approximation is gener-
ated for the scalar vTl f(D)vl rather than globally for the function f(D). We have
found the stochastic Lanczos method to be slightly superior to the Chebyshev poly-
nomial approach for the quantities in this work. Within the polynomial expansion, the
main operation is the matrix-vector product Dx, where x is in the stochastic Lanc-
zos space. This can be computed from the difference of gradients, displaced by δx
in mass-weighted coordinates, for small δ [12]. Thus no Hessian is needed at all in
this approach (further details are provided in the Methods section). We note the sam-
pling itself does not depend on f , and thus intermediate information, such as Lanczos
quadrature weights and positions can be cached to estimate Trf(D) for any other
f , and as such thermostatistical quantities at different temperatures can be computed
without the need for repeating the sampling procedure.

Within the above scheme, there are two sources of error. The first is from the order
of the Lanczos quadrature, m. This vanishes when m is greater than or equal to the
matrix dimension. The second is the sampling error, which decreases like 1/

√
n for

n random vectors. For a quadrature order of m and n samples, the cost of the method
is equal to O(mn) gradient calculations. To reduce the statistical error, we use a
form of correlated sampling. For the absolute thermodynamic quantities computed
for the diamond nanocrystals we employ a high-level quantum mechanical approach
as well as a cheaper low-level method (for example, a force-field, or semi-empirical
quantum-mechanical approach) where the exact computation of the harmonic ther-
modynamic quantity Xlow is possible. Then, the free energy contribution for the
high-level method is obtained as

Xhigh = Xlow + ∆ (4)

where ∆ is computed by applying the stochastic Lanczos quadrature to the difference
of high-level and low-level methods. In the case of protein(P)-ligand(L) binding, we
are interested in the difference between the holo (ligand-bound) state and the apo
(ligand-free) state, i.e.

Xbind = XP+L −XP −XL (5)

where Xbind represents the ligand binding free energy, enthalpy, entropy, etc. In
this case, we perform correlated sampling by using the same random vectors in the
stochastic Lanczos treatment of the P+L, P, L systems (zeroing out elements for P
and L respectively). No additional low-level method is involved in ligand-binding
calculations.
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Results
As a first application, we take diamond nanocrystals (Figure 1a) as prototypical nano-
materials, and compute the free energies as a function of size. We employ the high-
and low-level correlated sampling approach described above, with Kohn-Sham den-
sity functional theory (DFT) with the PBE functional [13] as the high-level method
and the semi-empirical extended tight-binding (xTB) method [14] as the low-level
method. For the smallest system (C54H54), we can compute the Hessian explicitly to
provide an exact reference. Figure 1b shows ∆ quantities for the zero-point energy,
the thermal enthalpy, and the entropy respectively, as a function of quadrature order
m. The error bar indicates the statistical error for 50 samples (see SI for details of
error analysis). A stochastic quadrature level of m = 8 does not provide sufficient
accuracy, so we choose m = 16 for further calculations. Additional calculations on
three transition-metal complexes using m = 16 are presented in the SI, although the
choice of m in general is system and accuracy specific. Figure 1c shows the value
and stochastic error per atom (estimated as one standard error) for the ZPE, ther-
mal enthalpy, and entropy respectively. We note the error decreases with the size
of the system, faster than the decay of the quantities themselves, which is evidence
of “self-averaging” due to the large system size. A more detailed discussion of the
“self-averaging” behavior is provided in the SI. Thus if one is interested in per-
atom quantities, as is often the case for thermodynamics, for example to locate phase
transitions, our stochastic approach becomes increasingly more efficient in a large
system. The difference between our largest simulation and the extrapolated thermo-
dynamic limits for the per-atom ZPE, enthalpy, and entropy is only 0.2 kcal/mol,
0.004 kcal/mol, and 0.006 kcal/mol respectively; statistical errors with 50 samples
are about 0.001 kcal/mol or less. In fact, in the largest diamond system, with a sin-
gle sample, one can estimate the per-atom quantities with a statistical error of less
than 0.01 kcal/mol (this error was estimated from 50 samples; see SI for details) at a
120-fold speedup relative to the exact Hessian calculation.

If one is instead interested in the absolute values, the method can still be cheaper
than the full computation of the Hessian. Figure 1d shows the stochastic error for the
largest carbon system (C432H216) as a function of computational cost. At less than
20% of the exact calculation’s computational effort, the error estimate for ZPE is well
within 1 kcal/mol, red corresponding to 0.03% relative error with respect to the total
ZPE or 7.7% relative error with respect to the ∆ZPE between DFT and xTB. Less
precise estimates can be obtained even more cheaply; a 20 times speedup is possible
if 2 kcal/mol of error in the absolute quantities is tolerable.

Vibrational contributions to the free energy are also central to the study of large
molecule and biomolecular interactions. For protein-ligand interactions in particular,
where the aggregate binding is often only 5-15 kcal/mol, the vibrational contribution
to binding free energies can be significant. Although the harmonic approximation is
not necessarily a faithful approximation in these systems, the harmonic contributions
nonetheless provide a useful first estimate of the thermal and entropic contribu-
tions [15, 16]. The task is challenging for the stochastic Lanczos approach as binding
is the difference of large absolute quantities, requiring tight convergence of the sta-
tistical error. To reduce statistical error, we use the fixed random vector correlated
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C54H54
C128H96 C250H150 C432H216

a)

Exact 𝑚=8
𝑚=16 𝑚=32

b) c) Statistical Error (kcal/mol)d)𝑋 per atom (kcal/mol)

Fig. 1 a) Structures and chemical formulae of the diamond nanocrystals used in the calculations. b) ∆
values estimated with different Lanczos quadrature orders (m) for the smallest system (C54H54) compared
to the exact values. Error bars were estimated using the standard error of 50 samples. c) Per-atom quantity
values and errors as a function of system size for a fixed number of samples (50 samples). The solid
lines correspond to linear fits to inverse size. Note that the scale used for the quantities and their errors is
different for each of the 3 graphs. d) Statistical errors (for m = 16 quadrature) in absolute thermodynamic
quantities of C432H216 as a function of % of computational cost of the exact calculation (error bars denote
error of error).

sampling approach described above. We do not include explicit water molecules in
the simulation: in principle, these could be included at additional cost, or the des-
olvation contribution to the free energy can be separately estimated by standard
continuum methods [15].

We first study a system which is just small enough that exact results at the xTB
level can be obtained at a high computational cost: a cutout (∼ 1600 atoms) of the
human tankyrase 2 (TNKS2) protein with a bound ligand shown in Figure 2a (see
Methods for more information). In Figure 2b we show the thermal contributions to
the binding enthalpy, entropy and free energy for the stochastic Lanczos quadrature
orders m = 8, 16, 32 using xTB. We present a detailed check of the Lanczos conver-
gence for a larger set of m values, and across a set of different systems, in the SI (see
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a) b)
Statistical Error (kcal/mol)

c)Exact 𝑚=8
𝑚=16 𝑚=32

Fig. 2 Harmonic thermal contributions for the TNKS2 complex computed at the xTB level. a) An image
of the TNKS2 complex. The truncated part of the protein is shown as transparent, while the remaining
two protein chains and the ligand are colored orange, yellow and grey, respectively. Image rendered by
VMD[18]. b) The thermal enthalpy and entropy, and free energy of binding for the TNKS2 system for
varying Lanczos order. The error bars represent ± one standard error from 100 random samples. c) Statis-
tical errors in binding free energy quantities as a function of % of cost of the exact calculation (error bars
denote error of error).

Figures 3S and 4S). Following these convergence checks, we choose m = 16 for fur-
ther calculations, where the error due to the Lanczos order is estimated to be less than
1 kcal/mol. Table 1 summarizes the data using up to 100 samples for all rovibrational
free energy contributions (the rotational contribution is obtained following Ref. [17]).
From comparison to the exact results, the total thermal contribution ∆Gvib −∆ZPE
can be estimated with a statistical error of less than 1 kcal/mol with a cost of roughly
10% of the exact Hessian calculation. The non-thermal contribution ∆ZPE (not plot-
ted) has larger statistical error, but can still be estimated to better than 2 kcal/mol
with roughly 200 samples, or 67% cost of the exact Hessian calculation.

We next evaluate the thermal quantities at the Kohn-Sham DFT level using the
PBE functional for the TNKS2 complex using up to 35 samples, as summarized in
Table 1. Interestingly, we find the thermal vibrational contributions at the DFT level
to be quite similar to those from xTB. A single sample using our DFT implementation
takes roughly two days on 1 node (32 CPU cores), compared to 600 days on 1 node
for the exact Hessian calculation.

Finally, we apply our approach to HIV protease bound to a small molecule (JE-
2147)[19] (Figure 3a). This system contains over 3000 atoms including hydrogens.
The number of gradient calculations required to compute the full Hessian in this
case (∼ 10,000) is so large that the exact computation is expensive even at the level
of semi-empirical quantum mechanics, thus we do not compute exact data here.
In Table 1 we show our stochastic estimates of the harmonic contributions to the

thermodynamic binding quantities using xTB and a quadrature order of m = 20.
Interestingly, the thermal contributions (∆Hvib − ∆ZPE and T∆Svib) to the free
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Statistical Error (kcal/mol)a) b)

Fig. 3 Harmonic thermal contributions for the JE-2147-HIV protease complex computed at the xTB
level. a) An image of the JE-2147-HIV protease complex. The two protein chains and the ligand are shown
in yellow, green, and grey respectively. Image rendered by VMD[18]. b) Statistical errors in binding free
energy quantities as a function of % of cost of the exact calculation (error bars denote error of error).

Quantity TNKS (xTB) TNKS (DFT) HIV (xTB) TNKS (expt.) HIV (expt.)
∆Grot 9.57 9.61 10.43

∆Hvib − ∆ZPE 2.53±0.30 2.89±0.51 1.88 ± 0.72
T∆Svib 4.96±0.71 5.79±1.11 1.69 ± 1.79

∆Gvib − ∆ZPE -2.43±0.42 -2.90±0.64 0.19 ± 1.13
∆Gtot

bind -26.8 -21.4 -14.1 -11.0 -14.2
Table 1 Contributions to the binding free energy at 298.15 K for the TNKS2 and JE-2147-HIV protease
system. The rotational free energies ∆Grot are computed at the optimized structures, the thermal
enthalpy, entropy and free energy are computed from stochastic sampling. The error estimate for TNKS
using xTB is one standard error from 100 random samples (corresponding to 33% of exact cost), 35
samples (corresponding to 11% of exact cost) for TNKS using DFT, and 50 random samples
(corresponding to 10% of exact cost) for HIV (xTB). The experimental binding affinity is estimated as
either kBT ln IC50 or kBT lnKi, with IC50 = 9.2 nM for TNKS2 from Ref. [20] and Ki = 41 pM for
HIV protease from Ref. [19]. ∆Gtot

bind includes the non-thermal contribution from the ZPE and is
computed as described in the Methods section. All values are given in kcal/mol.

energy are both similar, small, and of opposite sign, meaning that the total ther-
mal free energy contribution is almost zero. The small size of the thermo-statistical
harmonic contributions may be due to the known rigidity of the HIV protease bind-
ing pocket, which means that many of the normal modes in the free protein and
protein-ligand complex may be very similar. Nonetheless, estimating ∆Gvib−ZPE to
an accuracy of 1 kcal/mol is clearly feasible within our scheme at roughly 10% of the
estimated cost of the exact calculation (Figure 3b).



8 Quantum harmonic free energies

Quantity All Diamonds TNKS (xTB) TNKS (DFT) HIV (xTB)
∆Hvib − ∆ZPE <1% 3% 3% 11%

T∆Svib <1% 16% 14% 74%
∆Gvib − ∆ZPE <1% 6% 5% 31%

Table 2 Summary of computational cost to achieve an accuracy of 1 kcal/mol compared to an exact
Hessian calculation. The number of samples n required to achieve the desired accuracy is estimated with
50 samples for the diamond systems (n′ = 50), n′ = 100 for TNKS2 (xTB), n′ = 35 for TNKS (DFT),
and n′ = 50 for HIV (xTB). See SI for details about error analysis.

Discussion
We have presented results which demonstrate the feasibility of computing harmonic
contributions to the free energy at the quantum mechanical level for systems of
more than a thousand atoms. The cost is greatly reduced from that needed to com-
pute the Hessian of the system. This is particularly true when one is interested in
intensive (or “per-atom”) quantities, where self-averaging behavior shows that in
large systems, we may estimate the quantities at a cost comparable to that of a few
energy evaluations. This holds promise in evaluating thermodynamic transitions in
materials involving large unit cells, for example, those associated with alloys and
disorder. In the case of free energy differences, the correlated sampling technique
employed here makes the evaluation of even small thermal free energy differences,
as found in protein-ligand complexes, feasible at the level of 1-2 kcal/mol. The esti-
mated speedups for all systems considered, in order to reach a given accuracy, are
summarized in Table 2.

An additional advantage of the current approach is that the cost may be contin-
ually tuned. This is relevant to new applications, for example in the computational
screening for therapeutics [1, 21], where less precise estimates are an acceptable
tradeoff for speed. Also, as we see from Table 1, while the computed binding affin-
ity using the harmonic approximation is not always highly accurate in biomolecular
systems, the increased facility to obtain harmonic estimates further raises the possi-
bility for new approaches to compute anharmonic contributions to free energies with
a variety of techniques, such as the minimum-mining technique [22], which samples
multiple minima in an anharmonic potential and combines harmonic contributions
from each of them. While applications which require intensive quantities benefit most
from the stochastic approach, converging absolute thermal quantities to sufficiently
high precision may require improved statistical estimators [23]. In addition, while
we have estimated harmonic thermal contributions using quantum mechanical energy
functions, the same algorithm accelerates harmonic free energy computation using
any energy function, including classical force-fields, and can be combined with other
cost reduction techniques, such as partial Hessians.

In summary, the technique presented here suggests that the estimation of har-
monic free energy effects at the quantum mechanical level for systems with hundreds
or even more than a thousand of atoms need not be considered a future challenge [1],
but one which can be begin to be addressed today.
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Methods

Stochastic Lanczos quadrature
The stochastic Lanczos method is a numerical method which has been employed
in different contexts (see e.g. Ref. [24] for an early application in quantum many-
body systems). We follow the general mathematical formulation in Ref. [7]. The
Lanczos iterations were performed starting from a vector randomly selected from
a Rademacher distribution. The Lanczos iterations require the action of the mass-
weighted Hessian matrix on this random vector. We compute this matrix-vector
product from finite difference gradient calculations:

Dv = M−1/2g(δv)− g(−δv)

2δ
. (6)

Here, D is the mass-weighted Hessian matrix, g is the gradient, M is the diagonal
matrix of masses. The displacement is given by

δv = M−1/2v (7)

where the factor of M−1/2 accounts for the mass-weighting. The value of δ is chosen
based on the norm of the random vector so that the average displacement per atom is
0.0012 Å.

The number of Lanczos iterations m is a parameter of the method; m should
be increased until convergence is reached. In chemical systems, the maximum
eigenvalue of the Hessian does not scale with the system size (it is the maximum
vibrational frequency, for example a C-H stretch), while the minimum eigenvalue is
bounded from below by 0. For many functions of the Hessian, this means that the
maximum and minimum eigenvalues also do not scale with system size. Under this
assumption, we expect a fixed m to yield a constant relative error in the trace of the
function, and furthermore, due to exponential convergence in m for well-behaved
functions of the Hessian, m needs to only increase logarithmically with system size
for constant absolute error. A numerical study of convergence with m is presented in
the SI.

Additionally, we also implemented and tested a Chebyshev fitting method as an
alternative to the stochastic Lanczos quadrature. We found that often a higher order
Chebyshev fit was required making it a slightly more expensive alternative to Lanczos
quadrature.

Calculations on diamond nanocrystals
Diamond nanocrystals were constructed by creating supercells of the bulk dia-
mond unit cell and then capping with hydrogens. The resulting structure was
optimized using the PBE functional[13] and the def2-SV(P) basis set[25]. All DFT
calculations were performed with the ORCA program[26, 27]. The structure was
also optimized using the second generation extended tight-binding (GFN2-xTB)
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method[28] as implemented in the Semiempirical Extended Tight-Binding (xTB)
program package[29].

Calculations on protein-ligand systems
All calculations on protein-ligand systems used the second generation extended tight-
binding (GFN2-xTB) method[28] as implemented in the Semiempirical Extended
Tight-Binding (xTB) program package[29]. Generalized Born, solvent-accesible
area (GBSA) solvation was used to mimic an aqueous environment for all cal-
culations. For the TNKS2 system, we additionally performed the calculations
using density functional theory. We used the PBE functional with the GTH-
DZV basis and GTH pseudo-potential[30] for PBE. The system was placed in
a 45.55Å× 41.78Å× 37.27Å periodic box, allowing a 5-6Å vacuum around the
atoms. A 0.15 Hartree level shift was applied to the virtual orbitals to help the SCF
convergence. The Gaussian and Plane Waves method[31, 32] was employed and the
plane wave cutoff was 200 Hartree.

The truncated TNKS2 protein was constructed from the the ligands/protein-
structure obtained from Ref. [33]. The entire protein was minimized using Amber-
Tools, using the Generalized Born implicit, igb=5), the Amber 14 force field[34], and
the general AMBER force field (GAFF)[35] for ligands, assigned using Antecham-
ber from AmberTools[36]. Following minimization, truncation and capping of the
terminals were carried out using PyMol [37]. Truncation was performed to remove
all protein atoms beyond 3-4Å around the ligand. Truncated ends were capped using
ACE/NME terminal patches. The ligand bound to the protein is one of the many
inhibitors identified in Ref. [38] whose structure is available in the Protein Data Bank
[39](PDB: JKN).

The structure of the JE-2147-HIV protease complex was obtained from PDB
1KZK. Hydrogens were added using UCSF Chimera[40] and the structure was
optimized first using the GFN-FF force field as implemented in the xTB pro-
gram package[29] and finally with the GFN2-xTB method[28] ultimately used for
harmonic vibrational analysis.

The total binding free energy is estimated as ∆Grot +∆Hvib−T∆Svib +∆E+
∆Gsolv, where ∆E is the single point energy difference and ∆Gsolv is estimated via
GBSA within xTB.

Supplementary information. Supplementary information on statistical analysis,
additional analysis on three transition metal complexes.
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1 Error estimation
For each random vector vl, sl = M × vT

l f(D)vl forms an unbiased estimator of
Tr(f(D)), and so does the average of n samples, s̄n = 1

n

∑n
l sl. Since each random

vector is drawn independently, it is well-known that the sample variance S2 (defined
below) is an unbiased estimator of Var(s̄n), i.e., E[(s̄n − E[s̄n])2], and the stochastic
error in the n-sample estimator s̄n can be estimated as follows

Sn =

√√√√ 1

n(n− 1)

n∑

l

(sl − s̄n)2 (1S)

Such an Sn is sometimes referred to as the standard error, and we follow this con-
vention in our main text. To estimate the error of Sn, we would like to estimate
Var(S2

n) = 1
n (µ4 − n−3

n−1µ
2
2) from our finite samples, where µp = E[(sl − E[sl])

p].
We use unbiased estimators for µ4 and µ2

2 (sometimes known as (generalized)
h-statistics)

h4 =
(n3 − 2n2 + 3n)m4 − n(6n− 9)m2

2

(n− 1)(n− 2)(n− 3)
(2S)
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Grubbs Cobalamin Heme

Supplementary Fig. 1: Thermal quantities at the DFT-level for a Grubbs catalyst,
cobalamin, and heme. The blue bars indicate the exact DFT values, the red bars repre-
sent the average over 10 samples from correlated sampling using xTB as the low-level
method, and the green bars are the average from 10 samples of direct sampling with
DFT. The error bars are estimates for a 2-sample estimator computed from the total
10 samples. For these relatively small systems, 2 samples correspond to roughly 20%
of the cost of computing exact numerical Hessian.

h2,2 =
−(n2 − n)m4 + n(n2 − 3n+ 3)m2

2

(n− 1)(n− 2)(n− 3)
(3S)

where mp is the p-th central moment of the samples, such that 1
n (h4 − n−3

n−1h2,2)

forms an unbiased estimator for Var(S2
n), and the error of error is computed from its

square root.
We next consider error estimation for s̄n from n′ samples where n′ > n. A special

case is to estimate the error of a single-sample estimator s̄1 = sl from n′ samples.
Such an error is just the variance of the underlying distribution of sl, i.e., E[(sl −
E[sl])

2], and it is straightforward to show that n′S2
n′ forms an unbiased estimator.

Similarly, one can show that n′S2
n′/n is an unbiased estimator from n′ samples for

Var(s̄n).

2 Performance on transition-metal complexes
Transition metal complexes provide an example of systems where empirical force
fields are often inadequate and quantum mechanical energy functions are especially
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System ZPE Hvib − ZPE TSvib
C54H54 Exact 599.8436 15.742 23.5286

Sampled 602±4 16.0±0.3 24.0±0.6
C128H96 Exact 1206.4788 31.9561 47.1107

Sampled 1209±5 32.0±0.4 47.2±0.6

Supplementary Table 1: Absolute quantities of diamonds showing self-averaging.

valuable. We considered three transition-metal complexes, namely a Grubbs catalyst,
a cobalamin model, and a heme model, as challenging cases. The initial structure of
the Grubbs catalyst was taken from Ref. [1], optimized with both xTB and B3LYP[2]
functional theory. The 6-311G basis set[3, 4] was used for main group elements while
the LanL2DZ basis[5] was used for the transition metal Ru. The stochastic sam-
pling was performed using the same level of theory. The cobalamin structure was
taken from Ref. [6], and BP86[7, 8]/6-31G(d)[9–11] was used for geometry opti-
mization and sampling. The heme structure was taken from Ref. [12], and we used
the B3LYP/6-311G(d)[3] level of theory. The DFT methods were chosen to be sim-
ilar to the ones employed in the references from which the initial structures were
obtained. In all the calculations, a Lanczos order of 16 was used, which we see to be
sufficient to reproduce the exact results to within the small statistical error bars.

3 Self-averaging in diamond nanocrystals
In order to confirm that the observed small statistical error in large diamond crys-
tals is the result of “self-averaging”, instead of due to under-sampling of the larger
coordinate space, we show in Supplementary Table 1 the exact absolute free energy
of the two diamond systems, computed from the exact xTB Hessian and from our
method using 50 samples (numbers in kcal/mol). We see that the exact values all lie
within one standard error of the sampled values, validating the error bars at both sys-
tem sizes, despite the fixed number of samples as a function of system size. Moving
from C54H54 to C128H96, the system size more than doubles, but the statistical error
increases by much less (and in fact stays nearly constant), which is the self-averaging
effect referred to in the text.

4 Convergence with fitting order
Here, we check the convergence with respect to the fitting order m. To obtain a basic
understanding, we first examine the accuracy of Chebyshev polynomial fitting for the
thermodynamic quantities, which can be assessed without using any stochastic sam-
pling. We do so by examining the accuracy of the Chebyshev expansion over a range
of frequencies (see Supplementary Figure 2). The Chebyshev error for a specific
system can be estimated by averaging this fitting error over the frequency domain,
weighted by the density of the system’s vibrational states. The lowest vibrational fre-
quency is 0 cm−1, while the highest frequency of a chemical system is usually the
bond vibration between a hydrogen and a heavy atom (typically< 4000 cm−1). Thus
the only system dependence comes from the density of states. This is in contrast to
the case of Chebyshev fitting in electronic structure, where the maximum frequency
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Supplementary Fig. 2: Chebyshev fitting to thermodynamic quantities at 298.15 K as
a function of fitting order m.

Grubbs Cobalamin Heme

Supplementary Fig. 3: Convergence w.r.t. Lanczos order m for transition metal com-
plexes. Grey lines indicate the exact values. Stochastic errors are estimated from 500
samples.

usually grows with system size. We see in both plots that the maximum pointwise
deviation at m = 16 is less than 1 kcal/mol over the range plotted (although we
note that the entropy diverges at 0 cm−1 where the density of states also vanishes).
The above convergence check cannot be directly carried out for stochastic Lanczos
quadrature due to the need to specify some initial stochastic vector. We have therefore
checked the convergence of the Lanczos method as a function of m for several sys-
tems by brute-force stochastic sampling, as shown in Supplementary Figures 3 and 4.
A Lanczos order of m = 16 is generally seen to be sufficient to obtain a systematic
error of 1 kcal/mol or less.
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