Appendix
A
1
Figure A.1.
Stratigraphic sections
of two well developed paleosol horizons from the
2
Cerro Quirma section.
3
4
Appendix
B
5
Table B.1. U/
Pb data
from
13CP97s
,
13AC71t,
12YR07t,
12MN54t,
and
12SG19t.
All
6
calculations and plots are made with
Isoplot 3.7 (Ludwig, 2008).
7
8
Appendix C
9
Detailed methodology
10
P
ollen
Extraction
11
The
palynological
samples
are
process
ed
following the standard technique (Traverse
12
2007), including
digestion of 10 grams of rock in
HCL
for 12 hours, addition of water
13
and decantation after 12 hours
,
followed by digestion in
HF
for at least 24 hours; addition
14
of water and decantation of the acid solution after 24 hours. Sieving of the dissolved
15
mineral fraction
is done
initially by mesh 250 microns to eliminate the thick fraction,
16
followed by sieving
through
a
10 microns mesh. P
anning of the fraction >10
μ
m is done
17
in
ultrasonic equipment
to recover
the less dense organic matter fraction. This residue is
18
cleaned in ultrasonic equipment for
few
seconds, and the organic residue is concentrated
19
by centrif
ugation, followed by mounting of a first cover slide in a solution of polyvinyl
20
alcohol.
A
second cover slide
is mounted
after oxidation with nitric acid,
and sealed
with
21
Canadian balsam
.
22
Carbonate
23
Micritic carbonate samples are crushed (or microdrilled in the cases where minor
24
sparite was present) in the stable isotope laboratory (SIREAL) at the University of
25
Rochester.
The
δ
18
O
c
values are
measured
from
CO
2
evolved
from
carbonate
samples
during
26
reaction
with
103%
H
3
PO
4
.
The
δ
18
O
c
analysis
is
carried
out
u
sing
a
Finnigan
Delta
P
lus
27
XP
mass
spectrometer
and
is
normalized
with
respect
to
in
ternal
crayola,
prang
and
thermo
28
chalk
standards
at
SIREAL
.
The
∆
47
values
are
measured
using
a
Thermo
-
Finnigan
MA
T
29
253
mass
spectrometer
at
CalT
ec
h
from
the
CO
2
evolved
after
reaction
of
the
samples
30
with
≥
100%
H
3
PO
4
at
90ºC.
All
∆
47
values
are
normalized
relativ
e
to
high
-
temperature
31
equilibrium
gases
(after
Eiler,
2007)
at
CalT
ec
h.
32
Leaf
wax
n
-
alkane
33
The leaf wax n
-
alkane extraction and analyses
are
carried out at the University of
34
Texas at Austin.
Lipid extractions are performed on 100
-
150g of freeze
-
dried and
35
homogenized sediments
by microwave solvent extraction (CEM MARS) with CH
2
Cl
2
:
36
CH
3
OH (9:1,
v/v). Extracts are filtered over
Na
2
SO
4
and
separa
ted
into
nonpolar
and
37
p
olar
fractions
over
silica
gel
(fraction
1
(F1):
5
ml
hexane;
fraction
2
(F2):
4
ml
38
methanol).
n
-
alkanes were quantified using a gas chromatograph
-
flame ionization
39
detector (GC
-
FID)
with a split
-
splitless detector operated in splitless mode (300°C) and a
40
30m DB
-
column with H2 carrier gas flow rate of 1.5 ml/min. The GC temperature
41
program was initialized at 40 °C for 3 minutes and increased at 15°C/min to 320°C where
42
it was held for
10 min. Each sample was run in duplicate and quantitation was performed
43
using calibrations developed using a series of authentic n
-
alkane standards of varying
44
concentration measured using the same GC
-
temperature program and injection
45
conditions.
Compound
specific stable isotope analyses were performed using a Thermo
46
Scientific Trace GC Ultra coupled to a Delta V isotope ratio mass spectrometer via a high
47
temperature pyrolysis system. The GC was equipped with a programmable temperature
48
vaporization (PTV) i
njector operated in splitless mode with a 2.0 mm i.d. Siltek
49
deactivated liner packed with silanized glass wool. A DB
-
5 column (30 m 0.25 mm i.d.,
50
0.25 μ
m stationary phase) was used with a He carrier gas flow of 1.4 ml min
-
1. The GC
51
oven temperature was i
ncreased from 60 °C to 320°C at 6°C min
-
1 and held for 20
52
minutes. Prior to running samples and standards the aluminum oxide reactor in the high
53
temperature pyrolysis device was conditioned by injecting ~1 ml of hexane at 1440 °C.
54
Every 50
-
70 injections
, the reactor was reconditioned to maintain pyrolysis efficiency.
55
System leaks were assessed daily by monitoring background Argon (m/z = 40 <25 mV).
56
The H3+ factor was determined daily prior to calibration and sample analysis and was
57
stable throughout the
period of analysis (2.8
±
0.13). On a daily basis we also assessed
58
the stability of dD values as a function of GC conditions by injecting methane reference
59
gas at 100 s intervals while running the GC temperature program and found the dD
60
values of the ref
erence gas to be stable (
-
156.3
±
1.2).
A laboratory standard
61
containing a series of n
-
alkanes of known isotopic composition (B4 standard,
Dr.
62
Arndt Schimmelmann, Indiana University)
was measured 3
-
5 times at the beginning
63
and end of each day and after
every four
to assess the external precision of the
δ
D
64
analyses (<
±
5.0‰) and to determine the value of the methane reference gas on the
65
VSMOW scale
.
During sample analysis, injection volumes were optimized to keep the
66
target peaks between 3
-
6 volts. Indivi
dual samples were run in triplicate and the average
67
value is reported here, with a mean error of ±3.9‰. Sample values were calibrated to the
68
VSMOW scale using 3 injections of the methane reference gas at the beginning and end
69
of each GC run.
Within run p
reci
sion of the propane reference peaks was
±
3.5
‰.
70
71
Figure C.1.
Representative GC trace of leaf
-
wax samples. GC trace of one sample each
72
from Member B and C are shown.
73
74
Appendix D
75
Figure D
.1
.
Plot of
δ
13
C
(
VPDB
)
,
δ
18
O
(
VPDB
)
and T
∆
47
values. Type of samples are
76
distinguished by the color highlighting the sample name: blue for lacustrine, orange for
77
calcrete, yellow for concretion and green for paleosol. Two diagenetically altered
78
samples (10PE40c and 10PE41c) are shown in red. In thes
e two samples, high T
∆
47
79
corresponds with negative incursion in both
δ
13
C
(
VPDB
)
and
δ
18
O
c
(
VPDB
)
values.
80
81
Figure
D
.2.
Map of the collecting localities
for
pollen
specimens included in the
82
analysis
.
Podocarpus
in Perú
is represented by
six
species
and it is only found in the
83
eastern slope of the Andes
.
Data
from Global Biodiversity and Informatio
n Facility,
84
www.gbif.org (2011)
,
Hijmans
et al. (2005)
and
Punyasena
et al. (2011).
85
86
Figure D
.3.
Box plots of altitudinal, temperature and precipitation
distributions for the 91
87
specimens included in the analysis. Median values are designated by horizontal bars. The
88
edges of the box are the 25th and 75th percentiles. Whisker
s represent
±
2.7
2
σ
or 99%
of
89
the data. Outliers are plotted as single points. Summa
ry plot of Podocarpus in Peru is
90
depicted in the first column. The number of specimens included in the box plot is
91
referenced in parentheses.
92
93
Figure D
.4
.
Fossil leaves
with serrated edges
found in the Cerro Pucara section
.
They are
94
tentatively identified as
Polyepis
.
Polyepis
is found in modern high elevation condition
95
(Gregory
-
Wodzicki, 1998) and
indicative
of
~10ºC MAAT.
96
97
Table D
.1
. Palynological contents of samples from members B and C. Numbers are in
98
numerical counts of palynopmorphs.
99
100
Table D
.2
. Summary of all analyzed carbonate data:
Δ
47
and
δ
18
O
c
(V
PDB) and the
101
reconstructed MAAT, WAMT
and
δ
18
O
mw
c
(VSMOW).
The reported errors
are
1
σ
.
We d o
102
not show WAMT values for lacustrine/palustrine carbonates as their T
Δ
47
values are
103
interpreted
as
representative of warmer air temperature.
104
105
Table D
.3.
Concentration data of the all the analyzed leaf wax samples.
106
107
Table D.
4.
Summary of all analyzed leaf wax data, with individual C27
-
33 values and the
108
average
δ
D
wax
(VSMOW)
of each sample.
The reported errors are in 1
σ
.
The errors
109
reported for each individual chain length is calculated by the methodology described in
110
Polissar and D’Andrea. (2014).
We u s e d
v
egetation specific enrichment factors (
ε
mw/wax
)
111
of
-
98
±
6
‰
and
-
120
±
9
‰ (
P
olissar
and
F
reeman
,
2010
) to calculate
δ
D
mw
wax
(VSMOW)
112
and local water line relationship (Gonfiantini et al., 2001) to calculate
δ
18
O
mwwax
113
(VSMOW).
114
115
References:
116
Gregory
-
Wodzicki, K. M., Mc
Intosh, W. C., & Velasquez, K., 1998.
Climatic and
117
tectonic implications of the late Miocene Jako
kkota flora, Bolivian Altiplano.
118
Journal of S
outh American Earth Sciences.
11(6),
533
-
560.
119
Hijmans, R. J., Ca
meron, S. E., Parra, J. L., Jon
es, P. G., and Jarvis, A., 2005.
Very high
120
resolution interpolated climate surfaces for global land areas: Internati
onal
121
Journal of Climatology. 25 (15),
1965
-
1978.
122
Ludwig, K., 2008,
"User’s manual for Isoplot 3.6: Geo chronological toolkit for
123
Microsoft."
124
Polissar, P. J., and Freeman, K. H., 2010. Effects of aridity and vegetation on plant
-
wax
125
δ
D in modern lake sediments.
Geochimica et Cosmochimica Acta. 74 (20), 5785
-
126
5797.
127
Polissar, P.J. and D’Andrea, W.J., 2014. Uncertainty in paleohydrologic reconstructions
128
from molecular
δ
D values.
Geochimic
a et Cosmochimica Acta.
129,
146
-
156.
129
Punyasena, S., Dalling, J. W., Jaramillo, C., and Turner, B. L., 2011. Technical Comment
130
on “Th
e response of vegetation at the Andean flank in western Amazonia to
131
Pleistocene climate change”
–
M. L. Cardenas et al. Science. 333 6051, 1825a
-
b
.
132
vf
c
s
f m
c vc
g p c b
20cm
40cm
60cm
80cm
100cm
120cm
140cm
Cerro Quirma Paleosols
Figure A.1.
0m
1m
2m
3m
vf
c
s
f m
c vc
g p c b
0cm
Mudstone
Sandstone
Conglomerate
Lithology
Stratigraphic thickness
Stratigraphic thickness
Root traces
Paleosol nodule
Samples
Latitude (WGS84)
13CP97s
13AC71t
12YR07t
12MN54t
12SG19t
Table B1. U-Pb geochronologic analyses.
Isotope ratios
Apparent ages (Ma)
Analysis
U
206Pb
U/Th
206Pb*
±
207Pb*
±
206Pb*
±
error
206Pb*
±
207Pb*
±
206Pb*
±
Best age
±
Conc
(ppm)
204Pb
207Pb*
(%)
235U*
(%)
238U
(%)
corr.
238U*
(Ma)
235U
(Ma)
207Pb*
(Ma)
(Ma)
(Ma)
(%)
12MN54t
12MN54T-1T
306
517
1.1
7.5203
48.3
0.0
50.2
0.0
13.9
0.3
14.9
2.1
42.1
20.7
2137.6
905.2
14.9
2.1
NA
12MN54T-2T
460
38571
3.2
19.4731
2.4
0.3
2.7
0.0
1.4
0.5
248.2
3.5
249.0
6.1
256.7
54.1
248.2
3.5
NA
12MN54T-3T
1249
6674
0.4
25.1845
38.9
0.0
39.2
0.0
4.3
0.1
12.2
0.5
10.5
4.1
-370.0
1042.9
12.2
0.5
NA
12MN54T-4C
1528
4324
1.9
29.3579
71.3
0.0
72.0
0.0
9.8
0.1
4.7
0.5
3.5
2.5
-784.8
2299.4
4.7
0.5
NA
12MN54T-5T
299
1090
0.6
6.8092
176.5
0.0
179.1
0.0
29.9
0.2
11.4
3.4
35.8
63.1
2309.7
166.7
11.4
3.4
NA
12MN54T-6T
306
1317
0.7
6.3770
291.3
0.0
292.2
0.0
22.3
0.1
12.2
2.7
40.8
117.4
2421.6
173.2
12.2
2.7
NA
12MN54T-7T
264
3448
1.2
5.5073
202.7
0.0
204.9
0.0
29.6
0.1
12.5
3.7
48.3
96.9
2667.3
301.4
12.5
3.7
NA
12MN54T-7TB
274
1860
1.1
12.8930
66.5
0.0
81.9
0.0
47.8
0.6
11.3
5.4
18.9
15.4
1135.6
1517.0
11.3
5.4
NA
12MN54T-9T
230
324
0.8
12.8229
75.7
0.0
82.0
0.0
31.6
0.4
12.1
3.8
20.4
16.5
1146.5
1830.9
12.1
3.8
NA
12MN54T-10T
216
376
0.7
12.0417
100.5
0.0
107.1
0.0
37.0
0.3
12.3
4.6
22.0
23.3
1270.3
131.2
12.3
4.6
NA
12MN54T-11C
462
3677
1.5
26.2673
30.7
0.0
31.4
0.0
6.8
0.2
25.8
1.7
21.2
6.6
-480.3
830.3
25.8
1.7
NA
12MN54T-12T
430
1528
1.0
17.3686
63.0
0.0
66.2
0.0
20.4
0.3
11.7
2.4
14.5
9.5
513.6
1545.4
11.7
2.4
NA
12SG19t
Isotope ratios
Apparent ages (Ma)
Analysis
U
206Pb
U/Th
206Pb*
±
207Pb*
±
206Pb*
±
error
206Pb*
±
207Pb*
±
206Pb*
±
Best age
±
Conc
(ppm)
204Pb
207Pb*
(%)
235U*
(%)
238U
(%)
corr.
238U*
(Ma)
235U
(Ma)
207Pb*
(Ma)
(Ma)
(Ma)
(%)
12SG19T-1T
447
2941
1.7
9.7821
181.1
0.0
181.8
0.0
15.7
0.1
9.6
1.5
21.2
38.1
1664.9
301.8
9.6
1.5
NA
12SG19T-2T
700
3135
0.7
19.2136
120.2
0.0
120.6
0.0
9.4
0.1
9.4
0.9
10.6
12.7
287.5
981.2
9.4
0.9
NA
12SG19T-3T
422
1214
1.2
-4.5477
456.3
0.0
456.7
0.0
18.9
0.0
8.9
1.7
-43.5
-205.7
NA
NA
8.9
1.7
NA
12SG19T-4T
590
620
1.2
12.4152
55.4
0.0
58.3
0.0
18.3
0.3
8.9
1.6
15.4
8.9
1210.4
1189.4
8.9
1.6
NA
12SG19T-5T
380
240
1.9
15.2894
60.1
0.0
75.5
0.0
45.7
0.6
7.5
3.4
10.6
7.9
787.4
1396.0
7.5
3.4
NA
12SG19T-7T
457
2889
1.6
19.9922
34.2
0.0
34.4
0.0
4.0
0.1
22.2
0.9
23.9
8.1
195.9
816.5
22.2
0.9
NA
12SG19T-8T
135
424
0.9
-4.2966
125.4
0.0
139.6
0.0
61.3
0.4
7.6
4.6
-39.0
-55.5
NA
NA
7.6
4.6
NA
12SG19T-9T
175
1196
1.1
14.3409
89.1
0.0
91.7
0.0
21.9
0.2
20.0
4.4
29.9
27.1
920.5
282.5
20.0
4.4
NA
12SG19T-10T
460
1815
1.7
1.9778
929.2
0.1
929.3
0.0
9.7
0.0
9.3
0.9
97.8
1288.3
NA
NA
9.3
0.9
NA
12SG19T-11T
392
2504
1.4
6.8187
197.1
0.0
199.1
0.0
28.1
0.1
9.6
2.7
30.2
59.3
2307.3
82.5
9.6
2.7
NA
12SG19T-12T
420
440
1.1
13.3770
50.0
0.0
53.4
0.0
18.6
0.3
9.9
1.8
16.0
8.5
1061.9
1077.3
9.9
1.8
NA
12SG19T-13T
451
4502
1.5
19.0165
15.7
0.0
16.9
0.0
6.3
0.4
26.5
1.7
29.9
5.0
311.0
358.5
26.5
1.7
NA
12SG19T-14T
713
4265
1.0
23.6937
49.6
0.0
50.8
0.0
11.3
0.2
9.7
1.1
8.9
4.5
-214.2
1318.2
9.7
1.1
NA
12SG19T-15T
289
900
1.2
16.7090
78.8
0.0
83.7
0.0
28.3
0.3
15.6
4.4
20.1
16.7
598.1
2105.7
15.6
4.4
NA
12SG19T-17T
1662
4305
0.6
23.7112
31.5
0.0
31.7
0.0
3.5
0.1
12.7
0.4
11.6
3.7
-216.1
809.6
12.7
0.4
NA
3949
Altitude
3924
4061
3890
-14.785
-14.741
-14.740
Longitude (WGS84)
-71.416
-71.419
-71.325
-14.791
-14.812
-71.395
-71.242
3917
Table B1 continued. U-Pb geochronologic analyses.
12SG19t
Isotope ratios
Apparent ages (Ma)
Analysis
U
206Pb
U/Th
206Pb*
±
207Pb*
±
206Pb*
±
error
206Pb*
±
207Pb*
±
206Pb*
±
Best age
±
Conc
(ppm)
204Pb
207Pb*
(%)
235U*
(%)
238U
(%)
corr.
238U*
(Ma)
235U
(Ma)
207Pb*
(Ma)
(Ma)
(Ma)
(%)
12SG19T-18T
434
1829
1.8
2.2821
1045.2
0.1
1045.3
0.0
11.7
0.0
9.0
1.0
82.0
1147.2
4045.6
233.4
9.0
1.0
NA
12SG19T-19T
508
342
0.6
18.8717
72.2
0.0
73.0
0.0
11.2
0.2
8.6
1.0
9.8
7.2
328.4
1913.3
8.6
1.0
NA
12SG19T-20T
665
1589
0.7
9.6237
35.9
0.0
39.7
0.0
16.9
0.4
8.4
1.4
18.8
7.4
1695.1
685.9
8.4
1.4
NA
12YR07t
Isotope ratios
Apparent ages (Ma)
Analysis
U
206Pb
U/Th
206Pb*
±
207Pb*
±
206Pb*
±
error
206Pb*
±
207Pb*
±
206Pb*
±
Best age
±
Conc
(ppm)
204Pb
207Pb*
(%)
235U*
(%)
238U
(%)
corr.
238U*
(Ma)
235U
(Ma)
207Pb*
(Ma)
(Ma)
(Ma)
(%)
12YR07T-1T
263.6
357.5
1.2
5.8638
89.9
0.0
103.1
0.0
50.5
0.5
4.6
2.3
16.7
17.1
2562.9
NA
4.6
2.3
NA
12YR07T-2T
502.1
943.9
0.9
6.9258
122.4
0.0
130.0
0.0
43.9
0.3
4.8
2.1
14.9
19.3
2280.5
385.8
4.8
2.1
NA
12YR07T-3T
390.8
303.9
1.1
-5.2128
507.6
0.0
510.0
0.0
49.9
0.1
4.8
2.4
-20.2
-104.2
NA
NA
4.8
2.4
NA
12YR07T-4T
182.9
165.7
1.3
-0.1714
2234.7
-0.6
2235.2
0.0
49.0
0.0
4.5
2.2
-850.8
NA
NA
NA
4.5
2.2
NA
12YR07T-5T
223.5
238.1
1.0
4.0546
119.2
0.0
159.1
0.0
105.4
0.7
4.8
5.1
25.5
40.1
3163.3
920.2
4.8
5.1
NA
12YR07T-6T
313.7
629.7
1.3
-0.3853
1706.2
-0.3
1706.6
0.0
39.6
0.0
4.7
1.9
-309.2
NA
NA
NA
4.7
1.9
NA
12YR07T-7T
256.0
695.0
1.1
0.6080
665.4
0.2
667.4
0.0
52.4
0.1
4.5
2.4
150.7
1615.7
NA
NA
4.5
2.4
NA
12YR07T-8T
275.3
461.5
1.0
1.7417
278.3
0.1
283.0
0.0
51.3
0.2
4.4
2.3
53.8
149.3
NA
NA
4.4
2.3
NA
12YR07T-9T
355.1
647.4
1.0
-5.8818
324.4
0.0
325.9
0.0
30.6
0.1
4.6
1.4
-17.3
-56.9
NA
NA
4.6
1.4
NA
12YR07T-10T
284.6
770.0
1.1
-2.2999
598.1
-0.1
599.4
0.0
38.8
0.1
5.7
2.2
-55.2
-353.4
NA
NA
5.7
2.2
NA
12YR07T-11T
201.6
407.9
1.4
1.9420
181.2
0.1
196.9
0.0
77.2
0.4
5.3
4.1
57.3
110.1
NA
NA
5.3
4.1
NA
12YR07T-12T
232.0
345.5
1.4
-0.2295
2852.9
-0.5
2853.7
0.0
63.5
0.0
4.9
3.1
-625.0
NA
NA
NA
4.9
3.1
NA
12YR07T-13T
244.1
518.3
1.1
9.4157
174.3
0.0
191.3
0.0
78.7
0.4
4.4
3.4
10.0
19.1
1735.3
218.0
4.4
3.4
NA
12YR07T-14T
115.7
69.3
1.3
2.9416
45.2
0.0
108.6
0.0
98.7
0.9
4.5
4.5
33.1
35.3
3662.5
1540.1
4.5
4.5
NA
12YR07T-15T
253.4
1641.8
0.8
4.6316
211.0
0.0
219.7
0.0
61.1
0.3
5.1
3.1
23.5
51.1
2950.4
455.7
5.1
3.1
NA
12YR07T-17T
456.3
709.9
0.9
-3.4856
331.4
0.0
332.4
0.0
25.9
0.1
5.2
1.4
-33.2
-112.6
NA
NA
5.2
1.4
NA
12YR07T-18T
302.5
402.1
1.2
10.4184
91.6
0.0
99.8
0.0
39.5
0.4
4.9
2.0
10.3
10.2
1547.4
99.7
4.9
2.0
NA
12YR07T-19T
134.1
154.7
1.3
1.4304
162.9
0.1
196.2
0.0
109.3
0.6
3.5
3.8
52.0
99.7
NA
NA
3.5
3.8
NA
13AC71t
Isotope
Apparent
ratios
Ages (Ma)
Best
Analysis
U
206Pb
U/Th
206Pb*
±
207Pb*
±
206Pb*
±
error
206Pb*
±
207Pb*
±
206Pb*
±
age
±
Conc
(ppm)
204Pb
207Pb*
(%)
235U*
(%)
238U
(%)
corr.
238U*
(Ma)
235U
(Ma)
207Pb*
(Ma)
(Ma)
(Ma)
(%)
13AC71T-1
125
1338
1.4
22.1315
2.5
0.0266
3.3
0.0043
2.2
0.66
27.5
0.6
26.7
0.9
-45.7
60.8
27.5
0.6
NA
13AC71T-2
110
1237
1.4
21.4801
2.2
0.0269
2.4
0.0042
1.0
0.40
26.9
0.3
26.9
0.6
26.4
53.4
26.9
0.3
NA
13AC71T-3
834
5500
1.0
21.2508
0.7
0.0217
1.2
0.0033
1.0
0.83
21.5
0.2
21.8
0.3
52.1
16.7
21.5
0.2
NA
13AC71T-4
173
1648
0.5
20.2415
2.7
0.0212
3.0
0.0031
1.4
0.45
20.0
0.3
21.3
0.6
167.0
62.4
20.0
0.3
NA
13AC71T-5
116
74311
0.8
9.4021
0.5
4.3256
1.7
0.2950
1.6
0.95
1666.3
23.1
1698.3
13.7
1737.9
9.6
1737.9
9.6
95.9
13AC71T-6
77
1039
0.9
19.9319
3.2
0.0313
3.4
0.0045
0.9
0.26
29.1
0.3
31.3
1.0
202.9
75.3
29.1
0.3
NA
13AC71T-7
2269
5609
0.7
20.4850
1.1
0.0055
1.1
0.0008
0.4
0.33
5.3
0.0
5.6
0.1
139.0
25.4
5.3
0.0
NA
Table B1 continued. U-Pb geochronologic analyses.
13AC71t
Isotope ratios
Apparent ages (Ma)
Analysis
U
206Pb
U/Th
206Pb*
±
207Pb*
±
206Pb*
±
error
206Pb*
±
207Pb*
±
206Pb*
±
Best age
±
Conc
(ppm)
204Pb
207Pb*
(%)
235U*
(%)
238U
(%)
corr.
238U*
(Ma)
235U
(Ma)
207Pb*
(Ma)
(Ma)
(Ma)
(%)
13AC71T-8
84
70292
1.0
10.0242
2.5
3.6770
4.9
0.2673
4.2
0.86
1527.2
57.6
1566.4
39.4
1619.6
47.0
1619.6
47.0
94.3
13AC71T-9
410
1160
0.7
21.6234
2.7
0.0075
2.8
0.0012
0.8
0.29
7.6
0.1
7.6
0.2
10.5
64.9
7.6
0.1
NA
13AC71T-10
967
11704
0.9
21.1042
1.9
0.0224
2.6
0.0034
1.7
0.67
22.1
0.4
22.5
0.6
68.6
46.2
22.1
0.4
NA
13AC71T-11
261
2047
0.5
19.5298
1.9
0.0099
2.1
0.0014
0.8
0.39
9.0
0.1
10.0
0.2
250.0
44.5
9.0
0.1
NA
13AC71T-12
101
33613
0.3
13.9356
0.8
1.4896
1.7
0.1506
1.5
0.89
904.1
12.6
926.2
10.2
979.1
15.5
979.1
15.5
92.3
13AC71T-13
102
1737
1.3
20.8784
4.1
0.0295
4.2
0.0045
0.5
0.13
28.7
0.2
29.5
1.2
94.1
97.6
28.7
0.2
NA
13AC71T-14
95
246
0.4
24.9241
5.2
0.0056
5.3
0.0010
1.3
0.24
6.6
0.1
5.7
0.3
-343.1
133.0
6.6
0.1
NA
13AC71T-15
141
2171
0.8
20.8802
1.8
0.0402
1.9
0.0061
0.7
0.34
39.2
0.3
40.1
0.7
93.9
42.3
39.2
0.3
NA
13AC71T-16
141
1995
0.8
20.2564
4.2
0.0293
5.4
0.0043
3.3
0.62
27.7
0.9
29.3
1.5
165.3
98.7
27.7
0.9
NA
13AC71T-17
146
34441
27.0
17.0562
0.9
0.6848
1.1
0.0847
0.6
0.53
524.2
2.8
529.7
4.3
553.4
19.5
524.2
2.8
94.7
13AC71T-18
112
74146
1.4
7.8903
1.1
6.4133
1.7
0.3670
1.2
0.74
2015.3
21.2
2034.1
14.5
2053.2
19.7
2053.2
19.7
98.2
13AC71T-19
211
2577
0.9
21.2447
2.4
0.0285
2.5
0.0044
0.6
0.24
28.2
0.2
28.5
0.7
52.8
57.2
28.2
0.2
NA
13AC71T-20
244
2096
2.6
20.3162
2.8
0.0284
2.9
0.0042
0.7
0.26
26.9
0.2
28.4
0.8
158.4
65.4
26.9
0.2
NA
13AC71T-21
193
2124
1.3
21.2818
1.9
0.0289
2.5
0.0045
1.6
0.65
28.6
0.5
28.9
0.7
48.7
45.2
28.6
0.5
NA
13AC71T-23
250
3476
0.8
20.3527
4.1
0.0299
4.1
0.0044
0.6
0.15
28.4
0.2
29.9
1.2
154.2
95.7
28.4
0.2
NA
13AC71T-24
275
4992
1.0
20.9164
1.9
0.0289
2.0
0.0044
0.7
0.34
28.2
0.2
28.9
0.6
89.9
44.7
28.2
0.2
NA
13AC71T-25
119
30342
2.1
16.6937
0.8
0.7900
0.8
0.0957
0.3
0.32
588.9
1.5
591.2
3.6
600.0
16.6
588.9
1.5
98.1
13AC71T-26
106
900
0.6
21.3604
3.3
0.0209
3.3
0.0032
0.6
0.18
20.9
0.1
21.0
0.7
39.9
78.7
20.9
0.1
NA
13AC71T-27
101
749
0.4
16.7952
14.2
0.0236
14.2
0.0029
1.3
0.09
18.5
0.2
23.7
3.3
586.9
308.4
18.5
0.2
NA
13AC71T-28
174
95191
2.3
8.3225
2.9
4.6478
3.2
0.2805
1.4
0.44
1594.1
19.9
1757.9
26.7
1958.5
51.1
1958.5
51.1
81.4
13AC71T-30
51
617
1.5
21.2218
2.3
0.0279
3.2
0.0043
2.2
0.70
27.7
0.6
28.0
0.9
55.4
55.0
27.7
0.6
NA
13AC71T-31
29
16238
3.3
11.5876
1.0
2.5970
4.9
0.2183
4.8
0.98
1272.6
55.1
1299.8
35.7
1344.9
18.8
1344.9
18.8
94.6
13AC71T-32
83
27865
1.2
13.8740
0.9
1.6578
1.5
0.1668
1.3
0.83
994.5
11.8
992.5
9.8
988.1
17.5
988.1
17.5
100.6
13AC71T-33
83
20681
1.3
17.5208
0.9
0.6398
2.2
0.0813
2.1
0.92
503.9
10.0
502.2
8.9
494.4
19.1
503.9
10.0
101.9
13AC71T-34
195
2769
1.0
21.9325
1.6
0.0385
1.8
0.0061
0.8
0.46
39.4
0.3
38.4
0.7
-23.8
38.0
39.4
0.3
NA
13AC71T-36
786
80291
0.5
19.1281
0.8
0.3608
1.3
0.0500
1.0
0.75
314.8
2.9
312.8
3.4
297.6
19.2
314.8
2.9
NA
13AC71T-37
70
215
0.9
24.0028
4.0
0.0059
4.5
0.0010
2.0
0.45
6.7
0.1
6.0
0.3
-246.9
101.5
6.7
0.1
NA
13AC71T-38
113
1562
0.9
21.2088
2.9
0.0285
3.3
0.0044
1.6
0.47
28.2
0.4
28.5
0.9
56.9
69.9
28.2
0.4
NA
13AC71T-39
251
25014
1.0
19.0518
0.5
0.3553
0.7
0.0491
0.4
0.63
308.9
1.3
308.7
1.9
306.7
12.4
308.9
1.3
NA
13AC71T-40
75
1004
1.5
20.7579
3.3
0.0280
3.4
0.0042
1.0
0.28
27.1
0.3
28.0
0.9
107.9
76.8
27.1
0.3
NA
13AC71T-41
92
919
1.4
21.3472
2.8
0.0290
2.9
0.0045
1.0
0.33
28.9
0.3
29.1
0.8
41.3
66.1
28.9
0.3
NA
13AC71T-42
139
1403
1.4
13.8226
24.4
0.0824
26.0
0.0083
9.0
0.35
53.0
4.7
80.4
20.1
995.7
502.6
53.0
4.7
NA
13AC71T-43
196
100789
1.1
12.9339
1.3
2.0136
1.5
0.1889
0.9
0.57
1115.4
9.0
1120.1
10.4
1129.3
25.1
1129.3
25.1
98.8
13AC71T-44
218
12847
2.1
20.4055
0.6
0.1899
2.7
0.0281
2.6
0.98
178.7
4.6
176.6
4.4
148.1
13.5
178.7
4.6
NA
13AC71T-45
55
820
1.2
20.9298
2.3
0.0302
3.1
0.0046
2.1
0.68
29.5
0.6
30.2
0.9
88.4
53.6
29.5
0.6
NA
13AC71T-46
162
523
0.7
20.5826
7.8
0.0077
8.0
0.0012
1.6
0.20
7.4
0.1
7.8
0.6
127.9
184.7
7.4
0.1
NA
13AC71T-47
96
1115
1.3
19.3819
3.2
0.0321
3.9
0.0045
2.2
0.57
29.0
0.6
32.1
1.2
267.5
73.3
29.0
0.6
NA