Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2011 | Submitted + Published
Book Section - Chapter Open

New Aspects and Boundary Conditions of Core-Collapse Supernova Theory


Core-collapse supernovae are among Nature's grandest explosions. They are powered by the energy released in gravitational collapse and include a rich set of physical phenomena involving all fundamental forces and many branches of physics and astrophysics. We summarize the current state of core-collapse supernova theory and discuss the current set of candidate explosion mechanisms under scrutiny as core-collapse supernova modeling is moving towards self-consistent three-dimensional simulations. Recent work in nuclear theory and neutron star mass and radius measurements are providing new constraints for the nuclear equation of state. We discuss these new developments and their impact on corecollapse supernova modeling. Neutrino-neutrino forward scattering in the central regions of core-collapse supernovae can lead to collective neutrino flavor oscillations that result in swaps of electron and heavy-lepton neutrino spectra. We review the rapid progress that is being made in understanding these collective oscillations and their potential impact on the core-collapse supernova explosion mechanism.

Additional Information

© 2011 Hamburg Dt. Elektronen-Synchrotron. The authors wish to thank the organizers of the HAvSE 2011 conference. The authors furthermore acknowledge helpful discussions with A. Burrows, L. Dessart, C. Horowitz, H.-T. Janka, J. Lattimer, E. Livne, A. Mirizzi, B. Müller, J. Murphy, J. Nordhaus, C. Reisswig, A. Schwenk, G. Shen, H. Shen, A. Steiner, and S. Woosley. CDO and EPO are partially supported by the Sherman Fairchild Foundation and the National Science Foundation under award numbers AST-0855535 and OCI-0905046. Results presented in this article were obtained through computations on the Caltech compute cluster "Zwicky" (NSF MRI award No. PHY-0960291), on the NSF XSEDE network under grant TG-PHY100033, on machines of the Louisiana Optical Network Initiative under grant loni.numrel07, and at the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy under contract DE-AC03-76SF00098. The copyright is governed by the Creative Commons agreement, which allows for free use and distribution of the articles for non-commercial activity, as long as the title, the authors' names and the place of the original are referenced.

Attached Files

Published - A9RF96C.pdf

Submitted - 1111.6282v1.pdf


Files (3.5 MB)
Name Size Download all
2.8 MB Preview Download
614.8 kB Preview Download

Additional details

August 19, 2023
January 13, 2024