Regret-Optimal Filtering
- Creators
- Sabag, Oron
- Hassibi, Babak
Abstract
We consider the problem of filtering in linear state-space models (e.g., the Kalman filter setting) through the lens of regret optimization. Specifically, we study the problem of causally estimating a desired signal, generated by a linear state-space model driven by process noise, based on noisy observations of a related observation process. We define a novel regret criterion for estimator design as the difference of the estimation error energies between a clairvoyant estimator that has access to all future observations (a so-called smoother) and a causal one that only has access to current and past observations. The regret-optimal estimator is the causal estimator that minimizes the worst-case regret across all bounded-energy noise sequences. We provide a solution for the regret filtering problem at two levels. First, an horizon-independent solution at the operator level is obtained by reducing the regret to the well-known Nehari problem. Secondly, our main result for state-space models is an explicit estimator that achieves the optimal regret. The regret-optimal estimator is represented as a finite-dimensional state-space whose parameters can be computed by solving three Riccati equations and a single Lyapunov equation. We demonstrate the applicability and efficacy of the estimator in a variety of problems and observe that the estimator has average and worst-case performances that are simultaneously close to their optimal values.
Additional Information
© 2021 by the author(s). The work of OS is partially supported by the ISEF postdoctoral fellowship.Attached Files
Published - sabag21a.pdf
Accepted Version - 2101.10357.pdf
Supplemental Material - sabag21a-supp.pdf
Files
Additional details
- Eprint ID
- 108213
- Resolver ID
- CaltechAUTHORS:20210225-132748732
- Israel Scholarship Education Foundation (ISEF)
- Created
-
2021-03-01Created from EPrint's datestamp field
- Updated
-
2023-06-02Created from EPrint's last_modified field