of 7
The Astrophysical Journal
, 701:L68–L74, 2009 August 20
doi:
10.1088/0004-637X/701/2/L68
C

2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.
STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM
B. P. Abbott
1
, R. Abbott
1
, R. Adhikari
1
,P.Ajith
2
, B. Allen
2
,
3
, G. Allen
4
,R.S.Amin
5
, S. B. Anderson
1
,
W. G. Anderson
3
,M.A.Arain
6
, M. Araya
1
, H. Armandula
1
, P. Armor
3
,Y.Aso
1
,S.Aston
7
, P. Aufmuth
8
, C. Aulbert
2
,
S. Babak
9
, P. Baker
10
, S. Ballmer
1
, C. Barker
11
, D. Barker
11
,B.Barr
12
, P. Barriga
13
, L. Barsotti
14
, M. A. Barton
1
,
I. Bartos
15
, R. Bassiri
12
, M. Bastarrika
12
, B. Behnke
9
, M. Benacquista
16
, J. Betzwieser
1
, P. T. Beyersdorf
17
,
I. A. Bilenko
18
, G. Billingsley
1
,R.Biswas
3
, E. Black
1
, J. K. Blackburn
1
, L. Blackburn
14
, D. Blair
13
, B. Bland
11
,
T. P. Bodiya
14
, L. Bogue
19
,R.Bork
1
, V. Boschi
1
,S.Bose
20
, P. R. Brady
3
, V. B. Braginsky
18
,J.E.Brau
21
, D. O. Bridges
19
,
M. Brinkmann
2
, A. F. Brooks
1
,D.A.Brown
22
, A. Brummit
23
, G. Brunet
14
, A. Bullington
4
, A. Buonanno
24
,
O. Burmeister
2
,R.L.Byer
4
, L. Cadonati
25
,J.B.Camp
26
, J. Cannizzo
26
,K.C.Cannon
1
,J.Cao
14
, L. Cardenas
1
,
S. Caride
27
, G. Castaldi
28
, S. Caudill
5
, M. Cavagli
`
a
29
, C. Cepeda
1
, T. Chalermsongsak
1
, E. Chalkley
12
, P. Charlton
30
,
S. Chatterji
1
, S. Chelkowski
7
, Y. Chen
9
,
31
, N. Christensen
32
, C. T. Y. Chung
33
, D. Clark
4
, J. Clark
34
, J. H. Clayton
3
,
T. Cokelaer
34
, C. N. Colacino
35
, R. Conte
36
, D. Cook
11
, T. R. C. Corbitt
14
, N. Cornish
10
, D. Coward
13
,D.C.Coyne
1
,
J. D. E. Creighton
3
, T. D. Creighton
16
,A.M.Cruise
7
, R. M. Culter
7
, A. Cumming
12
, L. Cunningham
12
,S.L.Danilishin
18
,
K. Danzmann
2
,
8
, B. Daudert
1
, G. Davies
34
,E.J.Daw
37
, D. DeBra
4
, J. Degallaix
2
, V. Dergachev
27
,S.Desai
38
,
R. DeSalvo
1
, S. Dhurandhar
39
,M.D
́
ıaz
16
, A. Dietz
34
, F. Donovan
14
, K. L. Dooley
6
, E. E. Doomes
40
, R. W. P. Drever
41
,
J. Dueck
2
,I.Duke
14
, J.-C. Dumas
13
,J.G.Dwyer
15
, C. Echols
1
, M. Edgar
12
,A.Effler
11
, P. Ehrens
1
,E.Espinoza
1
,
T. Etzel
1
, M. Evans
14
, T. Evans
19
, S. Fairhurst
34
, Y. Faltas
6
, Y. Fan
13
, D. Fazi
1
, H. Fehrmann
2
,L.S.Finn
38
, K. Flasch
3
,
S. Foley
14
, C. Forrest
42
, N. Fotopoulos
3
, A. Franzen
8
, M. Frede
2
, M. Frei
43
, Z. Frei
35
, A. Freise
7
, R. Frey
21
, T. Fricke
19
,
P. Fritschel
14
, V. V. Frolov
19
, M. Fyffe
19
, V. Galdi
28
, J. A. Garofoli
22
, I. Gholami
9
,J.A.Giaime
19
,
5
,S.Giampanis
2
,
K. D. Giardina
19
, K. Goda
14
, E. Goetz
27
, L. M. Goggin
3
,G.Gonz
́
alez
5
, M. L. Gorodetsky
18
, S. Goßler
2
, R. Gouaty
5
,
A. Grant
12
,S.Gras
13
, C. Gray
11
, M. Gray
44
, R. J. S. Greenhalgh
23
, A. M. Gretarsson
45
, F. Grimaldi
14
, R. Grosso
16
,
H. Grote
2
,S.Grunewald
9
, M. Guenther
11
, E. K. Gustafson
1
, R. Gustafson
27
, B. Hage
8
, J. M. Hallam
7
, D. Hammer
3
,
G. D. Hammond
12
,C.Hanna
1
,J.Hanson
19
,J.Harms
46
, G. M. Harry
14
, I. W. Harry
34
, E. D. Harstad
21
,K.Haughian
12
,
K. Hayama
16
, J. Heefner
1
,I.S.Heng
12
, A. Heptonstall
1
,M.Hewitson
2
,S.Hild
7
,E.Hirose
22
, D. Hoak
19
, K. A. Hodge
1
,
K. Holt
19
, D. J. Hosken
47
,J.Hough
12
, D. Hoyland
13
, B. Hughey
14
, S. H. Huttner
12
, D. R. Ingram
11
, T. Isogai
32
,M.Ito
21
,
A. Ivanov
1
,B.Johnson
11
,W.W.Johnson
5
,D.I.Jones
48
,G.Jones
34
,R.Jones
12
,L.Ju
13
, P. Kalmus
1
, V. Kalogera
49
,
S. Kandhasamy
46
,J.Kanner
24
, D. Kasprzyk
7
, E. Katsavounidis
14
, K. Kawabe
11
,S.Kawamura
50
, F. Kawazoe
2
,
W. Kells
1
, D. G. Keppel
1
, A. Khalaidovski
2
, F. Y. Khalili
18
,R.Khan
15
, E. Khazanov
51
,P.King
1
,J.S.Kissel
5
,
S. Klimenko
6
, K. Kokeyama
50
, V. Kondrashov
1
, R. Kopparapu
38
, S. Koranda
3
, D. Kozak
1
,B.Krishnan
9
, R. Kumar
12
,
P. Kwee
8
,P.K.Lam
44
, M. Landry
11
, B. Lantz
4
, A. Lazzarini
1
,H.Lei
16
,M.Lei
1
, N. Leindecker
4
, I. Leonor
21
,C.Li
31
,
H. Lin
6
,P.E.Lindquist
1
, T. B. Littenberg
10
, N. A. Lockerbie
52
, D. Lodhia
7
, M. Longo
28
, M. Lormand
19
,P.Lu
4
,
M. Lubinski
11
, A. Lucianetti
6
,H.L
̈
uck
2
,
8
, B. Machenschalk
9
, M. MacInnis
14
, M. Mageswaran
1
, K. Mailand
1
,
I. Mandel
49
, V. Mandic
46
,S.M
́
arka
15
,Z.M
́
arka
15
, A. Markosyan
4
, J. Markowitz
14
, E. Maros
1
, I. W. Martin
12
,
R. M. Martin
6
,J.N.Marx
1
, K. Mason
14
, F. Matichard
5
, L. Matone
15
, R. A. Matzner
43
, N. Mavalvala
14
, R. McCarthy
11
,
D. E. McClelland
44
,S.C.McGuire
40
,M.McHugh
53
, G. McIntyre
1
, D. J. A. McKechan
34
, K. McKenzie
44
, M. Mehmet
2
,
A. Melatos
33
,A.C.Melissinos
42
,D.F.Men
́
endez
38
, G. Mendell
11
, R. A. Mercer
3
, S. Meshkov
1
,C.Messenger
2
,
M. S. Meyer
19
, J. Miller
12
, J. Minelli
38
,Y.Mino
31
, V. P. Mitrofanov
18
, G. Mitselmakher
6
, R. Mittleman
14
,
O. Miyakawa
1
,B.Moe
3
, S. D. Mohanty
16
, S. R. P. Mohapatra
25
, G. Moreno
11
, T. Morioka
50
, K. Mors
2
, K. Mossavi
2
,
C. MowLowry
44
, G. Mueller
6
,H.M
̈
uller-Ebhardt
2
, D. Muhammad
19
, S. Mukherjee
16
, H. Mukhopadhyay
39
,
A. Mullavey
44
,J.Munch
47
, P. G. Murray
12
, E. Myers
11
, J. Myers
11
,T.Nash
1
, J. Nelson
12
, G. Newton
12
, A. Nishizawa
50
,
K. Numata
26
, J. O’Dell
23
, B. O’Reilly
19
, R. O’Shaughnessy
38
,E.Ochsner
24
,G.H.Ogin
1
, D. J. Ottaway
47
, R. S. Ottens
6
,
H. Overmier
19
,B.J.Owen
38
, Y. Pan
24
, C. Pankow
6
, M. A. Papa
9
,
3
, V. Parameshwaraiah
11
, P. Patel
1
, M. Pedraza
1
,
S. Penn
54
, A. Perreca
7
, V. Pierro
28
,I.M.Pinto
28
, M. Pitkin
12
, H. J. Pletsch
2
,M.V.Plissi
12
, F. Postiglione
36
,
M. Principe
28
, R. Prix
2
, L. Prokhorov
18
, O. Punken
2
, V. Quetschke
6
,F.J.Raab
11
, D. S. Rabeling
44
, H. Radkins
11
,
P. Raffai
35
, Z. Raics
15
,N.Rainer
2
, M. Rakhmanov
16
, V. Raymond
49
,C.M.Reed
11
, T. Reed
55
, H. Rehbein
2
,S.Reid
12
,
D. H. Reitze
6
,R.Riesen
19
, K. Riles
27
, B. Rivera
11
, P. Roberts
56
, N. A. Robertson
1
,
12
, C. Robinson
34
,E.L.Robinson
9
,
S. Roddy
19
,C.R
̈
over
2
, J. Rollins
15
,J.D.Romano
16
,J.H.Romie
19
,S.Rowan
12
,A.R
̈
udiger
2
,P.Russell
1
, K. Ryan
11
,
S. Sakata
50
, L. Sancho de la Jordana
57
, V. Sandberg
11
, V. Sannibale
1
, L. Santamar
́
ıa
9
, S. Saraf
58
, P. Sarin
14
,
B. S. Sathyaprakash
34
, S. Sato
50
, M. Satterthwaite
44
, P. R. Saulson
22
, R. Savage
11
, P. Savov
31
, M. Scanlan
55
,
R. Schilling
2
, R. Schnabel
2
, R. Schofield
21
, B. Schulz
2
,B.F.Schutz
9
,
34
, P. Schwinberg
11
, J. Scott
12
, S. M. Scott
44
,
A. C. Searle
1
, B. Sears
1
, F. Seifert
2
, D. Sellers
19
, A. S. Sengupta
1
, A. Sergeev
51
, B. Shapiro
14
,P.Shawhan
24
,
D. H. Shoemaker
14
, A. Sibley
19
, X. Siemens
3
,D.Sigg
11
,S.Sinha
4
,A.M.Sintes
57
, B. J. J. Slagmolen
44
, J. Slutsky
5
,
J. R. Smith
22
,M.R.Smith
1
,N.D.Smith
14
, K. Somiya
31
, B. Sorazu
12
, A. Stein
14
, L. C. Stein
14
, S. Steplewski
20
,
A. Stochino
1
, R. Stone
16
, K. A. Strain
12
, S. Strigin
18
, A. Stroeer
26
, A. L. Stuver
19
, T. Z. Summerscales
56
,K.-X.Sun
4
,
M. Sung
5
, P. J. Sutton
34
, G. P. Szokoly
35
, D. Talukder
20
,L.Tang
16
,D.B.Tanner
6
, S. P. Tarabrin
18
, J. R. Taylor
2
,
R. Taylor
1
, J. Thacker
19
,K.A.Thorne
19
,K.S.Thorne
31
,A.Th
̈
uring
8
, K. V. Tokmakov
12
, C. Torres
19
, C. Torrie
1
,
L68
No. 2, 2009
STACKED SEARCH FOR GRAVITATIONAL WAVES FROM SGR 1900+14
L69
G. Traylor
19
, M. Trias
57
, D. Ugolini
59
,J.Ulmen
4
, K. Urbanek
4
, H. Vahlbruch
8
, M. Vallisneri
31
, C. van den Broeck
34
,
M. V. van der Sluys
49
, A. A. van Veggel
12
,S.Vass
1
,R.Vaulin
3
, A. Vecchio
7
, J. Veitch
7
, P. Veitch
47
, C. Veltkamp
2
,
A. Villar
1
, C. Vorvick
11
, S. P. Vyachanin
18
, S. J. Waldman
14
, L. Wallace
1
,R.L.Ward
1
, A. Weidner
2
, M. Weinert
2
,
A. J. Weinstein
1
,R.Weiss
14
,L.Wen
31
,
13
,S.Wen
5
, K. Wette
44
, J. T. Whelan
9
,
60
, S. E. Whitcomb
1
,B.F.Whiting
6
,
C. Wilkinson
11
, P. A. Willems
1
, H. R. Williams
38
, L. Williams
6
, B. Willke
2
,
8
, I. Wilmut
23
, L. Winkelmann
2
,
W. Winkler
2
,C.C.Wipf
14
,A.G.Wiseman
3
, G. Woan
12
, R. Wooley
19
, J. Worden
11
,W.Wu
6
, I. Yakushin
19
,
H. Yamamoto
1
,Z.Yan
13
,S.Yoshida
61
, M. Zanolin
45
, J. Zhang
27
, L. Zhang
1
, C. Zhao
13
, N. Zotov
55
, M. E. Zucker
14
,
H. zur M
̈
uhlen
8
, and J. Zweizig
1
(The LIGO Scientific Collaboration
62
)
1
LIGO - California Institute of Technology, Pasadena, CA 91125, USA
2
Albert-Einstein-Institut, Max-Planck-Institut f
̈
ur Gravitationsphysik, D-30167 Hannover, Germany
3
University of Wisconsin–Milwaukee, Milwaukee, WI 53201, USA
4
Stanford University, Stanford, CA 94305, USA
5
Louisiana State University, Baton Rouge, LA 70803, USA
6
University of Florida, Gainesville, FL 32611, USA
7
University of Birmingham, Birmingham B15 2TT, UK
8
Leibniz Universit
̈
at Hannover, D-30167 Hannover, Germany
9
Albert-Einstein-Institut, Max-Planck-Institut f
̈
ur Gravitationsphysik, D-14476 Golm, Germany
10
Montana State University, Bozeman, MT 59717, USA
11
LIGO - Hanford Observatory, Richland, WA 99352, USA
12
University of Glasgow, Glasgow G12 8QQ, UK
13
University of Western Australia, Crawley, WA 6009, Australia
14
LIGO - Massachusetts Institute of Technology, Cambridge, MA 02139, USA
15
Columbia University, New York, NY 10027, USA
16
The University of Texas at Brownsville and Texas Southmost College, Brownsville, TX 78520, USA
17
San Jose State University, San Jose, CA 95192, USA
18
Moscow State University, Moscow 119992, Russia
19
LIGO - Livingston Observatory, Livingston, LA 70754, USA
20
Washington State University, Pullman, WA 99164, USA
21
University of Oregon, Eugene, OR 97403, USA
22
Syracuse University, Syracuse, NY 13244, USA
23
Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, UK
24
University of Maryland, College Park, MD 20742, USA
25
University of Massachusetts, Amherst, MA 01003, USA
26
NASA
/
Goddard Space Flight Center, Greenbelt, MD 20771, USA
27
University of Michigan, Ann Arbor, MI 48109, USA
28
University of Sannio at Benevento, I-82100 Benevento, Italy
29
The University of Mississippi, University, MS 38677, USA
30
Charles Sturt University, Wagga Wagga, NSW 2678, Australia
31
Caltech-CaRT, Pasadena, CA 91125, USA
32
Carleton College, Northfield, MN 55057, USA
33
The University of Melbourne, Parkville, VIC 3010, Australia
34
Cardiff University, Cardiff CF24 3AA, UK
35
E
̈
otv
̈
os University, ELTE 1053 Budapest, Hungary
36
University of Salerno, 84084 Fisciano (Salerno), Italy
37
The University of Sheffield, Sheffield S10 2TN, UK
38
The Pennsylvania State University, University Park, PA 16802, USA
39
Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
40
Southern University and A&M College, Baton Rouge, LA 70813, USA
41
California Institute of Technology, Pasadena, CA 91125, USA
42
University of Rochester, Rochester, NY 14627, USA
43
The University of Texas at Austin, TX 78712, USA
44
Australian National University, Canberra 0200, Australia
45
Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
46
University of Minnesota, Minneapolis, MN 55455, USA
47
University of Adelaide, Adelaide, SA 5005, Australia
48
University of Southampton, Southampton SO17 1BJ, UK
49
Northwestern University, Evanston, IL 60208, USA
50
National Astronomical Observatory of Japan, Tokyo 181-8588, Japan
51
Institute of Applied Physics, Nizhny Novgorod 603950, Russia
52
University of Strathclyde, Glasgow G1 1XQ, UK
53
Loyola University, New Orleans, LA 70118, USA
54
Hobart and William Smith Colleges, Geneva, NY 14456, USA
55
Louisiana Tech University, Ruston, LA 71272, USA
56
Andrews University, Berrien Springs, MI 49104, USA
57
Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
58
Sonoma State University, Rohnert Park, CA 94928, USA
59
Trinity University, San Antonio, TX 78212, USA
60
Rochester Institute of Technology, Rochester, NY 14623, USA
61
Southeastern Louisiana University, Hammond, LA 70402, USA
Received 2009 May 19; accepted 2009 July 17; published 2009 July 30
L70
ABBOTT ET AL.
Vol. 701
ABSTRACT
We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with the
2006 March 29 SGR 1900+14 storm. A new search method is used, “stacking” the GW data around the times
of individual soft-gamma bursts in the storm to enhance sensitivity for models in which multiple bursts are
accompanied by GW emission. We assume that variation in the time difference between burst electromagnetic
emission and potential burst GW emission is small relative to the GW signal duration, and we time-align GW
excess power time–frequency tilings containing individual burst triggers to their corresponding electromagnetic
emissions. We use two GW emission models in our search: a fluence-weighted model and a flat (unweighted)
model for the most electromagnetically energetic bursts. We find no evidence of GWs associated with either
model. Model-dependent GW strain, isotropic GW emission energy
E
GW
, and
γ
E
GW
/E
EM
upper limits
are estimated using a variety of assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find
E
GW
upper limit estimates (at
a nominal distance of 10 kpc) of between 2
×
10
45
erg and 6
×
10
50
erg depending on the waveform
type. These limits are an order of magnitude lower than upper limits published previously for this storm
and overlap with the range of electromagnetic energies emitted in soft gamma repeater (SGR) giant flares.
Key words:
gamma rays: bursts – gravitational waves – pulsars: individual (SGR 1900+14) – stars: neutron
1. INTRODUCTION
Soft gamma repeaters (SGRs) sporadically emit brief
(
0
.
1 s) intense bursts of soft gamma-rays. Three of the five
known SGRs have produced rare “giant flare” events with initial
bright, short (
0
.
2 s) pulses with peak electromagnetic (EM)
luminosities between 10
44
and 10
47
erg s
1
, placing them among
the most EM luminous events in the universe. According to the
“magnetar” model SGRs are galactic neutron stars with extreme
magnetic fields
10
15
G (Duncan & Thompson
1992
). Bursts
may result from the interaction of the star’s magnetic field with
its solid crust, leading to crustal deformations and occasional
catastrophic cracking (Thompson & Duncan
1995
; Schwartz
et al.
2005
; Horowitz & Kadau
2009
) with subsequent excita-
tion of nonradial neutron star
f
-modes (Andersson & Kokkotas
1998
; de Freitas Pacheco
1998
; Ioka
2001
) and the emission
of GWs (de Freitas Pacheco
1998
; Ioka
2001
;Horvath
2005
;
Owen
2005
). For reviews, see Mereghetti (
2008
) and Woods &
Thompson (
2004
).
Occasionally, SGRs produce many soft gamma bursts in a
brief period of time; such intense emissions are referred to as
“storms.” We present a search for short-duration GW signals
(

0.3 s) associated with
multiple
bursts in the 2006 March 29
SGR 1900+14 storm (Israel et al.
2008
) using data collected
by the Laser Interferometer Gravitational Wave Observatory
(LIGO; Abbott et al.
2009b
). The storm light curve, obtained
from the Burst Alert Telescope (BAT) aboard the
Swift
satellite
(Barthelmy et al.
2005
), is shown in Figure
1
. It consists of
more than 40 bursts in
30 s, including common SGR bursts
and some intermediate flares with durations
>
0
.
5 s. The total
fluence for the storm event was estimated by the Konus-Wind
team to be (1–2)
×
10
4
erg cm
2
in the (20–200) keV range
(Golenetskii et al.
2006
), implying an isotropic EM energy
E
EM
=
(1–2)
×
10
42
erg at a nominal distance to SGR 1900+14
of 10 kpc (source location and distance is discussed in Kaplan
et al.
2002
). At the time of the storm both of the 4 km LIGO
detectors (located at Hanford, WA and Livingston, LA) were
taking science quality data.
We attempt to improve sensitivity to multiple weak GW burst
signals associated with the storm’s multiple EM bursts by adding
62
http://www.ligo.org
together GW signal power over multiple bursts. In doing so we
assume particular GW emission models, which we describe in
the next section. Figure
2
illustrates the stacking procedure using
the four most energetic bursts in the storm.
2. METHODS
The analysis is performed by the Stack-a-flare pipeline
(Kalmus et al.
2009
), which extends the method used in a
recent LIGO search for transient GW associated with individual
SGR bursts (Abbott et al.
2008a
) and relies on an excess
power detection statistic (Anderson et al.
2001
). To “stack”
N
bursts in the storm, we first generate
N
excess power time–
frequency tilings. These are two-dimensional matrices in time
and frequency produced by combining the two detectors’ data
streams so as to provide sensitivity to correlated signals, as
described in Kalmus et al. (
2007
). Each tiling element gives
an excess power estimate in the GW detector data stream in a
small period of time
δt
and a small range of frequency
δf
.The
time range of each tiling is chosen to be centered on the time of
one of the target EM bursts in the storm. We then align these
N
tilings along the time dimension so that times of the target EM
bursts coincide, and perform a weighted addition.
Stacking significantly improves sensitivity to GW emission
under a given model. However, improving detection probability
depends upon stacking according to GW emission models that
correctly describe nature. The storm light curve motivated
two stacking models: a flat-weighted model with an energy
cutoff, which includes the 11 most energetic EM bursts with
unity weighting factors; and an EM-fluence-weighted model
comprised of the 18 most energetic EM bursts. In the flat model,
we assume that a fixed amount of GW energy is released in each
burst independently of its EM energy, provided the EM energy is
above a threshold. The threshold choice is motivated by a clear
separation in EM fluence of the 11 most energetic bursts from
out of the total of
40 bursts in the storm observed by BAT.
A histogram of EM fluence of bursts (in terms of BAT counts)
illustrating this separation is shown in Kalmus et al. (
2009
). In
the EM-fluence-weighted model, we make the hypothesis that
γ
E
GW
/E
EM
is constant from burst to burst, i.e.,
E
GW
is
always proportional to
E
EM
. Including the 18 most energetic
bursts accounts for 95% of the total EM fluence of the more