Search for the rare leptonic decays
B
þ
!
l
þ
l
(
l
¼
e;
)
B. Aubert,
1
Y. Karyotakis,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
X. Prudent,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
M. Martinelli,
3a,3b
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
M. Battaglia,
5
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
K. Tackmann,
5
T. Tanabe,
5
C. M. Hawkes,
6
N. Soni,
6
A. T. Watson,
6
H. Koch,
7
T. Schroeder,
7
D. J. Asgeirsson,
8
B. G. Fulsom,
8
C. Hearty,
8
T. S. Mattison,
8
J. A. McKenna,
8
M. Barrett,
9
A. Khan,
9
A. Randle-Conde,
9
V. E. Blinov,
10
A. D. Bukin,
10,
*
A. R. Buzykaev,
10
V. P. Druzhinin,
10
V. B. Golubev,
10
A. P. Onuchin,
10
S. I. Serednyakov,
10
Yu. I. Skovpen,
10
E. P. Solodov,
10
K. Yu. Todyshev,
10
M. Bondioli,
11
S. Curry,
11
I. Eschrich,
11
D. Kirkby,
11
A. J. Lankford,
11
P. Lund,
11
M. Mandelkern,
11
E. C. Martin,
11
D. P. Stoker,
11
S. Abachi,
12
C. Buchanan,
12
H. Atmacan,
13
J. W. Gary,
13
F. Liu,
13
O. Long,
13
G. M. Vitug,
13
Z. Yasin,
13
L. Zhang,
13
V. Sharma,
14
C. Campagnari,
15
T. M. Hong,
15
D. Kovalskyi,
15
M. A. Mazur,
15
J. D. Richman,
15
T. W. Beck,
16
A. M. Eisner,
16
C. A. Heusch,
16
J. Kroseberg,
16
W. S. Lockman,
16
A. J. Martinez,
16
T. Schalk,
16
B. A. Schumm,
16
A. Seiden,
16
L. Wang,
16
L. O. Winstrom,
16
C. H. Cheng,
17
D. A. Doll,
17
B. Echenard,
17
F. Fang,
17
D. G. Hitlin,
17
I. Narsky,
17
T. Piatenko,
17
F. C. Porter,
17
R. Andreassen,
18
G. Mancinelli,
18
B. T. Meadows,
18
K. Mishra,
18
M. D. Sokoloff,
18
P. C. Bloom,
19
W. T. Ford,
19
A. Gaz,
19
J. F. Hirschauer,
19
M. Nagel,
19
U. Nauenberg,
19
J. G. Smith,
19
S. R. Wagner,
19
R. Ayad,
20,
†
A. Soffer,
20,
‡
W. H. Toki,
20
R. J. Wilson,
20
E. Feltresi,
21
A. Hauke,
21
H. Jasper,
21
T. M. Karbach,
21
J. Merkel,
21
A. Petzold,
21
B. Spaan,
21
K. Wacker,
21
M. J. Kobel,
22
R. Nogowski,
22
K. R. Schubert,
22
R. Schwierz,
22
A. Volk,
22
D. Bernard,
23
G. R. Bonneaud,
23
E. Latour,
23
M. Verderi,
23
P. J. Clark,
24
S. Playfer,
24
J. E. Watson,
24
M. Andreotti,
25a,25b
D. Bettoni,
25a
C. Bozzi,
25a
R. Calabrese,
25a,25b
A. Cecchi,
25a,25b
G. Cibinetto,
25a,25b
E. Fioravanti,
25a,25b
P. Franchini,
25a,25b
E. Luppi,
25a,25b
M. Munerato,
25a,25b
M. Negrini,
25a,25b
A. Petrella,
25a,25b
L. Piemontese,
25a
V. Santoro,
25a,25b
R. Baldini-Ferroli,
26
A. Calcaterra,
26
R. de Sangro,
26
G. Finocchiaro,
26
S. Pacetti,
26
P. Patteri,
26
I. M. Peruzzi,
26,
x
M. Piccolo,
26
M. Rama,
26
A. Zallo,
26
R. Contri,
27a,27b
E. Guido,
27a,27b
M. Lo Vetere,
27a,27b
M. R. Monge,
27a,27b
S. Passaggio,
27a
C. Patrignani,
27a,27b
E. Robutti,
27a
S. Tosi,
27a,27b
K. S. Chaisanguanthum,
28
M. Morii,
28
A. Adametz,
29
J. Marks,
29
S. Schenk,
29
U. Uwer,
29
F. U. Bernlochner,
30
V. Klose,
30
H. M. Lacker,
30
D. J. Bard,
31
P. D. Dauncey,
31
M. Tibbetts,
31
P. K. Behera,
32
M. J. Charles,
32
U. Mallik,
32
J. Cochran,
33
H. B. Crawley,
33
L. Dong,
33
V. Eyges,
33
W. T. Meyer,
33
S. Prell,
33
E. I. Rosenberg,
33
A. E. Rubin,
33
Y. Y. Gao,
34
A. V. Gritsan,
34
Z. J. Guo,
34
N. Arnaud,
35
J. Be
́
quilleux,
35
A. D’Orazio,
35
M. Davier,
35
D. Derkach,
35
J. Firmino da Costa,
35
G. Grosdidier,
35
F. Le Diberder,
35
V. Lepeltier,
35
A. M. Lutz,
35
B. Malaescu,
35
S. Pruvot,
35
P. Roudeau,
35
M. H. Schune,
35
J. Serrano,
35
V. Sordini,
35,
k
A. Stocchi,
35
G. Wormser,
35
D. J. Lange,
36
D. M. Wright,
36
I. Bingham,
37
J. P. Burke,
37
C. A. Chavez,
37
J. R. Fry,
37
E. Gabathuler,
37
R. Gamet,
37
D. E. Hutchcroft,
37
D. J. Payne,
37
C. Touramanis,
37
A. J. Bevan,
38
C. K. Clarke,
38
F. Di Lodovico,
38
R. Sacco,
38
M. Sigamani,
38
G. Cowan,
39
S. Paramesvaran,
39
A. C. Wren,
39
D. N. Brown,
40
C. L. Davis,
40
A. G. Denig,
41
M. Fritsch,
41
W. Gradl,
41
A. Hafner,
41
K. E. Alwyn,
42
D. Bailey,
42
R. J. Barlow,
42
G. Jackson,
42
G. D. Lafferty,
42
T. J. West,
42
J. I. Yi,
42
J. Anderson,
43
C. Chen,
43
A. Jawahery,
43
D. A. Roberts,
43
G. Simi,
43
J. M. Tuggle,
43
C. Dallapiccola,
44
E. Salvati,
44
S. Saremi,
44
R. Cowan,
45
D. Dujmic,
45
P. H. Fisher,
45
S. W. Henderson,
45
G. Sciolla,
45
M. Spitznagel,
45
R. K. Yamamoto,
45
M. Zhao,
45
P. M. Patel,
46
S. H. Robertson,
46
M. Schram,
46
A. Lazzaro,
47a,47b
V. Lombardo,
47a
F. Palombo,
47a,47b
S. Stracka,
47a,47b
J. M. Bauer,
48
L. Cremaldi,
48
R. Godang,
48,
{
R. Kroeger,
48
P. Sonnek,
48
D. J. Summers,
48
H. W. Zhao,
48
M. Simard,
49
P. Taras,
49
H. Nicholson,
50
G. De Nardo,
51a,51b
L. Lista,
51a
D. Monorchio,
51a,51b
G. Onorato,
51a,51b
C. Sciacca,
51a,51b
G. Raven,
52
H. L. Snoek,
52
C. P. Jessop,
53
K. J. Knoepfel,
53
J. M. LoSecco,
53
W. F. Wang,
53
L. A. Corwin,
54
K. Honscheid,
54
H. Kagan,
54
R. Kass,
54
J. P. Morris,
54
A. M. Rahimi,
54
J. J. Regensburger,
54
S. J. Sekula,
54
Q. K. Wong,
54
N. L. Blount,
55
J. Brau,
55
R. Frey,
55
O. Igonkina,
55
J. A. Kolb,
55
M. Lu,
55
R. Rahmat,
55
N. B. Sinev,
55
D. Strom,
55
J. Strube,
55
E. Torrence,
55
G. Castelli,
56a,56b
N. Gagliardi,
56a,56b
M. Margoni,
56a,56b
M. Morandin,
56a
M. Posocco,
56a
M. Rotondo,
56a
F. Simonetto,
56a,56b
R. Stroili,
56a,56b
C. Voci,
56a,56b
P. del Amo Sanchez,
57
E. Ben-Haim,
57
H. Briand,
57
J. Chauveau,
57
O. Hamon,
57
Ph. Leruste,
57
G. Marchiori,
57
J. Ocariz,
57
A. Perez,
57
J. Prendki,
57
S. Sitt,
57
L. Gladney,
58
M. Biasini,
59a,59b
E. Manoni,
59a,59b
C. Angelini,
60a,60b
G. Batignani,
60a,60b
S. Bettarini,
60a,60b
G. Calderini,
60a,60b,
**
M. Carpinelli,
60a,60b,
††
A. Cervelli,
60a,60b
F. Forti,
60a,60b
M. A. Giorgi,
60a,60b
A. Lusiani,
60a,60c
M. Morganti,
60a,60b
N. Neri,
60a,60b
E. Paoloni,
60a,60b
G. Rizzo,
60a,60b
J. J. Walsh,
60a
D. Lopes Pegna,
61
C. Lu,
61
J. Olsen,
61
A. J. S. Smith,
61
A. V. Telnov,
61
F. Anulli,
62a
E. Baracchini,
62a,62b
G. Cavoto,
62a
R. Faccini,
62a,62b
F. Ferrarotto,
62a
F. Ferroni,
62a,62b
M. Gaspero,
62a,62b
P. D. Jackson,
62a
L. Li Gioi,
62a
M. A. Mazzoni,
62a
S. Morganti,
62a
G. Piredda,
62a
F. Renga,
62a,62b
C. Voena,
62a
M. Ebert,
63
T. Hartmann,
63
H. Schro
̈
der,
63
R. Waldi,
63
T. Adye,
64
B. Franek,
64
E. O. Olaiya,
64
F. F. Wilson,
64
S. Emery,
65
L. Esteve,
65
G. Hamel de Monchenault,
65
W. Kozanecki,
65
G. Vasseur,
65
Ch. Ye
`
che,
65
M. Zito,
65
M. T. Allen,
66
D. Aston,
66
R. Bartoldus,
66
J. F. Benitez,
66
R. Cenci,
66
J. P. Coleman,
66
PHYSICAL REVIEW D
79,
091101(R) (2009)
RAPID COMMUNICATIONS
1550-7998
=
2009
=
79(9)
=
091101(9)
091101-1
Ó
2009 The American Physical Society
M. R. Convery,
66
J. C. Dingfelder,
66
J. Dorfan,
66
G. P. Dubois-Felsmann,
66
W. Dunwoodie,
66
R. C. Field,
66
A. M. Gabareen,
66
M. T. Graham,
66
P. Grenier,
66
C. Hast,
66
W. R. Innes,
66
J. Kaminski,
66
M. H. Kelsey,
66
H. Kim,
66
P. Kim,
66
M. L. Kocian,
66
D. W. G. S. Leith,
66
S. Li,
66
B. Lindquist,
66
S. Luitz,
66
V. Luth,
66
H. L. Lynch,
66
D. B. MacFarlane,
66
H. Marsiske,
66
R. Messner,
66,
*
D. R. Muller,
66
H. Neal,
66
S. Nelson,
66
C. P. O’Grady,
66
I. Ofte,
66
M. Perl,
66
B. N. Ratcliff,
66
A. Roodman,
66
A. A. Salnikov,
66
R. H. Schindler,
66
J. Schwiening,
66
A. Snyder,
66
D. Su,
66
M. K. Sullivan,
66
K. Suzuki,
66
S. K. Swain,
66
J. M. Thompson,
66
J. Va’vra,
66
A. P. Wagner,
66
M. Weaver,
66
C. A. West,
66
W. J. Wisniewski,
66
M. Wittgen,
66
D. H. Wright,
66
H. W. Wulsin,
66
A. K. Yarritu,
66
K. Yi,
66
C. C. Young,
66
V. Ziegler,
66
X. R. Chen,
67
H. Liu,
67
W. Park,
67
M. V. Purohit,
67
R. M. White,
67
J. R. Wilson,
67
P. R. Burchat,
68
A. J. Edwards,
68
T. S. Miyashita,
68
S. Ahmed,
69
M. S. Alam,
69
J. A. Ernst,
69
B. Pan,
69
M. A. Saeed,
69
S. B. Zain,
69
S. M. Spanier,
70
B. J. Wogsland,
70
R. Eckmann,
71
J. L. Ritchie,
71
A. M. Ruland,
71
C. J. Schilling,
71
R. F. Schwitters,
71
B. C. Wray,
71
B. W. Drummond,
72
J. M. Izen,
72
X. C. Lou,
72
F. Bianchi,
73a,73b
D. Gamba,
73a,73b
M. Pelliccioni,
73a,73b
M. Bomben,
74a,74b
L. Bosisio,
74a,74b
C. Cartaro,
74a,74b
G. Della Ricca,
74a,74b
L. Lanceri,
74a,74b
L. Vitale,
74a,74b
V. Azzolini,
75
N. Lopez-March,
75
F. Martinez-Vidal,
75
D. A. Milanes,
75
A. Oyanguren,
75
J. Albert,
76
Sw. Banerjee,
76
B. Bhuyan,
76
H. H. F. Choi,
76
K. Hamano,
76
G. J. King,
76
R. Kowalewski,
76
M. J. Lewczuk,
76
I. M. Nugent,
76
J. M. Roney,
76
R. J. Sobie,
76
T. J. Gershon,
77
P. F. Harrison,
77
J. Ilic,
77
T. E. Latham,
77
G. B. Mohanty,
77
E. M. T. Puccio,
77
H. R. Band,
78
X. Chen,
78
S. Dasu,
78
K. T. Flood,
78
Y. Pan,
78
R. Prepost,
78
C. O. Vuosalo,
78
and S. L. Wu
78
(
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie, CNRS/IN2P3,
F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy;
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
University of Birmingham, Birmingham, B15 2TT, United Kingdom
7
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
8
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11
University of California at Irvine, Irvine, California 92697, USA
12
University of California at Los Angeles, Los Angeles, California 90024, USA
13
University of California at Riverside, Riverside, California 92521, USA
14
University of California at San Diego, La Jolla, California 92093, USA
15
University of California at Santa Barbara, Santa Barbara, California 93106, USA
16
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
17
California Institute of Technology, Pasadena, California 91125, USA
18
University of Cincinnati, Cincinnati, Ohio 45221, USA
19
University of Colorado, Boulder, Colorado 80309, USA
20
Colorado State University, Fort Collins, Colorado 80523, USA
21
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
22
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
23
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
24
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
25a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy;
25b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
26
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
27a
INFN Sezione di Genova, I-16146 Genova, Italy;
27b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
28
Harvard University, Cambridge, Massachusetts 02138, USA
29
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
30
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
31
Imperial College London, London, SW7 2AZ, United Kingdom
32
University of Iowa, Iowa City, Iowa 52242, USA
33
Iowa State University, Ames, Iowa 50011-3160, USA
34
Johns Hopkins University, Baltimore, Maryland 21218, USA
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
091101(R) (2009)
RAPID COMMUNICATIONS
091101-2
35
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11,
Centre Scientifique d’Orsay, B.P. 34, F-91898 Orsay Cedex, France
36
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37
University of Liverpool, Liverpool L69 7ZE, United Kingdom
38
Queen Mary, University of London, London, E1 4NS, United Kingdom
39
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
40
University of Louisville, Louisville, Kentucky 40292, USA
41
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
42
University of Manchester, Manchester M13 9PL, United Kingdom
43
University of Maryland, College Park, Maryland 20742, USA
44
University of Massachusetts, Amherst, Massachusetts 01003, USA
45
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
47a
INFN Sezione di Milano, I-20133 Milano, Italy;
47b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
48
University of Mississippi, University, Mississippi 38677, USA
49
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
50
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51a
INFN Sezione di Napoli, I-80126 Napoli, Italy;
51b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
52
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53
University of Notre Dame, Notre Dame, Indiana 46556, USA
54
Ohio State University, Columbus, Ohio 43210, USA
55
University of Oregon, Eugene, Oregon 97403, USA
56a
INFN Sezione di Padova, I-35131 Padova, Italy;
56b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
57
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS,
Universite
́
Pierre et Marie Curie-Paris6, Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
58
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59a
INFN Sezione di Perugia, I-06100 Perugia, Italy;
59b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
60a
INFN Sezione di Pisa, I-56127 Pisa, Italy;
60b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy;
60c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
61
Princeton University, Princeton, New Jersey 08544, USA
62a
INFN Sezione di Roma, I-00185 Roma, Italy;
62b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
63
Universita
̈
t Rostock, D-18051 Rostock, Germany
64
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
65
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
66
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
67
University of South Carolina, Columbia, South Carolina 29208, USA
68
Stanford University, Stanford, California 94305-4060, USA
69
State University of New York, Albany, New York 12222, USA
70
University of Tennessee, Knoxville, Tennessee 37996, USA
71
University of Texas at Austin, Austin, Texas 78712, USA
72
University of Texas at Dallas, Richardson, Texas 75083, USA
73a
INFN Sezione di Torino, I-10125 Torino, Italy;
73b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
74a
INFN Sezione di Trieste, I-34127 Trieste, Italy;
74b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
{
Now at University of South Alabama, Mobile, AL 36688, USA.
††
Also with Universita
`
di Sassari, Sassari, Italy.
k
Also with Universita
`
di Roma La Sapienza, I-00185 Roma, Italy.
x
Also with Universita
`
di Perugia, Dipartimento di Fisica, Perugia, Italy.
‡
Now at Tel Aviv University, Tel Aviv, 69978, Israel.
†
Now at Temple University, Philadelphia, PA 19122, USA.
**
Also with Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
*
Deceased.
SEARCH FOR THE RARE LEPTONIC DECAYS
...
PHYSICAL REVIEW D
79,
091101(R) (2009)
RAPID COMMUNICATIONS
091101-3
75
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
77
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
78
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 8 April 2009; published 28 May 2009)
We have performed a search for the rare leptonic decays
B
þ
!
‘
þ
‘
(
l
¼
e;
), using data collected at
the
ð
4
S
Þ
resonance by the
BABAR
detector at the PEP-II storage ring. In a sample of
468
10
6
B
B
pairs
we find no evidence for a signal and set an upper limit on the branching fractions
B
ð
B
þ
!
þ
Þ
<
1
:
0
10
6
and
B
ð
B
þ
!
e
þ
e
Þ
<
1
:
9
10
6
at the 90% confidence level, using a Bayesian approach.
DOI:
10.1103/PhysRevD.79.091101
PACS numbers: 13.20.
v, 13.25.Hw
In the standard model (SM), the purely leptonic
B
meson
decays
B
þ
!
‘
þ
‘
[
1
] proceed at lowest order through the
annihilation diagram shown in Fig.
1
. The SM branching
fraction can be calculated as [
2
]
B
ð
B
þ
!
‘
þ
‘
Þ¼
G
2
F
m
B
m
2
‘
8
1
m
2
‘
m
2
B
2
f
2
B
j
V
ub
j
2
B
;
(1)
where
G
F
is the Fermi coupling constant,
m
‘
and
m
B
are,
respectively, the lepton and
B
meson masses, and
B
is the
B
þ
lifetime. The decay rate is sensitive to the Cabibbo-
Kobayashi-Maskawa matrix element
j
V
ub
j
[
3
] and the
B
decay constant
f
B
that describes the overlap of the quark
wave functions within the meson.
The SM estimate of the branching fraction for
B
þ
!
þ
is
ð
1
:
59
0
:
40
Þ
10
4
assuming
B
¼
1
:
638
0
:
011 ps
[
4
],
V
ub
¼ð
4
:
39
0
:
33
Þ
10
3
determined
from inclusive charmless semileptonic
B
decays [
5
], and
f
B
¼
216
22 MeV
from lattice QCD calculation [
6
]. To
a very good approximation, helicity is conserved in
B
þ
!
þ
and
B
þ
!
e
þ
e
decays, which are therefore sup-
pressed by factors
m
2
;e
=m
2
with respect to
B
þ
!
þ
,
leading to expected branching fractions of
B
ð
B
þ
!
þ
Þ¼ð
5
:
6
0
:
4
Þ
10
7
and
B
ð
B
þ
!
e
þ
e
Þ¼
ð
1
:
3
0
:
4
Þ
10
11
. However, reconstruction of
B
þ
!
þ
decays is experimentally more challenging than
B
þ
!
þ
or
B
þ
!
e
þ
e
due to the large missing
momentum from multiple neutrinos in the final state.
Purely leptonic
B
decays are sensitive to physics beyond
the SM, where additional heavy virtual particles contribute
to the annihilation processes. Charged Higgs boson effects
may greatly enhance or suppress the branching fraction in
some two-Higgs-doublet models [
7
]. Similarly, there may
be enhancements through mediation by leptoquarks in the
Pati-Salam model of quark-lepton unification [
8
]. Direct
tests of Yukawa interactions in and beyond the SM are
possible in the study of these decays, as annihilation pro-
cesses proceed through the longitudinal component of the
intermediate vector boson. In particular, in a supersymme-
try scenario at large
tan
, nonstandard effects in helicity-
suppressed charged current interactions are potentially
observable, being strongly
tan
-dependent and leading to
[
7
]
B
ð
B
þ
!
l
þ
l
Þ
exp
B
ð
B
þ
!
l
þ
l
Þ
SM
1
tan
2
m
2
B
M
2
H
2
:
(2)
Evidence for the first purely leptonic
B
decays has
recently been presented by both the
BABAR
and Belle
Collaborations. The latest HFAG world average of the
BABAR
[
9
] and Belle [
10
] results is
B
ð
B
þ
!
þ
Þ¼
ð
1
:
51
0
:
33
Þ
10
4
[
11
]. The current best published
upper limits on
B
þ
!
þ
and
B
þ
!
e
þ
e
are
B
ð
B
þ
!
þ
Þ
<
1
:
7
10
6
and
B
ð
B
þ
!
e
þ
e
Þ
<
9
:
8
10
7
at 90% confidence level from Belle using a
data sample of
235 fb
1
[
12
].
The analysis described herein is based on the entire data
set collected with the
BABAR
detector [
13
] at the PEP-II
storage ring at the
ð
4
S
Þ
resonance (‘‘on resonance’’),
which consists of
468
10
6
B
B
pairs, corresponding to
an integrated luminosity of
426 fb
1
. In order to study
background from continuum events such as
e
þ
e
!
q
q
(
q
¼
u; d; s; c
) and
e
þ
e
!
þ
, an additional sample
of about
41 fb
1
was collected at a center-of-mass (c.m.)
energy about 40 MeV below the
ð
4
S
Þ
resonance (‘‘off
resonance’’).
In the
BABAR
detector, charged particle trajectories are
measured with a 5-layer double-sided silicon vertex tracker
and a 40-layer drift chamber, which are contained in the
1.5 T magnetic field of a superconducting solenoid. A
detector of internally reflected Cherenkov radiation pro-
vides identification of charged kaons and pions. The en-
ergies and trajectories of neutral particles are measured by
an electromagnetic calorimeter consisting of 6580 CsI(Tl)
crystals. The flux return of the solenoid is instrumented
with resistive plate chambers and, more recently, limited
FIG. 1. Lowest order SM Feynman diagram for the purely
leptonic decay
B
þ
!
l
þ
l
.
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
091101(R) (2009)
RAPID COMMUNICATIONS
091101-4
streamer tubes [
14
], in order to provide muon identifica-
tion. A
GEANT4
-based [
15
] Monte Carlo (MC) simulation
of generic
B
B
,
q
q
,
d
,
s
,
c
, and
þ
events as well as
B
þ
!
þ
and
B
þ
!
e
þ
e
signal events is used to
model the detector response and test the analysis
technique.
The
B
þ
!
‘
þ
‘
decay produces a monoenergetic
charged lepton in the
B
rest frame with a momentum
p
m
B
=
2
. The
B
mesons produced in
ð
4
S
Þ
decays have a
c.m. momentum of about
320 MeV
=c
, so we initially
select lepton candidates with c.m. momentum
2
:
4
<
p
c
:
m
:
<
3
:
2 GeV
=c
, to take into account the smearing due
to the motion of the
B
. A tight particle identification
requirement is applied to the candidate lepton in order to
discard fake muons or electrons.
Since the neutrino produced in the signal decay is not
detected, all charged tracks besides the signal lepton and
all neutral energy deposits in the calorimeter are combined
to reconstruct the companion (tag)
B
. We include all
neutral calorimeter clusters with cluster energy greater
than 30 MeV. Particle identification is applied to the
charged tracks to identify electrons, muons, pions, kaons,
and protons in order to assign the most likely mass hy-
pothesis to each
B
tag
daughter and thus improve the recon-
struction of the
B
tag
. Events which have additional lepton
candidates are discarded. These typically arise from semi-
leptonic
B
tag
or charm decays and indicate the presence of
additional neutrinos, for which the inclusive
B
tag
recon-
struction is not expected to work well.
The signal lepton’s momentum in the signal
B
rest frame
p
is refined using the
B
tag
momentum direction. We
assume that the signal
B
has a c.m. momentum of
320 MeV
=c
and choose its direction as opposite that of
the reconstructed
B
tag
to boost the lepton candidate into the
signal
B
rest frame.
Signal events are selected using the kinematic variables
E
¼
E
B
E
beam
, where
E
B
is the energy of the
B
tag
and
E
beam
is the beam energy, all in the c.m. frame. For signal
events in which all decay products of the
B
tag
are recon-
structed, we expect the
E
distribution to peak near zero.
However, we are often unable to reconstruct all
B
tag
decay
products, which biases the
E
distribution toward negative
values. For continuum backgrounds,
E
is shifted toward
relatively large positive values since too much energy is
attributed to the nominal
B
tag
decay, while there is a
negative bias in
þ
events due to the unreconstructed
neutrinos.
We require the tag
B
to satisfy
2
:
25
<
E<
0 GeV
for
B
þ
!
þ
decays. For
B
þ
!
e
þ
e
decays, we re-
quire a linear combination of
E
and the tag
B
transverse
momentum
p
T
to satisfy
ð
p
T
þ
0
:
529
E
Þ
<
0
:
2
and
ð
p
T
0
:
529
E
Þ
<
1
:
5
. This selection rejects back-
ground events arising from two-photon process
e
þ
e
!
e
þ
e
,
!
hadrons, with one of the final elec-
trons scattered at a large angle and detected. The coeffi-
cient of the
E
term is extracted from the data.
Backgrounds may arise from any process producing
charged tracks in the momentum range of the signal,
particularly if the charged tracks are leptons. The two
most significant backgrounds are
B
semileptonic decays
involving
b
!
ul
l
transitions in which the momentum of
the leptons at the end point of the spectrum approaches that
of the signal and from continuum and
þ
events in
which a charged pion is mistakenly identified as a muon
or an electron.
Continuum events tend to produce a jetlike event topol-
ogy, while
B
B
events tend to be more isotropically distrib-
uted in the c.m. frame and are suppressed using event shape
parameters. Five different spatial and kinematical varia-
bles, considered separately for
B
þ
!
þ
and
B
þ
!
e
þ
e
, are combined in Fisher discriminants [
16
]. The
most effective discriminating parameters are the ratio of
the second
L
2
and the zeroth
L
0
monomial
L
n
¼
i
j
~
p
i
j
cos
ð
Þ
n
, where the sum runs over all
B
tag
daughters
having momenta
~
p
i
and
is the angle with respect to the
lepton candidate momentum, both in the c.m. frame, and
the sphericity
S
¼
3
2
min
j
ð
p
jT
Þ
2
j
ð
p
j
Þ
2
, where the
T
subscript
denotes the momentum component transverse to the sphe-
ricity axis, which is the axis that minimizes
S
.
S
, in fact,
tends to be closer to 1 for spherical events and 0 for jetlike
events. In order to take into account the changes in detector
performance throughout the years, in particular, in muon
identification, the data sample is divided into six different
data taking periods, and the Fisher discriminants and se-
lection criteria are optimized separately with the algorithm
described in Ref. [
17
] for each period.
The two-body kinematics of the signal decay is ex-
ploited by combining the signal lepton momentum in the
B
rest frame
p
and
p
c
:
m
:
in a second Fisher discriminant
(
p
FIT
) which discriminates against the remaining semilep-
tonic
b
b
and continuum background events which populate
the end of the lepton spectrum in both frames. The
p
and
p
c
:
m
:
coefficients in the linear combination are determined
separately for
B
þ
!
þ
and
B
þ
!
e
þ
e
with
Ref. [
17
].
We employ an extended maximum likelihood (ML) fit to
extract signal and background yields using simultaneously
the distributions of the Fisher output
p
FIT
and the energy-
substituted mass
m
ES
, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
2
beam
j
~
p
B
j
2
q
, where
~
p
B
is the momentum of the reconstructed
B
tag
candidate in
the c.m. frame.
Signal
m
ES
and
p
FIT
probability density functions
(PDFs) are fixed in the final fit and are parameterized
from simulated events, respectively, with a Crystal Ball
function [
18
] and the sum of two Gaussians (double
Gaussian) for both
B
þ
!
þ
and
B
þ
!
e
þ
e
.
The background
m
ES
distribution is described by an
ARGUS function whose slope is determined in the fit to
SEARCH FOR THE RARE LEPTONIC DECAYS
...
PHYSICAL REVIEW D
79,
091101(R) (2009)
RAPID COMMUNICATIONS
091101-5
the yields [
19
]. To parameterize the background
p
FIT
dis-
tributions, we studied the possibility of using the
m
ES
sideband of on-resonance data. We found the
B
þ
!
þ
sideband suited for this purpose, while the
B
þ
!
e
þ
e
sideband is not sufficiently populated. We use the
region
5
:
17
<m
ES
<
5
:
2 GeV
=c
2
to parameterize the
B
þ
!
þ
background
p
FIT
distribution and simulated
events for the background
B
þ
!
e
þ
e
p
FIT
distribution.
Separately for
B
þ
!
þ
and
B
þ
!
e
þ
e
, the sum of
two Gaussians with different sigmas on the right and the
left of the mean (bifurcated Gaussians) is used to parame-
terize the background
p
FIT
distribution, and the relative
fraction of the two bifurcated Gaussians is determined
from the fit to the data. Figures
2
and
3
show background
and signal
m
ES
and
p
FIT
distributions for
B
þ
!
þ
and
B
þ
!
e
þ
e
, respectively, with the PDFs described above
superimposed.
In the on-resonance data, the ML fit returns
1
15
signal
B
þ
!
þ
candidate events and
18
14
signal
B
þ
!
e
þ
e
candidate events. Distributions of the fit data
events with the final fit superimposed, as well as the signal
and background PDFs, are shown in Fig.
4
for
B
þ
!
þ
and
B
þ
!
e
þ
e
, respectively, projected on
m
ES
and
p
FIT
.
We next evaluate systematic uncertainties on the number
of
B
in the sample, the signal efficiency, and the signal
yield. The number of
B
mesons in the on-resonance data
sample is estimated to be
468
10
6
with an uncertainty of
1.1% [
20
], assuming equal
B
þ
and
B
0
production at the
ð
4
S
Þ
[
21
].
The uncertainty in the signal efficiency includes the
lepton candidate selection (particle identification, tracking
efficiency, and event selection Fisher requirement) as well
as the reconstruction efficiency of the tag
B
. The system-
atic uncertainty on the particle identification efficiency is
evaluated using
e
þ
e
!
þ
,
e
þ
e
!
e
þ
e
þ
,
and Bhabha event control samples derived from the data,
which are weighted to reproduce the kinematic distribution
of the lepton signal candidate. By comparing the cumula-
tive signal efficiency obtained with and without these
weights, a total discrepancy of 1.9% for
B
þ
!
þ
and 2.3% for
B
þ
!
e
þ
e
is found, and this value is taken
as the particle identification systematic uncertainty.
Tracking efficiency is studied employing
decays, which
must produce an odd number of final state charged tracks
because of charge conservation. Thus, one can determine
an absolute efficiency because the number of events with a
missing track can be measured. The uncertainty associated
with the tracking efficiency and the data/MC discrepancy
evaluated with this method are taken in quadrature for a
total tracking efficiency uncertainty of 0.4% per track.
In order to evaluate the systematic uncertainty associ-
ated with the requirements on the Fisher discriminants, we
compare data and MC Fisher distributions in the sidebands
E>
0
for the
B
þ
!
þ
sample and
ð
p
T
þ
0
:
529
E
Þ
>
0
:
2
for the
B
þ
!
e
þ
e
sample. We fit the data/
)
2
(GeV/c
ES
m
5.2
5.22 5.24 5.26 5.28
5.3
)
2
Events / ( 0.0044 GeV/c
0
1000
2000
3000
4000
5000
)
2
(GeV/c
ES
m
5.2
5.22 5.24 5.26 5.28
5.3
)
2
Events / ( 0.0044 GeV/c
0
1000
2000
3000
4000
5000
(a)
(GeV/c)
FIT
p
-5
0
5
10
15
20
Events / ( 0.5 GeV/c )
0
500
1000
1500
2000
2500
3000
3500
(GeV/c)
FIT
p
-5
0
5
10
15
20
Events / ( 0.5 GeV/c )
0
500
1000
1500
2000
2500
3000
3500
(b)
)
2
(GeV/c
ES
m
5.2
5.22 5.24 5.26 5.28
5.3
)
2
Events / ( 0.0044 GeV/c
0
10
20
30
40
50
60
70
)
2
(GeV/c
ES
m
5.2
5.22 5.24 5.26 5.28
5.3
)
2
Events / ( 0.0044 GeV/c
0
10
20
30
40
50
60
70
(c)
(GeV/c)
FIT
p
-5
0
5
10
15
20
Events / ( 0.5 GeV/c )
0
5
10
15
20
25
30
35
40
(GeV/c)
FIT
p
-5
0
5
10
15
20
Events / ( 0.5 GeV/c )
0
5
10
15
20
25
30
35
40
(d)
FIG. 2 (color online). Distributions of signal (a),(b) and background (c),(d)
m
ES
(left) and
p
FIT
(right) for
B
þ
!
þ
from MC
simulation [(a)–(c)] and from
m
ES
sideband
5
:
17
<m
ES
<
5
:
2 GeV
=c
2
(d).
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
091101(R) (2009)
RAPID COMMUNICATIONS
091101-6
]
2
[GeV/c
ES
m
5.2 5.22 5.24 5.26 5.28 5.3
Events / ( 0.0022 )
0
10
20
30
40
50
60
]
2
[GeV/c
ES
m
5.2 5.22 5.24 5.26 5.28 5.3
Events / ( 0.0022 )
0
10
20
30
40
50
60
(a)
(GeV/c)
FIT
p
-5
0
5
10
15
20
Events / ( 1 GeV/c )
0
50
100
150
200
(GeV/c)
FIT
p
-5
0
5
10
15
20
Events / ( 1 GeV/c )
0
50
100
150
200
(b)
]
2
[GeV/c
ES
m
5.22
5.24
5.26
5.28
5.3
Events / ( 0.0018 )
0
5
10
15
20
]
2
[GeV/c
ES
m
5.22
5.24
5.26
5.28
5.3
Events / ( 0.0018 )
0
5
10
15
20
(c)
(GeV)
FIT
p
-5
0
5
10
15
20
Events / ( 1 GeV )
0
10
20
30
40
50
60
(GeV)
FIT
p
-5
0
5
10
15
20
Events / ( 1 GeV )
0
10
20
30
40
50
60
(d)
FIG. 4 (color online). Final fit to the data projected on
m
ES
(left) and
p
FIT
(right) distributions for
B
þ
!
þ
events (a),(b) and
B
þ
!
e
þ
e
events (c),(d): The solid blue line is the total PDF, the dashed red line is the background PDF, and the dashed-dotted black
line is the signal PDF.
)
2
(GeV/c
ES
m
5.22
5.24
5.26
5.28
5.3
)
2
Events / ( 0.0044 GeV/c
0
500
1000
1500
2000
2500
3000
3500
4000
4500
)
2
(GeV/c
ES
m
5.22
5.24
5.26
5.28
5.3
)
2
Events / ( 0.0044 GeV/c
0
500
1000
1500
2000
2500
3000
3500
4000
4500
(a)
(GeV/c)
FIT
p
-5
0
5
10
15
20
Events / ( 0.5 GeV/c )
0
500
1000
1500
2000
2500
3000
(GeV/c)
FIT
p
-5
0
5
10
15
20
Events / ( 0.5 GeV/c )
0
500
1000
1500
2000
2500
3000
(b)
)
2
(GeV/c
ES
m
5.22
5.24
5.26
5.28
5.3
)
2
Events / ( 0.0044 GeV/c
0
5
10
15
20
25
30
35
)
2
(GeV/c
ES
m
5.22
5.24
5.26
5.28
5.3
)
2
Events / ( 0.0044 GeV/c
0
5
10
15
20
25
30
35
(c)
(GeV/c)
FIT
p
-5
0
5
10
15
20
Events / ( 0.5 GeV/c )
Events / ( 0.5 GeV/c )
0
5
10
15
20
25
30
35
(GeV/c)
FIT
p
-5
0
5
10
15
20
0
5
10
15
20
25
30
35
(d)
FIG. 3 (color online). Distributions of signal (a),(b) and background (c),(d)
m
ES
(left) and
p
FIT
(right) for
B
þ
!
e
þ
e
from MC
simulation.
SEARCH FOR THE RARE LEPTONIC DECAYS
...
PHYSICAL REVIEW D
79,
091101(R) (2009)
RAPID COMMUNICATIONS
091101-7
MC ratio with a linear function, with results consistent with
a unitary ratio in the whole Fisher range. We take the error
on the intercept as the systematic uncertainty on the Fisher
discriminants, that is, 1.4% for
B
þ
!
þ
and 5.3% for
B
þ
!
e
þ
e
.
The tag
B
reconstruction has been studied with a control
sample of
B
þ
!
D
ðÞ
0
þ
events, where the
D
is recon-
structed into
D
0
!
K
þ
and
D
0
!
K
þ
and the
D
into
D
0
!
D
0
or
D
0
!
D
0
0
. These two-body decays
are topologically very similar to our signal, as the charged
pion can be treated as the signal lepton and the
D
ðÞ
0
decays
products ignored to simulate the missing neutrino. The tag
B
reconstructed in the control sample thus simulates the tag
B
reconstruction in the nominal data sample. We compare
the efficiencies for our tag
B
selection cuts in the
B
þ
!
D
ðÞ
0
þ
data and MC to quantify any data/MC disagree-
ments that may affect the signal efficiency. We find a data/
MC discrepancy on the
B
þ
!
D
ðÞ
0
þ
control sample of
3.0% for
B
þ
!
þ
decays and 0.4% for
B
þ
!
e
þ
e
decays and assign these as the signal efficiency uncertainty
arising from the tag
B
selection.
A summary of the systematic uncertainties in the signal
efficiency is given in Table
I
. The final
B
þ
!
þ
signal
efficiency is
ð
6
:
1
0
:
2
Þ
%
, and the
B
þ
!
e
þ
e
signal
efficiency is
ð
4
:
7
0
:
3
Þ
%
, where the errors are the sum
in quadrature of statistical and systematic uncertainties.
The systematic uncertainty in the yields comes from the
p
FIT
and
m
ES
PDF parameters, which are kept fixed in the
final fit and, in the
B
þ
!
e
þ
e
case, from the use of MC
simulation to extract the PDF shapes. The fit parameters
extracted from MC are affected by an uncertainty due to
MC statistics. In order to evaluate the systematic uncer-
tainty associated with the parameterization, the final fit has
been repeated 500 times for each background and signal
PDF parameter which is kept fixed in the final fit. We
randomly generate the PDF parameters assuming
Gaussian errors and taking into account all of the correla-
tions between them. We perform a Gaussian fit to the
distribution of the number of signal events for each pa-
rameter, take the fitted sigma as the systematic uncertainty,
and sum in quadrature. The total systematic uncertainty on
the signal yield from all signal and background PDF pa-
rameters is 8 events for
B
þ
!
þ
and 10 events for
B
þ
!
e
þ
e
.
For the
B
þ
!
e
þ
e
sample, an additional systematic
uncertainty coming from possible discrepancies in the
shape of the
p
FIT
background distribution in data and
simulated events must be accounted for. The data/MC ratio
of the
p
FIT
distribution in the
m
ES
sideband
5
:
16
<m
ES
<
5
:
22 GeV
=c
2
is fit with a linear function. The background
p
FIT
distribution shape is varied according to the fitted
linear function and its associated statistical uncertainties;
the total systematic contribution from this procedure is
4 events.
To evaluate the branching fraction, we use the following
expression:
B
ð
B
!
l
þ
Þ
UL
¼
N
sig
N
B
"
;
(3)
where
N
sig
represents the observed signal yield,
N
B
is the
number of
B
þ
B
in the sample (where equal production of
B
þ
B
and
B
0
B
0
is assumed), and
"
is the signal efficiency.
As we did not find evidence for signal events, we employ
a Bayesian approach to set upper limits on the branching
fractions. Flat priors in the branching fractions are assumed
for positive values of the branching fractions, and Gaussian
likelihoods are adopted for the observed signal yield, re-
lated to
B
by Eq. (
3
). The Gaussian widths are fixed to the
sum in quadrature of the statistical and systematic yield
errors. The effect of systematic uncertainties associated
with the efficiencies, modeled by Gaussian PDFs, is taken
into account as well. We extract the following 90% con-
fidence level upper limits on the branching fractions:
B
ð
B
þ
!
þ
Þ
<
1
:
0
10
6
;
(4)
B
ð
B
þ
!
e
þ
e
Þ
<
1
:
9
10
6
:
(5)
The 95% upper limits are
B
ð
B
þ
!
þ
Þ
<
1
:
3
10
6
and
B
ð
B
þ
!
e
þ
e
Þ
<
2
:
2
10
6
. This result improves
the previous best published limit for
B
þ
!
þ
branch-
ing fraction by nearly a factor of 2, to a value twice the SM
prediction. The
B
þ
!
e
þ
e
result is consistent with pre-
vious measurements. It should be noted that the results in
Ref. [
12
] are obtained using a different statistical approach
to interpret the observed number of signal events. The
results show no deviation from the SM expectations.
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MEC (Spain), and STFC
(United Kingdom). Individuals have received support from
the Marie Curie EIF (European Union) and the A. P. Sloan
Foundation.
TABLE I. Contributions to the systematic uncertainty on the
signal efficiency. Total systematic represents the sum in quad-
rature of the table entries.
Source
B
þ
!
þ
B
þ
!
e
þ
e
Particle identification
1.9%
2.3%
Tracking efficiency
0.4%
0.4%
Tag
B
reconstruction
3.0%
0.4%
Fisher selection
1.4%
5.3%
Total
3.8%
5.8%
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
091101(R) (2009)
RAPID COMMUNICATIONS
091101-8
[1] Charge conjugation is implied throughout this paper.
[2] D. Silverman and H. Yao, Phys. Rev. D
38
, 214 (1988).
[3] N. Cabibbo, Phys. Rev. Lett.
10
, 531 (1963); M.
Kobayashi and T. Maskawa, Prog. Theor. Phys.
49
, 652
(1973).
[4] C. Amsler
et al.
, Phys. Lett. B
667
, 1 (2008).
[5] E. Barberio
et al.
[Heavy Flavor Averaging Group
(HFAG)], arXiv:hep-ex/0603003.
[6] A. Gray
et al.
(HPQCD Collaboration), Phys. Rev. Lett.
95
, 212001 (2005).
[7] W. S. Hou, Phys. Rev. D
48
, 2342 (1993).
[8] G. Valencia and S. Willenbrock, Phys. Rev. D
50
, 6843
(1994).
[9] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. D
77
,
011107 (2008).
[10] I. Adachi
et al.
(Belle Collaboration), arXiv:0809.3834.
[11] Heavy Flavor Averaging Group (HFAG), http://
www.slac.stanford.edu/xorg/hfag/index.html.
[12] N. Satoyama
et al.
(Belle Collaboration), Phys. Lett. B
647
, 67 (2007).
[13] B. Aubert
et al.
(
BABAR
Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002).
[14] G. Benelli, K. Honscheid, E. A. Lewis, J. J. Regensburger,
and D. S. Smith, IEEE Nucl. Sci. Symp. Conf. Rec.
2
,
1145 (2006).
[15] S. Agostinelli
et al.
(GEANT4 Collaboration), Nucl.
Instrum. Methods Phys. Res., Sect. A
506
, 250 (2003).
[16] R. A. Fisher, Ann. Eugenics
7
, 179 (1936); G. Cowan,
Statistical Data Analysis
(Oxford University Press, New
York, 1998), p. 51.
[17] I. Narsky, arXiv:physics/0507143.
[18] J. Gaiser
et al.
, Phys. Rev. D
34
, 711 (1986).
[19] H. Albrecht
et al.
(ARGUS Collaboration) Phys. Lett. B
241
, 278 (1990).
[20] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. D
67
,
032002 (2003).
[21] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
95
, 042001 (2005).
SEARCH FOR THE RARE LEPTONIC DECAYS
...
PHYSICAL REVIEW D
79,
091101(R) (2009)
RAPID COMMUNICATIONS
091101-9