Geometry*, table 2. Velocity*, figures 3, 5, 6. Reynolds stresses*, figure 11.
This is thesis by Witze, UC Davis, 1974.
Chapter 10: The Wall Jet
General References
BIRKHOFF, G. and ZARANTONELLO, E.H. 1957
Jets, Wakes, and
Cavities .
Academic Press.
GLAUERT, M.B. 1956 The wall jet. J. Fluid Mech.
1
, 625-643.
GLAUERT, M.B. 1958 On laminar wall jets. In
Grenzschichtforschung/
Boundary Layer Research
(H. G ̈ortler, ed.), Springer-Verlag, 72-78.
New
parameter for starting length, especially radial case. Comments about en-
trained flow in ducted geometry. Refers to calculations by Riley for com-
pressible case, but no citation given.
TETERVIN, N. 1948 Laminar flow of a slightly viscous incompress-
ible fluid that issues from a slit and passes over a flat plate. NACA TN
1644.
Plane wall jet into fluid at rest
Major surveys or theory
HAMMOND, G.P. 1981 Complete velocity profile and “optimum”
skin friction formulas for the plane wall-jet. ASME Paper 81-WA/FE-3.
LAUNDER, B.E. and RODI, W. 1981 The turbulent wall jet. Progr.
Aerospace Sci.
19
, 81–128.
Committee report for 1980/81 Stanford contest.
LAUNDER, B.E. and RODI, W. 1983 The turbulent wall jet—mea-
surements and modeling. Ann. Rev. Fluid Mech.
15
, 429–459.
MATHIEU, J. and CHARNAY, G. 1981 Structure and development
of turbulent jets. In
Fluid Dynamics of Jets with Applications to V/STOL
,
AGARD Conference Proceedings No. 308, Paper 9.
NARASIMHA, R. 1983 Note on wall jets in still air.(4-page preprint
in aero file; treat as private communication).
Fine points of approach to
asymptotic state far downstream.
370
NARASIMHA, R., YEGNA NARAYAN, K., and PARTHASARATHY,
S.P. 1973 Parametric analysis of turbulent wall jets in still air. Aeron. J.
77
, 355–359.
Careful survey using momentum flux to develop length scale.
NEWMAN, B.G. 1961 The deflexion of plane jets by adjacent bound-
aries – Coanda effect. In
Boundary Layer and Flow Control
(G. V. Lach-
mann, ed.), Pergamon, Vol. 1, 232–264.
RAJARATNAM, N. and SUBRAMANYA, K. 1967 Plane turbulent
free jet and wall jet. J. Roy. Aeron. Soc.
71
, 585–587.
Geometry*, figure
1. Growth*, figure 4.
SIGALLA, A. 1958 Experimental data on turbulent wall jets (a cor-
relation of existing data). Aircraft Eng.
30
, 131–134.
Correlation of other
people’s data for plane wall jet, mostly growth rate and surface friction. One
nice photograph (new) showing streamlines in entrained flow.
WYGNANSKI, I. and HAWALESHKA, O. 1967 Effect of upstream
velocity profile on the free mixing of jets with ambient fluid. AIAA J.
5
,
1057–1062 (also Boeing Sci. Res. Labs. Rep. No. D1-82-0528, 1966).
Glauert
wall jet develops into plane jet after end of splitter plate. Theoretical paper.
Experimental data
ABRAHAMSSON, H., JOHANSSON, B., and L
̈
OFDAHL, L. 1991
Turbulence measurements in a two-dimensional wall-jet. In
Preprints, Eighth
Symposium on Turbulent Shear Flows
, Vol. 2, Technical University of Mu-
nich, Paper I-1.
Velocity*, figure 1. Reynolds stresses*, figures 2–5.
BAKKE, P. 1957 An experimental investigation of a wall jet. J. Fluid
Mech.
2
, 467–472.
Mean velocity*, figure 2. Growth rate*, figure 3. Velocity
decay*, figure 4.
EL-TAHER, R.M. 1982 Similarity in ventilated wall jets. AIAA J.
20
, 161–166.
Mean velocity*, figures 3, 7. Growth rate, figure 5. Reynolds
stresses*, figures 8, 11–14. Wall pressure*, figure 2.
F
̈
ORTHMANN, E. 1934
̈
Uber turbulente Strahlausbreitung. Ing.-
Arch.
5
, 42–54 (translated as “Turbulent jet expansion,” NACA TM 789,
1936).
Mean velocity*, figures 13, 14. Also free jet*, figures 11, 12.
GARCIA, M., YU, W., and PARKER, G. 1986 Experimental study
of turbidity currents. In
Advancements in Aerodynamics, Fluid Mechanics,
and Hydraulics
(R.E.A. Arndt et al., eds.), ASCE, 120–127.
Geometry*,
figure 1. Velocity*, figures 2, 3. See MS thesis by Garcia, U. Minnesota,
1985.
371
GARTSHORE, I.S. 1965 The streamwise development of two-dimen-
sional wall jets and other two-dimensional turbulent shear flows. Ph. D.
thesis, McGill University (see also GARTSHORE, I.S., “The streamwise
development of certain two dimensional turbulent shear flows,” Mech. Eng.
Res. Labs., McGill Univ., Rep. No. 65–3, 1965).
Intermittency*, figure 2.
Mean velocity, figure 10. Growth rate*, figures 3, 5, 11, 12. Reynolds
stresses, figures 13, 14. Also plane wake and plane jet into moving fluid.
GUITTON, D.E. 1968 Correction of hot wire data for high intensity
turbulence, longitudinal cooling and probe interference. Mech. Eng. Res.
Labs., McGill Univ., Rep. No. 68-6.
Velocity*, figures 20–22, 25. Reynolds
stresses*, figures 26–31.
HO, C.-M. and HSIAO, F.-B. 1983 Evolution of coherent structures
in a lip jet. In
Structure of Complex Turbulent Shear Flow
(R. Dumas and L.
Fulachier, eds.), Springer-Verlag, 121–136.
Geometry*, figure 1. Velocity*,
figures 2, 3. Reynolds stresses*, figure 8. Frequency*, figure 10.
HSIAO, F.-B. and SHEU, S.-S. 1991 Flow transition and wall bound-
ary layer properties in the near field region of a plane wall jet. In
Boundary
Layer Transition and Control,
Royal Aeronautical Society, London, Paper
38.
Geometry*, figure 1. Flow viz*, figure 2. Velocity*, figures 4, 5.
HUBBARTT and NEALE 1972
KARLSSON, R.I. 1993 Near-wall measurements of turbulence struc-
ture in boundary layers and wall jets. In
Near-Wall Turbulent Flows
(R.M.C.
So, C.G. Speziale, and B.E. Launder, eds.), Elsevier, 423–432.
Power se-
ries*, table 2, figures 1, 2–4, 6, 9, 10.
KARLSSON, R.I., ERIKSSON, J., and PERSSON, J. 1993 LDV mea-
surements in a plane wall jet in a large enclosure. In
Laser Techniques and
Applications in Fluid Mechanics
(R.J. Adrian et al., eds.), Springer-Verlag,
311–332.
Jimenez collection No. 55.
Geometry*, figure 2. Velocity*,
figures 4, 9, 14. Reynoldss stresses*, figures 5, 12. Growth rate*, figure 8.
KATZ, Y., HOREV, E., and WYGNANSKI, I. 1991 The effects of
external excitation on the Reynolds-averaged quantities in a turbulent wall
jet. In
The Global Geometry of Turbulence
(J. Jimenez, ed.), Plenum, 67–87.
KATZ, Y., HOREV, E., and WYGNANSKI, I. 1992 The forced tur-
bulent wall jet. J. Fluid Mech.
242
, 577–609.
Geometry*, figure 1. Growth,
decay*, figures 4, 5. Velocity*, figure 11. Eigenfunction*, figure 19.
KIND, R.J. and SUTHANTHIRAN, K. 1973 The interaction of two
opposing plane turbulent wall jets. J. Fluid Mech.
58
, 389–402. Also private
communication.
Mean velocity*, figures 3, 7, 8. Growth rate*, figure 4.
Static pressure*, figure 5. Reynolds stresses*, figures 7, 9.
KOHAN, S.M. 1968 Some studies of the intermittent region and the
372
wall region of a two-dimensional plane wall jet. Ph. D. dissertation, Dept.
Chem. Eng., Stanford Univ.
Mean velocity*, figures 17–20, 23, 25. Reynolds
stresses*, figure 21. Growth rate*, figure 13. Intermittency*, figures 36–40.
MYERS, G.E., SCHAUER, J.J., and EUSTIS, R.H. 1963 Plane tur-
bulent wall jet flow development and friction factor. Trans. ASME (J. Basic
Eng.)
85D
, 47–53 (see also MYERS, G.E., SCHAUER, J.J., and EUSTIS,
R.H., The plane turbulent wall jet. Part I. Jet development and friction fac-
tor. Dept. Mech. Eng., Stanford Univ., Tech. Rep. No. 1, 1961, and Ph. D.
thesis by MYERS, An investigation of the friction and heat transfer charac-
teristics of plane turbulent wall jets, Stanford Univ., 1962).
Mean velocity,
figures 5, 11. Growth rate*, figure 5. Velocity decay*, figure 4. Friction
coefficient*, figures 6, 9, 10. Some data are tabulated.
PAIZIS, S.T. and SCHWARZ, W.H. 1974 An investigation of the to-
pography and motion of the turbulent interface. J. Fluid Mech.
63
, 315–343
(see also Ph. D. dissertation by PAIZIS, The turbulent interface, Johns Hop-
kins Univ., 1972)
Intermittency*, figure 2. Space-time correlations.
PAIZIS, S.T. and SCHWARZ, W.H. 1975 Entrainment rates in tur-
bulent shear flows. J. Fluid Mech.
68
, 297–308.
Mean velocity, figure 2.
PATEL 1962
RAJARATNAM, N. 1965 Flow below a submerged sluice gate as a
wall jet problem. In
Proc. 2nd Australasian Conference on Hydraulics and
Fluid Mechanics
, Univ. Auckland, New Zealand, B131–B146.
Mean veloc-
ity*, figures 3b, 3c, 4, 5. Growth rate*, figure 6. Velocity decay*, figure 7.
Friction coefficient, figures 3a, 9.
RIVIR, R.B., TROHA, W.T. ECKERLE, W.A., and SCHMOLL, W.J.
1993 Heat transfer in high turbulent flows: a 2D planar wall jet. In
Heat
Transfer and Cooling in Gas Turbines,
AGARD CP 527, Paper 8.
Heat
transfer*, figures 5, 15. Velocity*, figures 7, 10. Reynolds stresses*, figures
8, 9.
SCHNEIDER, M.E. 1987 Laser Doppler measurements of turbulence
in a two-dimensional wall jet on a flat plate in stagnant surroundings.
Ph. D. thesis, Univ. Minnesota.
Velocity*, figure 5.4. Growth, decay*, figure
5.7. Reynolds stresses*, figures 5.12, 5.15, 5.19. Data are tabulated
.
SCHNEIDER, M.E. and GOLDSTEIN, R.J. 1994 Laser Doppler mea-
surement of turbulence parameters in a two-dimensional plane wall jet.
Phys. Fluids
6
, 3116–3129.
Geometry*, figure 2. Velocity*, figure 4. Growth
rate*, figure 5. Reynolds stresses*, figures 8, 9, 11.
SCHWARZ, W.H. and COSART, W.P. 1961 The two-dimensional
turbulent wall-jet. J. Fluid Mech.
10
, 481–495 (see also M.S. thesis by
COSART, Some studies of a wall jet, Dept. Chem. and Chem. Eng., Stan-
373
ford Univ., 1959).
Mean velocity*, figures 2, 3, 5.
SCIBILIA-COCHERIL, M.F. and LUAP, J. 1982 Thermal study of a
wall jet. Arch. Mech.
34
, 675–684.
Archiwum Mechaniki Stosawanej. Mean
velocity*, figure 7. Mean temperature*, figure 3.
SCIBILIA, M.F., LUAP, J., and WOJCIECHOWSKI, J. 1983 Etude
d’un jet parietal chauffe. l’Aerotecnica Missile e Spazio
62
, 92–99.
Mean
velocity*, figures 3, 4, 9–11. Wall friction, figure 5. Reynolds stresses, figure
6. Mean temperature*, figures 9–11.
SIGALLA, A. 1958 Measurements of skin friction in a plane turbulent
wall jet. J. Roy. Aeron. Soc.
62
, 873–877.
Mean velocity*, figures 4, 7.
Growth rate*, figure 6. Velocity decay*, figure 5. Friction coefficient*, figure
3.
SPETTEL, F., MATHIEU, J., and BRISON, J.F. 1972 Tensions de
Reynolds et production d’ ́energie cin ́etique turbulente dans les jets pari ́etaux
sur parois planes et concaves. J. M ́ec.
11
, 403–425.
Mean velocity*, figures
1, 6. Growth rate*, figure 2. Reynolds stresses*, figure 7. Intermittency*,
figures 11, 12.
SRIDHAR, K. and TU, P.K.C. 1966 Effects of an initial gap on the
flow in a turbulent wall jet. J. Roy. Aeron. Soc.
70
, 669–673.
Mean velocity*,
figures 2, 5. Growth rate*, figures 3, 7. Velocity decay*, figure 4. Also free
jet*, figure 6. No tabulations.
TAILLAND, A. and MATHIEU, J. 1967 Jet pari ́etal. J. de M ́ecanique
6
, 103–131.
Mean velocity*, figures 2, 3, 12, 13, 14. Friction coefficient*,
figure 11. Growth rate*, figures 4, 10, 17, 18. Reynolds stresses*, figures 5,
6, 16.
WYGNANSKI, I., KATZ, Y., and HOREV, E. 1992 On the applica-
bility of various scaling laws to the turbulent wall jet. J. Fluid Mech.
234
,
669–690.
Mean velocity*, figures 2, 3, 7, 11–14. Velocity decay, figures 4,
5. Reynolds stresses, figure 6. Wall friction*, figures 9, 10ab.
ZHOU, M.D., HEINE, C., and WYGNANSKI, I. 1996 The effects of
excitation on the coherent and random motion in a plane wall jet. J. Fluid
Mech.
310
, 1–37.
Velocity*, figure 1. Growth rate*, figure 2. Reynolds
stresses*, figures 4–7. Energy budget.
374
Plane wall jet into moving fluid
Major surveys or theory
GARTSHORE, I.S. and NEWMAN, B.G. 1969 The turbulent wall
jet in an arbitrary pressure gradient. Aeron. Quart.
20
, 25–56.
LAUNDER, B.E. and RODI, W. 1981 Turbulent wall jet. In
Proc.
1980-81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows,
Stanford Univ., Vol. 1, 434–456.
LAUNDER, B.E. and RODI, W. 1983 The turbulent wall jet—mea-
surements and modeling. Ann. Rev. Fluid Mech.
15
, 419–459.
RAJARATNAM, N. 1972 Plane turbulent compound wall jets. J.
Hydraul. Res.
10
, 189–203.
YEGNA NARAYAN, K. and NARASIMHA, R. 1973 Parametric anal-
ysis of turbulent wall jets. Aeron. Quart.
24
,207–218.
Analysis for wall jet
under boundary layer. Rules for growth rate, decay of maximum velocity.
See for two new experimental references.
Experimental data
B
́
EGUIER, C. 1965 M ́esures des tensions de Reynolds dans un ́ecoule-
ment dissym ́etrique en r ́egime turbulent incompressible. J. M ́ec.
4
, 319–334.
Two streams mixing in channel. Profiles of mean velocity, Reynolds stresses.
Looks like thesis. Mean velocity*, figures 3, 4. Reynolds stresses*, figures 6,
7.
BRADSHAW, P. and GEE, M.T. 1960 Turbulent wall jets with and
without an external stream. ARC FM 2971 (also ARC R&M 3252, 1962)
Plane wall jet into still or moving fluid; plane or curved wall; profiles of
mean velocity, turbulence intensityand shearing stress; local surface friction
(Preston tube). Very good paper. Also ARC Res. on Aerodyn. Char. and
Control, B.L. and Instr. during 1960,
2
, 1247–1294. Mean velocity, figures
2, 6, 7, 16, 17, 22, 23, 28, 29, 33, 34, 38. Surface friction, figures 4, 15,
30.
ESCUDIER, M.P., NICOLL, W.B., SPALDING, D.B., and WHITELAW,
J.H. 1967 Decay of a velocity maximum in a turbulent boundary layer.
Aeron. Quart.
18
, 121–132.
Integral method, with a few new measurements.
Mean velocity*, figure 4. Friction coefficient*, figure 3.
ESKINAZI, S. and KRUKA, V. 1963 Mixing of a turbulent wall-jet
into a free-stream. Trans. ASCE
128
, Part I, 1055–1073, or Proc. ASCE (J.
Eng. Mech. Div., No. EM2, Part 1)
88
, 125–143, 1962.
Velocity*, figures
375
5–10. Growth*, figures 10, 11. Decay*, figure 12. Reynolds stress*, figure
16. Friction*, figure 17.
GORADIA, S.H. and COLWELL, G.T. 1971 Parametric study of a
two-dimensional turbulent wall jet in a moving stream with arbitrary pres-
sure gradient. AIAA J.
9
, 2156–2165 (see also Ph. D. thesis by GORADIA,
Confluent boundary layer flow development with arbitrary pressure distribu-
tion. Dept. Mech. Eng., Georgia Inst. Technology, 1971).
Mean velocity*,
figures 3-5, 9-11. Reynolds stresses*, figures 13–15. Write for data on cases
1, 2, 3 with
dp/dx
= 0
(see p 58 and figures 28–35).
GUPTA, R.P. 1973 Experiments on separated flows: a new probe
and upstream effects of separation. Ph. D. thesis, Dept. Mech. Eng., IIT
Kanpur.
Velocity*, figure 20. Flow viz*, figure 17.
HARRIS, G.L. 1965 The turbulent wall jet on plane and curved sur-
faces beneath an external stream. von Karman Inst., Rhode-Saint-Genese,
Tech. Note 27.
Mean velocity*, figures 6, 7, 8.
HARRIS, G.L. 1967 The self-preserving turbulent jet ejector. AIAA
Paper 67-127.
Plane wall-jet ejector. Outer wall shape is tailored for power-
law outer flow. Profiles of mean velocity, Reynolds shearing stress. Mean
velocity*, figures 5, 6. Growth rate*, figure 4.
HEWEDY, N.I.I. 1980 Wanddruck- und Wandschubspannungsverteil-
ung eines tangential ausgeblasenen Gegenstroms. Rheinisch-Westfalische
Technische Hochschule, Aerodynamisches Institut, Abhandlungen, No. 24,
44–49.
Opposing wall jets. Geometry*, figure 2. Pressure*, figure 6.
HUBBARTT, J.E. and NEALE, D.H. 1972 Wall layer of plane tur-
bulent wall jets without pressure gradients. J. Aircraft
9
, 195–196 (see also
backup paper, same authors and title, 1973).
Mean velocity*, figures 2-3.
Friction coefficient*, figure 4.
IRWIN, H.P.A.H. 1973 Measurements in a self-preserving plane wall
jet in a positive pressure gradient. J. Fluid Mech.
61
, 33–63 (see also Ph.D.
thesis by IRWIN, same title,
date?
or Mech. Eng. Research Labs., McGill
Univ., MERL Rep. No. 73-2, 1973).
Mean velocity*, figures 8–10. Friction
coefficient*, figure 7. Growth rate*, figure 11. Reynolds stresses*, figure 12.
Intermittency*, figure 16. Energy balance.
KACKER, S.C. and WHITELAW, J.H. 1968 Some properties of the
two-dimensional, turbulent wall jet in a moving stream. Trans. ASME, J.
Appl. Mech.
35E
, 641–651.
Geometry*, figure 1. Velocity*, figures 3, 4.
Reynolds stresses. Decay of
u
′
in free stream*, figure 12.
KACKER, S.C. and WHITELAW, J.H. 1971 The turbulence charac-
teristics of two-dimensional wall-jet and wall-wake flows. Trans. ASME (J.
Appl. Mech.)
38E
, 239–252.
Mean velocity*, figure 3. Friction coefficient*,
376
figure 5. Reynold stresses*, figures 6, 8. Energy balance.
KIND, R.J., GOODEN, K., and DVORAK, F.A. 1979 Measurements
of flows with tangential injection and comparison with prediction methods.
AIAA J.
17
, 730–735.
Mean velocity*, figures 6-11.
KRAUSE, E., H
̈
ANEL, D., and HEWEDY, N.I.I. 1981 Investigation
of wall jets. In
Fluid Dynamics of Jets with Applications to V/STOL
,
AGARD Conference Proceedings No. 308, Paper 30.
Mean velocity, figures
4, 5.
KRUKA, V. and ESKINAZI, S. 1964 The wall-jet in a moving stream.
J. Fluid Mech.
20
, 555–579.
Thesis? JFM says Eskinazi and Kruka, “Tur-
bulence measurements in a two-dimensional wall-jet with longitudinal free
stream,” Syracuse Univ. Res. Inst. Rep. ME 937-6205P, 1962. Geome-
try*, figure 14. Decay*, figure 12. Velocity*, figure 16. Friction, figure
18, Reynolds stresses, figures 19, 23, 24.
NIZOU, P.Y. 1981 Heat and momentum transfer in a plane turbulent
wall jet. Trans. ASME (J. Heat Transf.)
103
, 138–140 (see also thesis,
Contribution `a l’ ́etude de la convection forc ́ee turbulente dans le cas d’un
jet pari ́etal plan, Univ. Nantes, 1978, by P.Y. Nizou).
Friction*, figure 4.
Temperature*, figure 5. Heat transfer*, figure 7.
PAI, B.R. and WHITELAW, J.H. 1969 Simplification of the razor-
blade technique and its application to the measurement of wall-shear stress
in wall-jet flows. Aeron. Quart.
20
, 355–364.
Rudimentary data in channel
flow and wall jet. Velocity*, figure 2.
PAPAILIOU, D. 1975 Structure of two-dimensional turbulent wall-
jets in the presence of adverse pressure gradients. Aerosp. Res. Labs.,
Wright-Patterson AFB, Rep. ARL TR 75-0218.
Mean velocity*, figures
10–13. Growth rate, figure 15.
PARTHASARATHY, S.P. 1964 Two-dimensional turbulent wall jets
with and without a constant outside stream. Thesis, Dept. Aeron., Indian
Institute Science, Bangalore.
Mean velocity*, Reynolds stresses (various).
PATEL, R.P. 1962 Self preserving, two-dimensional turbulent jets and
wall jets in a moving stream. M.E. Thesis, Dept. Mech. Eng., McGill Univ.
(see also short preliminary version by PATEL and NEWMAN, same title,
in Rep. No. Ae 5, Mech. Eng. Res. Labs., McGill Univ., 1961).
Mean
velocity*, figures 4–6, 9–11, 20–26, 29–33, 35–37, 39–43, 47–48. Reynolds
stresses*, figures 15, 16. Growth rate, figures 7, 27, 28, 38.
RAJARATNAM, N. and SUBRAMANYA, K. 1967 Plane turbulent
free jet and wall jet. J. Royal Aeron. Soc.
71
, 585–587.
Growth rate, figure
4.
RAMAPRIAN, B.R. 1973 Turbulent wall-jets in conical diffusers. AIAA
377
J.
11
, 1684–1690 (see also Ph. D. thesis by RAMAPRIAN, Flow in conical
diffusers with annular injection at the inlet, Mech. Eng., Univ. Waterloo,
1969).
A little on mean velocity near wall (friction velocity is plotted). Mean
velocity*, figures 5, 13. Velocity decay*, figure 6. Friction coefficient, figure
10. Growth rate, figures 10–12. Data are tabulated in thesis
.
RAMAPRIAN, B.R. 1975 Turbulence measurements in an “equilib-
rium” axisymmetric wall jet. J. Fluid Mech.
71
, 317–338.
Wall jet in
conical diffuser. Profiles of mean velocity, Reynolds stresses. Mean veloc-
ity*, figures 4, 5. Reynolds stresses*, figures 4, 8.
SARIPALLI, K.R. and SIMPSON, R.L. 1985 Measurements of a zero-
pressure-gradient boundary layer blown by an asymmetric jet. AIAA J.
23
,
490–491 (see also Ph.D. thesis by SARIPALLI, Investigation of blown bound-
ary layers with an improved wall jet system, Southern Methodist Univ.,
1979).
Mean velocity*, figures 1–2. Thesis has tables.
.
WHITELAW, J.H. 1967 An experimental investigation of the two-
dimensional wall jet. Aeron. Res. Council, CP 942.
Mean velocity*, figures
3, 8. Friction coefficient*, figure 7. Reynolds stresses*, figures 12, 13.
Effectiveness*.
WOOD, D.H. and BRADSHAW, P. 1984 A turbulent mixing layer
constrained by a solid surface. Part 2. Measurements in the wall-bounded
flow. J. Fluid Mech.
139
, 347–361.
Mean velocity*, figure 2. Intermit-
tency*, figure 3. Reynolds stresses*, figures 4, 6. Energy balance.
ZHOU, M.D. and WYGNANSKI, I. 1993 Parameters governing the
turbulent wall jet in an external stream. AIAA J.
31
, 848–853.
Geometry*,
figure 1. Velocity*, figure 2, 3, 5. Growth*, figure 4.
Impinging plane jet
Major surveys or theory
Experimental data
BELTAOS, S. and RAJARATNAM, N. 1973 Plane turbulent imping-
ing jets. J. Hydraulic Res.
11
, 29-59.
Mean velocity*, figures 3, 8. Growth
rate, figure 15. Reynolds stresses*, figure 5. Surface pressure, figures 6, 10.
Friction coefficient*, figure 17. See thesis by Beltaos.
GARDON, R. and AKFIRAT, J.C. 1966 Heat transfer characteristics
of impinging two-dimensional air jets. Trans. ASME (J. Heat Transf.)
88C
,
101-107.
Most data* faired.
378
GUTMARK, E., WOLFSHTEIN, M., and WYGNANSKI, I. 1978 The
plane turbulent impinging jet. J. Fluid Mech.
88
, 737-756.
Energy balance.
Most data* faired
.
HARDISTY, H. and CAN, M. 1983 An experimental investigation
into the effect of changes in the geometry of a slot nozzle on the heat transfer
characteristics of an impinging air jet. Proc. Inst’n. Mech. Eng.
197C
,
7-15.
Heat transfer*, figures 9, 10.
KOTANSKY, D.R. and GLAZE, L.W. 1982 Impingement of rectan-
gular jets on a ground plane. AIAA J.
20
, 585-586.
Momentum balance,
figure 2.
SCHAUER, J.J. 1964 The flow development and heat transfer char-
acteristics of plane turbulent impinging jets. Ph.D. Thesis, Stanford Univ.,
(see also SCHAUER and EUSTIS, same title, Stanford Dept. Mech. Eng.,
Tech. Rep. No. 3, 1963). See also Myers, S & E.
Surface pressure*, fig-
ure 1.5. Friction coefficient*, figure 1.16. Heat transfer*, figures 2.2-2.7.
Temperature profile*, figure 2.9. Data are tabulated
.
TU, C.V., HOOPER, J.D., and WOOD, D.H. 1992 Wall pressure and
shear stress measurements for normal jet impingement. In
Proc. 11th Aus-
tralasian Fluid Mechanics Conference
, Vol. 2, Univ. Tasmania, 1109–1112.
Pressure*, figure 3. Velocity*, figure 2. Friction*, figure 4.
YOKOBORI, S., KASAGI, N., and HIRATA, M. 1977 Characteris-
tic behaviour of turbulence in the stagnation region of a two-dimensional
submerged jet impinging normally on a flat plate. In
Preprints, Sympo-
sium on Turbulent Shear Flows
, Penn. State Univ., 3.17-3.25.
Only flow
visualization.
YUMINO, T. and ASANUMA, T. 1984 LDV measurements of two-
dimensional turbulent free and impinging air jets. In
Laser Anemometry
in Fluid Mechanics II
, Second Int’l. Symposium (R.J. Adrian et al., eds.),
LADOAN-Instituto Superior Tecnico, Lisbon, 237–256.
Geometry*, figures
1, 17. Growth, decay*, figure 7. Velocity*, figures 8, 18, 20, 27. Reynolds
stresses*, figures 9, 10, 11. Intermittency*, figure 12.
379
Wall jet on curved surface
Major surveys or theory
Experimental data
ALCARAZ,
́
E., CHARNAY, G., and MATHIEU, J. 1976 Contraintes
de Reynolds ́echantillon ́ees dans la r ́egion externe et dans la r ́egion centrale
d’un jet pari ́etal convexe. C. R. Acad. Sci. Paris
282B
, 381–384.
Condi-
tional averages of
u
′
u
′
and
u
′
v
′
for wall jet on convex wall. See also
280B
,
531, 1975 and
280B
, 613, 1975 (same authors). Mean velocity*, figures 3,
4. Intermittency*, figures 1, 2.
ALCARAZ,
́
E., CHARNAY, G., and MATHIEU, J. 1976 Intermit-
tences et moyennes conditionnelles de la vitesse dans la r ́egion externe et
dans la r ́egion centrale d’un jet pari ́etal convexe. C. R. Acad. Sci. Paris
282B
, 471–474.
Intermittency and mean and conditional mean velocities in
wall jet on convex wall. Reynolds stresses*, figures 1, 2.
ALCARAZ, E., CHARNAY, G., and MATHIEU, J. 1977 Measure-
ments in a wall jet over a convex surface. Phys. Fluids
20
, 203–210.
Mean
velocity, figure 2. Reynolds stresses*, figure 3. Intermittency, figure 16.
Energy balance.
CARLETTI, M.J., ROGERS, C.B., and PAREKH, D.E. 1995 Use of
streamwise vorticity to increase mass entrainment in a cylindrical ejector.
AIAA J.
33
, 1641–1645.
FEKETE, G.I. 1963 Coanda flow of a two-dimensional wall jet on the
outside of a circular cylinder. Mech. Eng. Res. Labs., McGill Univ., Rep.
No. 63–11. Also private communication.
Mean velocity*, figures 6, 8–10,
14. Reynolds stresses*, figures 10, 11, 12. Growth rate*, figures 15, 16.
Surface pressure*, figures 25–31
.
FUJISAWA, N. and SHIRAI, H. 1987 Theoretical and experimental
studies of a turbulent wall jet along a strongly concaved surface. Trans.
Japan Society for Aeronautical and Space Sciences
30
, no. 87, 26–37.
Gortler
instability. Geometry*, figure 1. Velocity*, figure 2. Growth rate*, figures
3, 4. Reynolds stresses*, figure 5.
FUJISAWA, N. and SHIRAI, H. 1987 Theoretical and experimental
studies of a turbulent wall jet along a highly convex surface. Trans. Japan
Society for Aeronautical and Space Sciences
30
, 162–172.
GILES, J.A., HAYS, A.P., and SAWYER, R.A. 1966 Turbulent wall
jets on logarithmic spiral surfaces. Aeron. Quart.
17
, 201–215.
Mean ve-
380
locity*, figures 2–7. Growth rate*, figure 8. Static pressure*, figure 11.
Intermittency*, figures 12, 13. See thesis by SAWYER.
GUITTON, D.E. and NEWMAN, B.G. 1977 Self-preserving turbu-
lent wall jets over convex surfaces. J. Fluid Mech.
81
, 155–185 (see also
Ph. D. thesis by GUITTON, Some contributions to the study of equilib-
rium and non-equilibrium wall jets over curved surfaces, Dept. Mech. Eng.,
McGill Univ., 1970).
Mean velocity*, figures 5.6–5.8, 8.12–8.15, 8.17–8.19,
9.1–9.7, 10.6–10.9. Reynolds stresses*, figures 9.19–9.27, 10.16–20.21. In-
termittency*, figures 9.43, 9.44, 9.47, 9.48. Surface pressure, figure 10.15.
Case 263, 1980 Stanford contest.
HARTMANN, U. 1982 Wall interference effects on hot-wire probes in
a nominally two-dimensional highly curved wall jet. J. Phys. E: Sci. Instrum.
15
, 724–730.
Static pressure*, figures 3, 5. Reynolds stresses*, figures 4, 6.
JOHNSON, G.M. 1967 An experimental investigation of relaxing tur-
bulent jet flow. Unnumbered report, California Institute of Technology.
Is
this an AE thesis? Static pressure*, figures 7, 16–19. Mean velocity*, figures
8–15. Growth rate, figures 20, 21. Velocity decay, figures 22, 23.
KAMEMOTO, K. 1974 Investigation of turbulent wall jets over log-
arithmic spiral surfaces. (First report, development of jets and similarity of
velocity profile.) Bull. JSME
17
, 335–342.
Mean velocity*, figures 12–16.
Static pressure*, figure 19. Growth rate*, figure 18.
KAMEMOTO, K. 1974 Investigation of turbulent wall jets over log-
arithmic spiral surfaces. (Second report, properties of flow near wall.) Bull.
JSME
17
, 343–350.
Surface friction*, figure 6. Mean velocity*, figures 7–11.
Reynolds stresses*, figures 12–14.
KOBAYASHI, R. and FUJISAWA, N. 1983 Curvature effects on two-
dimensional wall jets. Ing.-Arch.
53
, 409-417.
Geometry*, figure 1. Veloc-
ity*, figures 2, 7. Growth*, figure 3. Decay*, figure 4. Friction, figure 6.
Reynolds stresses*, figures 8, 9. Energy balance.
KOBAYASHI, R. and FUJISAWA, N. 1983 Turbulence measurements
in wall jets along strongly concave surfaces. Acta Mechanica
47
, 39–52.
Mean velocity*, figure 2. Growth rate, figures 3, 4. Reynolds stresses*,
figures 6, 7, 9, 11.
KOBAYASHI, R. and FUJISAWA. N. 1983 Curvature effects on two-
dimensional turbulent wall jets along concave surfaces. Bull. JSME
26
,
2074–2080.
Mean velocity*, figures 3, 8. Growth rate*, figure 4. Friction
coefficient*, figure 7. Reynolds stresses*, figures 9–12.
NAKAGUCHI, H. 1961 Jet along a curved wall. T. Moriya Memorial
Seminar, Dept. Aeronautics, Univ. Tokyo, Res. Memo. No. 4.
Mean veloc-
ity*, figures 2.8–2.11, 2.26–2.30. Growth rate*, figures 2.14–2.22. Reynolds
381
stresses*, figures 4.4–4.9. Also plane jet. Letter sent, Jan. 1991. Data are
lost.
SRIDHAR, K. and TU, P.K.C. 1969 Experimental investigation of
curvature effects on turbulent wall jets. Aeron. J.
73
, 977–981.
Mean veloc-
ity*, figure 12.
WILSON, D.J. and GOLDSTEIN, R.J. 1976 Turbulent wall jets with
cylindrical streamwise curvature. Trans. ASME (J. Fluids Eng.)
98I
, 550–
557 (see also Ph.D. thesis by WILSON, An experimental investigation of
the mean velocity, temperature and turbulence fields in plane and curved
two-dimensional wall jets: Coanda effect, Univ. Minnesota, 1970).
Mean
velocity*, figures 5.1, 5.2, 5.8, 5.10, 5.11, 5.14, 5.15, 5.45–5.47. Surface
pressure, figure 5.21. Reynolds stresses, figures 5.27–5.29, 5.32, 5.48–5.50.
No tables.
Film cooling
Major surveys or theory
GOLDSTEIN, R.J. 1971 Film cooling. Adv. Heat Transf.
7
, 321-
379.
KACKER, S.C., PAI, B.R., and WHITELAW, J.H. 1969 The predic-
tion of wall jet flows with particular reference to film cooling. Prog. Heat
Mass Transf.
2
, 163–186.
Experimental data
AKFIRAT, J.C. 1966 Transfer of heat from an isothermal flat plate
to a two-dimensional wall jet. In
Proc. Third International Heat Transfer
Conference,
A.I.Ch.E., Vol. II, 274–279.
Heat transfer*, figures 2, 4–6.
AMITAY, M. and COHEN, J. 1993 The mean flow of a laminar wall-
jet subjected to blowing or suction. Phys. Fluids
A5
, 2053–2057.
Geome-
try*, figure 1. Velocity*, figures 2, 3, 5.
CHAN, H.W. 1956 The effect of air injection on the heat transfer from
a flat plate. M.S. Thesis, Dept. Mech. Eng., Univ. California (Berkeley).
Surface temperature*, figures 3, 4, 5. Nusselt number*, figures 6, 7, 8. Data
are tabulated
.
CHIN, J.H., SKIRVIN, S.C., HAYES, L.E., and SILVER, A.H. 1958
Adiabatic wall temperature downstream of a single, tangential injection slot.
ASME Paper 58-A-107.
Effectiveness*, figure 8.
382
DAKOS, T., VERRIOPOULOS, C.A., and GIBSON, M.M. 1984 Tur-
bulent flow with heat transfer in plane and curved wall jets. J. Fluid Mech.
145
, 339-360.
Mean velocity*, figures 2, 3. Mean temperature*, figures 4,
5. Reynolds stresses*, figures 6, 7.
ERIKSEN, V.L. and GOLDSTEIN, R.J. 1974 Heat transfer and film
cooling following normal injection through a round hole. Trans. ASME
(J. Eng. Power)
96A
, 329-334 (see also Ph. D. thesis by ERIKSEN, Film
cooling effectiveness and heat transfer with injection through holes, Univ.
Minnesota, 1971).
Heat transfer*, figures 2, 3, 4.
ESCUDIER, M.P. and WHITELAW, J.H. 1968 The influence of strong
adverse pressure gradients on the effectiveness of film cooling. Int’l. J. Heat
Mass Transf.
11
, 1289–1292.
Effectiveness*, figure 5.
GOLDSTEIN, R.J., ECKERT, E.R.G., and RAMSEY, J.W. 1968 Film
cooling with injection through holes: Adiabatic wall temperatures down-
stream of a circular hole. Trans. ASME (J. Eng. Power)
90A
, 384-395.
Mean velocity*, figure 4. Growth rate*, figure 5. Effectiveness*, figures 7,
11.
HAMMOND, G.P., FUNG, W.S., O’CALLAGHAN, P.W. and PROBERT,
S.D. 1977 Interferometric study of the temperature field created by a
quasi-plane cold air jet and an adjacent flat plate. J. Mech. Eng. Sci.
19
,
47-57.
Mean velocity*, figure 2. Mean temperature*, figure 4. Effective-
ness*, figure 6.
HARTNETT, J.P. BIRKEBAK, R.C., and ECKERT, E.R.G. 1961 Ve-
locity distributions, temperature distributions, effectiveness and heat trans-
fer in cooling of a surface with a pressure gradient. In
International Devel-
opments in Heat Transfer
, Proc. 1961-1962 Conf., Boulder, ASME, 682-689.
Mean velocity*, figures 12, 14, 17-19, 27. Mean temperature*, figures 20-21,
28. Effectiveness*, figures 11, 24.
HARTNETT, J.P. BIRKEBAK, R.C., and ECKERT, E.R.G. 1961 Ve-
locity distributions, temperature distributions, effectiveness and heat trans-
fer for air injected through a tangential slot into a turbulent boundary layer.
Trans. ASME (J. Heat Transf.)
83C
, 293–306.
Slot at angle to surface. Ge-
ometry*, figure 2. Velocity*, figures 14, 17, 27. Temperature*, figures 21,
28. Effectiveness*, figures 24, 26.
JAKOB, M., ROSE, R.L., and SPIELMAN, M. 1950 Heat transfer
from an air jet to a plane plate with entrainment of water vapor from the
environment. Trans. ASME
72
, 859-867 (see also M.S. thesis by SPIEL-
MAN, Diffusion of water vapor from the atmosphere through a jet of less
humid air, 1947, and Ph. D. thesis by SPIELMAN, Local coefficients of
mass transfer by evaporation of water into an air jet, 1951).
Mean velocity*,
383
figure 9. Mean temperature*, figure 10. Heat transfer*, figures 14, 17.
KACKER, S.C. and WHITELAW, J.H. 1967 The dependence of the
impervious wall effectiveness of a two-dimensional wall-jet on the thickness
of the upper lip boundary layer. Int’l. J. Heat Mass Transf.
10
, 1623–1624.
Geometry*, figure 1.
KACKER, S.C. and WHITELAW, J.H. 1968 The effect of slot height
and slot-turbulence intensity on the effectiveness of the uniform density,
two-dimensional wall jet. Trans. ASME (J. Heat Transf.)
90C
, 469-475.
Effectiveness*, figures 2-7, 9. Mean temperature*, figure 8.
KACKER, S.C. and WHITELAW, J.H. 1969 An experimental inves-
tigation of the influence of slot-lip-thickness on the impervious-wall effective-
ness of the uniform-density, two-dimensional wall jet. Int’l. J. Heat Mass
Transf.
12
, 1196–1201.
Geometry*, figure 1. Velocity*, figure 2. Effective-
ness*, figure 3.
KADOTANI, K. 1975 Effect of main stream variables on heated and
unheated jets issuing from a row of inclined round holes. Ph.D. Thesis,
Univ. Minnesota.
Mean velocity*, figures 15, 16, 20, 22, etc. Reynolds
stresses, figures 12, 23, etc. Effectiveness.
KUMADA, M., HEGURI, H., and MABUCHI, I. 1972 Studies on
heat transfer to turbulent jets with adjacent boundaries. Second report,
mass transfer to plane turbulent jet reattached on an inclined flat plate.
Bull. JSME
15
, 1246-1255.
Mean velocity*, figures 6, 7. Growth rate*,
figure 11. Wall pressure*, figure 3. Friction coefficient*, figure 8. Sherwood
number*, figures 12, 17, 19, 21. Reattachment*, figure 17.
KUMADA, M., MABUCHI, I. and OYAKAWA, K. 1973 Studies on
heat transfer to turbulent jets with adjacent boundaries. Third report, mass
transfer to plane turbulent jet reattached on an offset parallel plate. Bull.
JSME
16
, 1712-1722.
Mean velocity*, figure 5. Static pressure*, figure 2.
Reattachment*, figure 4. Friction coefficient*, figure 6. Growth rate*, figure
9. Sherwood number*, figures 11, 12, 17, 18.
LE BROCQ, P.V., LAUNDER, B.E., and PRIDDIN, C.H. 1973 Dis-
crete hole injection as a means of transpiration cooling; an experimental
study. Proc. Inst’n. Mech. Engrs.
187
, 149-157.
Mean velocity*, figures
3-5, 7, 12, 14.
MABUCHI, I. and KUMADA, M. 1972 Studies on heat transfer to
turbulent jets with adjacent boundaries. First report, flow development and
mass transfer in plane turbulent wall jet. Bull. JSME
15
, 1236-1244.
Mean
velocity*, figures 4, 5. Friction coefficient*, figure 6. Sherwood number*,
figures 10, 11, 14, 15.
MATHIEU, J. 1961 Contribution a l’ ́etude a ́erothermique d’un jet
384
plan ́evoluant en pr ́esence d’une paroi. Pub. Sci. Techn. Min. de l’Air,
No. 374.
Adiabatic: mean velocity*, figures 2-5. Reynolds stresses*, figures
5-10. No tables.
MYERS, G.E., SCHAUER, J.J., and EUSTIS, R.H. 1963 Heat trans-
fer to plane turbulent wall jets. Trans. ASME (J. Heat Transf.)
85C
,
209-214.
Heat transfer*, figure 3. Mean temperature*, figure 4.
NICOLL, W.B. and WHITELAW, J.H. 1967 The effectiveness of the
uniform density, two-dimensional wall jet. Int’l. J. Heat Mass Transf.
10
,
623-639.
Effectiveness*, figures 4, 10, 11.
PAPELL, S.S. and TROUT, A.M. 1959 Experimental investigation
of air film cooling applied to an adiabatic wall by means of an axially dis-
charging slot. NASA TN D-9.
Cold plane wall jet under hot main stream.
Effectiveness* only, but wide range of parameters. Temperature very high.
PEDERSEN, D.R. 1972 Effect of density ratio on film cooling effec-
tiveness for injection through a row of holes and for a porous slot. Ph.
D. thesis, Dept. Mech. Eng., Univ. Minnesota.
Student of Eckert and
Goldstein. Strictly effectiveness*. Data are tabulated.
SAMUEL, A.E. and JOUBERT, P.N. 1965 Film cooling of an adia-
batic flat plate in zero pressure gradient in the presence of a hot mainstream
and cold tangential secondary injection. Trans. ASME (J. Heat Transf.)
87C
, 409-418.
Mean velocity*, figures 4, 5, 6, 7. Mean temperature*, figure
8. Effectiveness*, figures 10, 11
.
SEBAN, R.A. 1960 Heat transfer and effectiveness for a turbulent
boundary layer with tangential fluid injection. Trans. ASME (J. Heat
Transf.)
82C
, 303-312.
Effectiveness*, figures 3, 6, 7, 10-12.
SEBAN, R.A. 1960 Effects of initial boundary-layer thickness on a
tangential injection system. Trans. ASME (J. Heat Transf.)
82C
392-393.
Effectiveness*, figure 1. Stanton number*, figure 2.
SEBAN, R.A. and BACK, L.H. 1961 Velocity and temperature pro-
files in a wall jet. Int’l. J. Heat Mass Transf.
3
, 255-265.
Mean velocity*,
figures 3, 4. Mean temperature*, figure 7. Effectiveness, figure 9. Stanton
number*, figure 10.
SEBAN, R.A. and BACK, L.H. 1962 Velocity and temperature pro-
files in turbulent boundary layer with tangential injection. Trans. ASME (J.
Heat Transf.)
84C
, 45-54.
Mean velocity*, figures 3-7. Mean temperature*,
figures 8-10. Effectiveness, figure 12.
SEBAN, R.A., CHAN, H.W., and SCESA, S. 1957 Heat transfer to
a turbulent boundary layer downstream of an injection slot. ASME Paper
57-A-36.
Effectiveness*, figures 4-7. Stanton number*, figures 8-10.
SIVASEGARAM, S. and WHITELAW, J.H. 1969 Film cooling slots:
385
the importance of lip thickness and injection angle. J. Mech. Eng. Sci.
11
,
22-27.
Effectiveness*, figures 4, 5, 6, 7.
SPIELMAN, M. 1947 Diffusion of water vapor from the atmosphere
through a jet of less humid air. M.S. thesis, Dept. Chem. Eng., Illinois
Inst. Technology.
Wall jet of hot dry air on plate in humid stagnant air.
Profiles of mean temperature, mean partial pressure (concentration); local
surface heat transfer. See JAKOB, ROSE, and SPIELMAN, T ASME
72
,
859, 1950. Temperature*, figure 2. Data are tabulated.
WIEGHARDT, K. 1943
̈
Uber das Ausblasen von Warmluft f ̈ur En-
teiser. ZWB, KWI, FB Nr. 1900 (translated as “On the blowing of warm air
for de-icing devices,” MAP-VG-147T, 1946; also AAF F-TS-919-RE, 1946,
and Min. Aircr. Prod. RTP 2557, 1946).
Various plots. No tables.
YAVUZKURT, S., MOFFAT, R.J. and KAYS, W.M. 1977 Full-cover-
age film cooling: 3-dimensional measurements of turbulence structure and
prediction of recovery region hydrodynamics. Dept. Mech. Eng., Stanford
Univ., Rep. No. HMT-27.
See thesis for tabulated data.
ZERBE, J. and SELNA, J. 1946 An empirical equation for the coef-
ficient of heat transfer to a flat surface from a plane heated-air jet directed
tangentially to the surface. NACA TN 1070.
Mean velocity*, figure 4. Nus-
selt number*, figure 8.
Plane jet reattachment; Coanda effect
Major surveys or theory
DUVVURI, T. and PARK, J.T. 1975 Analysis of Coanda reattach-
ment on curved surfaces. U.S. Air Force, Rep. ARL TR 75-0101.
See
references.
Experimental data
BOURQUE, C. 1971 Effect of nozzle boundary layers on the position
of reattachment of a two-dimensional jet to an adjacent flat plate. Fluidics
Quarterly
3
, 1–9.
Reattachment distance*, figures 2, 3, 4.
BOURQUE, C. and NEWMAN, B.G. 1960 Reattachment of a two-
dimensional, incompressible jet to an adjacent flat plate. Aeron. Quart.
11
, 201–232 (see also M.S. thesis by BOURQUE, D ́eviation d’un jet turbu-
lent incompressible par un volet inclin ́e. “Effect Coanda,” Laval University,
386
1959).
Mean velocity*, figure 20. Reattachment distance*, figures 5, 12, 17.
Surface pressure*, figures 7, 8, 13–16.
HATANO, M. 1981 The turbulence characteristics in the near-region
of the wall jet issued from a small inclined slot. In
Preprints, Third Sympo-
sium on Turbulent Shear Flows
, Univ. California (Davis), 6.14–6.19.
Rey-
nolds stresses*, figures 7–10.
HATANO, M. 1981 Turbulent wall jet issued from a Coanda nozzle.
In
Symposium on Turbulence
, Rolla, 54–63.
Static pressure, figure 7. Mean
velocity*, figures 9, 10. Reynolds stresses*, figures 13–20.
HOCH, J. and JIJI, L.M. 1981 Theoretical and experimental temper-
ature distribution in two-dimensional turbulent jet-boundary interaction.
Trans. ASME (J. Heat Transf.)
103
, 331–336.
Mean velocity*, figure 3.
Growth rate*, figure 2. Temperature decay, figures 5, 6.
KORBACHER, G.K. 1962 The Coanda effect at deflection surfaces
detached from the jet nozzle. Canadian Aeron. Space J.
8
, 1–6.
Surface
pressure*, figures 3, 5–8.
LAI, J.C.S. and LU, D. 1992 The near field characteristics of a two-
dimensional wall jet. In
Recent Advances in Experimental Fluid Mechanics
(F.G. Zhuang, ed.), International Academic Publishers, 136–141.
Geome-
try*, figures 1, 2. Velocity*, figure 3. Growth*, figure 6. Reynolds stresses,
figures 8, 9, 10.
LUND, T.S. 1986 Augmented thrust and mass flow associated with
two-dimensional jet reattachment. AIAA J.
24
, 1964–1970.
Surface pres-
sure*, figure 5. Cavity length*, figure 6.
OSTOWARI, C., PAIKERT, B., and PAGE, R.H. 1988 Heat trans-
fer measurements of radial jet reattachment on a flat plate. In
Preprints,
AIAA/ASME/SIAM/APS First National Fluid Dynamics Congress,
AIAA,
Part 3, 1901–1907 (AIAA Paper 88-3772).
Geometry*, figure 1. Pressure*,
figure 4. Heat transfer*, figures 5–9.
PARANJPE, S.C. and SRIDHAR, K. 1968 Effects of an initial gap
on the turbulent jet flow over a curved wall. Aeron. J.
72
, 63–67.
Mean
velocity*, figures 5, 6, 7. Growth rate, figure 9. Surface pressure*, figure
12.
PELFREY, J.R.R. and LIBURDY, J.A. 1984 Effect of curvature on
the turbulence of a two-dimensional jet. In
Preprints, Ninth Symposium on
Turbulence
(X.B. Reed, Jr., ed.), Dept. Chem. Eng., Univ. Missouri (Rolla),
Paper 17.
Geometry*, figure 1. Velocity*, figure 4. Reynolds stresses*,
figures 8, 9.
PELFREY, J.R.R. and LIBURDY, J.A. 1986 Effect of curvature on
the turbulence of a two-dimensional jet. Exp. in Fluids
4
, 143–149.
Reat-
387
taching plane jet. Growth rate, figure 7. Reynolds stresses*, figures 8, 9.
This in thesis by PELFREY, Clemson, 1984.
PELFREY, J.R.R. and LIBURDY, J.A. 1986 Mean flow characteris-
tics of a turbulent offset jet. Trans. ASME (J. Fluids Eng.)
108
, 82–88.
Mean velocity*, figure 5.
PERRY, C.C. 1967 Two-dimensional jet attachment. Ph.D. Thesis,
Univ. Michigan.
Attachment distance*, figures 20, 23.
SAWYER, R.A. 1960 The flow due to a two-dimensional jet issuing
parallel to a flat plate. J. Fluid Mech.
9
, 543–560, 1 plate (see also Ph.D.
thesis by SAWYER, Two-dimensional turbulent jets with adjacent bound-
aries, Cambridge University, 1962).
Mean velocity, figures 48–50. Static
pressure*, figure 12. Attachment distance, figures 11, 15.
SAWYER, R.A. 1963 Two-dimensional reattaching jet flows includ-
ing the effects of curvature on entrainment. J. Fluid Mech.
17
, 481–498 (also
Ph. D. thesis, “Two-dimensional turbulent jets with adjacent boundaries,”
Cambridge Univ., 1962).
Data from thesis, with revised analytical argument.
Plane jet parallel to plate from top of step, or plane wall jet over convex or
concave surface. Geometry*, figure 1. Reattachment*, figures 3, 7.
SCHWARTZBACH, C. 1971 An experimental investigation of curved
two-dimensional turbulent jets. In
Turbulent Shear Flows
, AGARD CP 93,
16.1–16.12.
Various overall parameters.
TAGA, M., AKAGAWA, K., and NISHIJIMA, M. 1971 Flow charac-
teristics of the curved turbulent jet in the two-dimensional passage. Bull.
JSME
14
, 217–223.
Model of fluid amplifier. Reattachment of plane jet to
offset wall. Data on mean velocity, attachment point, curvature, pressure
field. Mean velocity*, figure 9. Reattachment*, figures 4, 5. Curvature*,
figure 7. Reynolds stresses*, figure 10.
TU, K.C. 1965 An experimental investigation of the flow in a plane
wall jet with an initial gap. M.S. thesis, Dept. Mech. Eng., Univ. Windsor.
No tables. Mean velocity*, figures 6, 10, 11, 14a-d, 15a-e, 16. Growth rate*,
figures 7a-b, 12. Velocity decay*, figure 8.
388
3-D wall jets
Major surveys or theory
Experimental data
CATALANO, G.D., MORTON, J.B., and HUMPHRIS, R.R. 1977 An
experimental investigation of a three-dimensional wall jet. AIAA J.
15
,
1146–1151 (See also Ph.D. thesis by CATALANO, same title, Dept. Aerosp.
Eng., Univ. Virginia). (date?)
Mean velocity, figures 4, 5. Reynolds
stresses, figures 9–11. Intermittency*, figure 17.
CATALANO, G.D., MORTON, J.B., and HUMPHRIS, R.R. 1979 Tur-
bulence measurements in a three dimensional wall jet. In
Preprints, 2nd
Symposium on Turbulent Shear Flows
, Imperial College, 15.42–15.48.
Mostly
isocorrelations.
CHANDRASEKHARA SWAMY, N.V. and BANDYOPADHYAY, P.
1975 Mean and turbulence characteristics of three-dimensional wall jets.
J. Fluid Mech.
71
, 541–562.
Mean velocity*, figures 7–11. Velocity decay*,
figure 5. Reynolds stresses, figures 15–19. Growth rate*, figure 6.
CHANDRASEKHARA SWAMY, N.V. and BANDYOPADHYAY, P.
1981
Structure of three dimensional wall jets. Indian J. Technology
19
,
390–394.
Mean velocity*, figure 3. Reynolds stresses*, figure 5.
CHAO, J.-L 1965 Turbulent momentum transfer in a three-dimensional
wall jet. Ph. D. thesis, Colorado State Univ.
Mean velocity, figures 20–24.
Reynolds stresses, figures 26–29, 32. Static pressure, figures 17, 18. Energy
balance.
DAVIS, M.R. and WINARTO, H. 1980 Jet diffusion from a circular
nozzle above a solid plane. J. Fluid Mech.
101
, 201–221.
Transition from
free jet to oblate wall jet. Isotachs. Locus and decay of maximum velocity;
profiles of mean velocity normal or parallel to plate; turbulence intensity;
spectra, scales. Offset round jet. Mean velocity*, figures 5, 6. Growth rate,
figure 7. Velocity decay*, figure 3. Reynolds stresses, figures 9, 11. Includes
round jet.
HORNE, W.C. 1982 A study of the acoustic and flow fields of a rect-
angular wall jet. Ph.D. dissertation, Stanford Univ.
Mean velocity, figure
4-21. Growth rate, figure 4-22.
HORNE, C. and KARAMCHETI, K. 1979 Experimental observations
of a 2-D planar wall jet. AIAA Paper 79-0208.
Geometry*, figure 1. Veloc-
ity*, figure 3. Frequency lockin*, figure 5b.
389
KOSO, T. and OHASHI, H. 1982 Turbulent diffusion of a three-dimen-
sional wall jet. (1st report, mean and turbulent characteristics of velocity
and temperature field.) Bull. JSME
25
, 173–181.
Mean velocity*, figures
6, 7. Reynolds stresses, figures 10–14.
KOSO, T. and OHASHI, H. 1982 Turbulent diffusion of a three-dimen-
sional wall jet. (2nd report, turbulent structure.) Bull. JSME
25
, 758–765.
Intermittency*, figures 4–6.
LAKSHMANA GOWDA, B.H. and PADMANABHAM, G. 1988 The
characteristic decay region of a class of three-dimensional wall jets. J. Aero-
nautical Society of India
40
, 309–315.
Velocity*, figure 3.
MACMULLIN, R., ELROD, W., and RIVIR, R. 1989 Free-stream
turbulence from a circular wall jet on a flat plate heat transfer and bound-
ary layer flow. Trans. ASME (J. Turbomachinery)
111
, 78–86.
Geometry*,
figure 2. Heat transfer*, figures 6, 7. Velocity*, figures 12, 13. Tempera-
ture*, figure 15. Reynolds stresses*, figure 16.
NARAIN, J.P. 1975 Three dimensional turbulent wall jets. Can. J.
Chem. Eng.
53
, 245–251.
Growth rate, figure 6.
NEWMAN, B.G., PATEL, R.P., SAVAGE, S.B., and TJIO, H.K. 1972
Three-dimensional wall jet originating from a circular orifice. Aeron. Quart.
23
, 188–200.
Mean velocity*, figures 3–5, 7, 8. Growth rate*, figures 9, 10.
Velocity decay*, figure 11. Reynolds stresses, figures 15–17.
PATANKAR, U.M. and SRIDHAR, K. 1972 Three-dimensional curved
wall jets. Trans. ASME (J. Basic Eng.)
94D
, 339–344.
Mean velocity*,
figures 6, 7, 8.
POLLARD, A. and SCHWAB, R.R. 1989 The velocity field of a rect-
angular wall jet. In
Proc. Tenth Australasian Fluid Mechanics Conference
,
Univ. Melbourne, Vol. 1, 1.17–1.20.
Velocity*, figure 2. Reynolds stress*,
figure 6.
RAJARATNAM, N. and PANI, B.S. 1974 Three-dimensional turbu-
lent wall jets. Proc. ASCE (J. Hydr. Div., No. HY1)
100
, 69–83.
Geometry*,
figure 1. Velocity*, figures 3–6. Flow viz*, figure 10. Decay*, figure 12.
RAJARATNAM, N. and SUBRAMANYA, K. 1967 Diffusion of rect-
angular wall jets in wider channels. J. Hydraul. Res.
5
, 281–294.
Velocity*,
figures 2, 5, 6. Decay*, figures 7, 9. Growth*, figure 10.
SFORZA, P.M. 1979 The surface layer in three-dimensional wall jets.
In
Turbulent Boundary Layers: Forced, Incompressible, Non-reacting
, Proc.
Joint Applied Mechanics, Fluids Engineering and Bioengineering Conf. (H. E.
Weber, ed.), ASME, 121–130.
Friction coefficient*, figures 2, 5, 7, 8. Mean
velocity*, figures 9, 10.
SFORZA, P.M. and HERBST, G. 1970 A study of three-dimensional,
390
incompressible, turbulent wall jets. AIAA J.
8
, 276–283 (see also Dept.
Aerosp. Eng. Appl. Mech., Polytechnic Inst. Brooklyn, PIBAL Rep. 1022,
same title, AFOSR 67-2580, 1967).
Growth rate*, figures 3, 4. Velocity
decay*, figure 2. Mean velocity*, figures 5, 6.
VIETS, H. and SFORZA, P.M. 1966 An experimental investigation
of a turbulent, incompressible, three-dimensional wall jet. Polytechnic Inst.
Brooklyn, Dept. Aerosp. Eng. Appl. Mech., PIBAL Rep. No. 968 (AFOSR
66-0888, Contract AF 49(638)-1623).
Plane air jet of finite width along flat
plate in air at rest; profiles of mean velocity. Mean velocity, figures 8–10,
12, 13. Growth rate*, figures 11, 17. Velocity decay*, figure 7.
Wall jet along cylinder
Major surveys or theory
Experimental data
DUCK, P.W. and BODONYI, R.J. 1986 The wall jet on an axisym-
metric body. Quart. J. Mech. and Appl. Math.
39
, 467–483.
Theory for
thin and thick layers.
MANIAN, V.S., McDONALD, T.W., and BESANT, R.W. 1969 Heat
transfer measurements in cylindrical wall jets. Int’l. J. Heat Mass Transf.
12
, 673–679 (see also Ph.D. thesis by MANIAN, Cylindrical wall jet, Univ.
Saskatchewan, 1968).
Mean velocity*, figure 2. Velocity decay*, figure 4.
Growth rate*, figure 3.
McDONALD, T.W. 1965 The submerged surface jet. Ph.D. thesis,
Purdue Univ.
Mean velocity*, figure 17. Growth rate*, figure 18. Data are
tabulated
.
PATEL, R.P., SHAKO, K.E.M., and SANGALE, J.M. 1974 An inves-
tigation of a turbulent cylindrical wall jet. In
Proc. 5th Australasian Con-
ference on Hydraulics and Fluid Mechanics
, Christchurch, 332–339.
Similar
to Starr and Sparrow but less extensive. Profiles of mean velocity; growth
rate, decay of maximum velocity. Mean velocity*, figures 4, 5. Growth rate,
velocity decay*, figures 6, 7. Write for data.
RAMAPRIAN, B.R. 1975 Turbulence measurements in an “equilib-
rium” axisymmetric wall jet. J. Fluid Mech.
71
, 317–338.
Mean velocity*,
figures 4, 5, 6. Reynolds stresses*, figures 5, 8. See thesis.
RODMAN, L.C., JARRAH, M.A., WOOD, N.J., and ROBERTS, L.
1986 Turbulence measurements in a plane wall jet. AIAA Paper 86-0209.
391
RODMAN, L.C., WOOD, N.J., and ROBERTS, L. 1987 Turbulence
measurements in curved wall jets. AIAA Paper 87-0050.
RODMAN, L.C., WOOD, N.J., and ROBERTS, L. 1989 Experimen-
tal investigation of straight and curved annular wall jets. AIAA J.
27
,
1059–1067.
Velocity*, figures 2, 3, 10. Reynolds stress*, figures 6–8.
SHARMA, R.N. 1981 Experimental investigation of conical wall jets.
AIAA J.
19
, 28–33.
Mean velocity*, figures 8, 10, 11. Velocity decay*,
figures 12, 13. Growth rate*, figures 4–7. See thesis.
STARR, J.B. and SPARROW, E.M. 1967 Experiments on a cylindri-
cal wall jet. J. Fluid Mech.
29
, 495–512 (see also Ph.D. thesis by STARR,
An experimental investigation of a cylindrical turbulent wall jet, Univ. Min-
nesota, 1966).
Mean velocity*, figures 3.2, 3.5, 4.2, 4.6, 4.7. Growth rate*,
figure 4.3. Friction coefficient, figures 4.4, B.3. Data are tabulated
.
Impingement of round jet
Major surveys or theory
DESHPANDE, M.D. and VAISHNAV, R.N. 1982 Submerged lami-
nar jet impingement on a plane. J. Fluid Mech.
114
, 213–236.
Solution
of axisymmetric Navier-Stokes equations. Streamlines, contours of constant
vorticity; velocity profiles (good check withGlauert), radial pressure distri-
bution. Good on development of laminar radial wall jet from impingement
initial condition. Numerical paper.
DOWNS, S.J. and JAMES, E.H. 1987 Jet impingement heat transfer—
a literature survey. ASME Paper 87-HT-35.
GAUNTER, J.W., LIVINGOOD, J.N.B., and HRYCAK, P. 1970 Sur-
vey of literature on flow characteristics of a single turbulent jet impinging
on a flat plate. NASA TN D-5652.
HRYCAK, P. 1981 Heat transfer from impinging jets. A literature
review. Flight Dynamics Lab., Wright-Patterson AFB, Rep. AFWAL-TR-
81-3054.
MARTIN, H. 1977 Heat and mass transfer between impinging gas jets
and solid surfaces. Adv. Heat Transf.
13
, 1–60.
Experimental data
ANDERSON, S.L. and LONGMIRE, E.K. 1995 Particle motion in
the stagnation zone of an impinging air jet. J. Fluid Mech.
299
, 333–366.
392
Geometry*, figure 2. Flow viz*, figures 4, 7–10. Particle velocity*, figure
19.
ARA
́
UJO, S.R.B., DUR
̃
AO, D.F.G., and FIRMINO, F.J.C. 1981 Jets
impinging normally and obliquely to a wall. In
Fluid Dynamics of Jets with
Applications to V/STOL
, AGARD Conference Proceedings No. 308, Paper
5.
Mean velocity*, figures 1, 2, 5–7.
BELTAOS, S. 1975 Oblique impingement of circular turbulent jets.
J. Hydraulic Res.
14
, 17–36.
Mean velocity*, figure 14. Surface pressure*,
figures 4, 5. Friction coefficient, figure 13. Growth rate*, figure 16.
BELTAOS, S. and RAJARATNAM, N. 1974 Imaging circular turbu-
lent jets. Proc. ASCE (J. Hydr. Div., No. HY10)
100
, 1313–1328.
Velocity*,
figures 3, 4, 11. Pressure*, figures 8, 9.
BOLDMAN, D.R. and BRINICH, P.F. 1977 Mean velocity, turbu-
lence intensity, and scale in a subsonic turbulent jet impinging normal to a
large flat plate. NASA TP 1037.
Profiles of mean velocity, turbulence inten-
sity for plate at
x/d
= 7
.
1
. Single hot wire; hence velocity magnitude only.
Maximum velocity*, figure 9. Reynolds stresses*, figures 11, 12. Includes
one station in free jet.
BRADBURY, L.J.S. 1971 The impact of an axisymmetric jet onto a
normal ground. Aeron. Quart.
23
, 141–147.
Velocity decay*, figure 4.
Surface pressure*, figures 5, 6.
BRADSHAW, P. and LOVE, E.M. 1961 The normal impingement of
a circular air jet on a flat surface. Aeronautical Research Council, R&M
3205.Round jet striking flat plate; profiles of mean velocity; pressure field;
local surface friction (Preston tube).
Geometry*, figure 1. Friction*, figure
5. Velocity*, figure 6. Growth rate*, figure 7.
CHAO, J.-L. and SANDBORN, V.A. 1966 Evaluation of the mo-
mentum equation for a turbulent wall jet. J. Fluid Mech.
26
, 819–828
(see also Ph.D. thesis by CHAO, Turbulent momentum transfer in a three-
dimensional wall jet, Colorado State Univ., 1965).
Mean velocity*, figure 3.
Static pressure*, figure 6. Reynolds stresses*, figures 7, 8. Energy balance.
CODAZZI, D., TEITGEN, R.G., and BURNAGE, H. 1983 The struc-
ture of an axisymmetric plane turbulent wall jet. In
Structure of Complex
Turbulent Shear Flow
(R. Dumas and L. Fulachier, eds.), Springer-Verlag,
251–260.
Geometry*, figure 1. Velocity*, figures 2, 4. Reynolds stresses*,
figures 7, 8.
COMFORT, E.H., O’CONNOR, T.J., and CASS, L.A. 1966 Heat
transfer from the normal impingement of a turbulent high temperature jet
on an infinitely large flat plate. In
Proc. Heat Transfer and Fluid Mechanics
Institute
, Santa Clara, 44–62.
Partly dissociated (arc-heated)
N
2
jet. Radial
393
distribution of pressure, heat transfer. Profiles of mean velocity, enthalpy.
Decay*, figure 5. Pressure*, figure 8.
COOPER, D., JACKSON, D.C., LAUNDER, B.E., and LIAO, G.X.
1993 Impinging jet studies for turbulence model assessment. I. Flow-field
experiments. Int’l. J. Heat Mass Transfer
36
, 2675–2684.
Growth rate*,
figure 2. Velocity*, figure 6. Reynolds stresses*, figures 7–10, 12–17. Heat
transfer*, figure 11.
DAWSON, D.A. and TRASS, O. 1966 Mass transfer in a turbulent
radial wall jet. Can. J. Chem. Eng.
44
, 121–129.
Sherwood number*,
figures 8, 11, 12, 13.
DONALDSON, C. duP. 1966 A brief review of research on the im-
pingement of axially symmetric free jets. In
Aerospace Engineering 1966
(proc. of conf. at Univ. Maryland, Mar. 15, 1966), 74–110.
Mean velocity*,
figures 7, 8, 9, 20, 22, 27. Surface pressure*, figure 10.
DONALDSON, C. duP. and SNEDEKER, R.S. 1971 A study of free
jet impingement. Part 1. Mean properties of free and impinging jets. J.
FLuid Mech.
45
, 281–319, 5 plates (see also DONALDSON, SNEDECKER
and MARGOLIS, A study of free jet impingement. Part 2. Free jet turbulent
structure and impingement heat transfer. J. Fluid Mech.
45
, 477–512; also
DONALDSON, SNEDEKER and MARGOLIS, A study of the mean and
turbulent structure of a free jet and jet impingement heat transfer. Naval
Res. Lab., NRL Memo. Rep. 1828 (ARAP Rep. No. 96)).
Mean velocity*,
figure 3.4. Reynolds stresses,* figures 3.9–3.12. Surface pressure*, figure
16. Growth rate*, figure 3.3. Heat transfer, figure 5.7, 5.8, 5.13. Straighten
out citations.
DONALDSON, C. duP., SNEDEKER, R.S., and MARGOLIS, D.P. 1966
A study of the mean and turbulent structure of a free jet and jet impinge-
ment heat transfer. Naval Research Lab., NRL Memo. Rep. 1828 (ARAP
Rep. No. 96).
Free jet: velocity decay, figure 3.1. Mean velocity*, figures
3.2, 3.4. Growth rate, figure 3.3. Reynolds stresses*, figures 3.5, 3.9–3.11.
Impinging jet: Heat transfer*, figures 5.8–5.16.
ERA, Y. and SAIMA, A. 1976 An investigation of impinging jet (ex-
periments by air, hot air and carbon dioxide). Bull. JSME
19
, 800–807.
t
Mean velocity*, figures 2, 3, 12. Growth rate*, figure 4. Mean concentra-
tion*, figure 16.
FOSS, J.F. 1979 Measurements in a large-scale oblique jet impinge-
ment flow. AIAA J.
17
, 801–802.
Mean velocity, figure 2.
Reynolds
stresses*, figure 6. Synoptic; full paper available.
FOSS, J.F. and KLEIS, S.J. 1976 Mean flow characteristics for the
oblique impingement of an axisymmetric jet. AIAA J.
14
, 705–706.
Iso-
394
tachs*, figure 3.
GOLDSTEIN, R.J. and FRANCHETT, M.E. 1988 Heat transfer from
a flat surface to an oblique impinging jet. Trans. ASME (J. Heat Transfer)
110
, 84–90.
Nusselt number*, figures 4, 6–11.
GOLDSTEIN, R.J. and SEOL, W.S. 1991 Heat transfer to a row of
impinging circular air jets including the effect of entrainment. Int’l. J. Heat
Mass Transf.
34
, 2133–2147.
Geometry*, figure 1. Effectiveness*, figures
4-7. Heat transfer*, figures 8–13.
GOVINDAN, A.P. and SUBBA RAJU, K. 1974 Hydrodynamics of
a radial wall jet. Trans. ASME (J. Appl. Mech.)
41E
, 518–519.
Mean
velocity*, figure 2. Growth rate*, figure 3.
HRYCAK, P., LEE, D.T., GAUNTNER, J.W., and LIVINGOOD, J.N.B.
1970 Experimental flow characteristics of a single turbulent jet impinging
on a flat plate. NASA TN D-5690.
Small jets, up to 1 cm, at high Re;
distance 2 to 30 d. Probably MS thesis, “Experimental investigation of sub-
merged incompressible turbulent impinging jets”, Newark Coll. Eng., 1969,
by David Lee. Velocity*, figures 7, 8, 9, 16. Pressure*, figure 14.
JANEIRO BORGES, A.R. and VIEGAS, D.X. 1981 Interaction of
simple and multiple jets with a plane surface. In
Fluid Dynamics of Jets
with Applications to V/STOL
, AGARD Conference Proceedings No. 308,
Paper 3.
Surface friction*, figures 2, 8. Thesis by VIEGAS is in Spanish.
JOHNSON, D.C. and HAN, L.S. 1991 Heat transfer to turbulent ra-
dial wall jets. Journal of Thermophysics and Heat Transfer
5
, 621–623.
Geometry*, figure 1. Heat transfer*, figure 2.
KATAOKA, K., KAMIYAMA, Y., HASHIMOTO, S., and KOMAI, T.
1982 Mass transfer between a plane surface and an impinging turbulent
jet; the influence of surface-pressure fluctuations. J. Fluid Mech.
119
, 91–
105.
Chemical element. Mass transfer and friction coefficients; surface
pressure; correlations, scales. Vision of ring vortices cascading to smaller
scales. Mass transfer, figures 7, 8. Friction*, figure 9. Surface pressure,
figure 10.
KEZIOS, S.P. 1956 Heat transfer in the flow of a cylindrical air jet
normal to an infinite plane. Ph. D. thesis, Dept. Mech. Eng., Illinois Inst.
Technology.
Round undeveloped radial wall jet. Flow seems to be laminar
throughout. Velocity decay*, figures 24, 25. Heat transfer*, figures 12, 13,
15–17, 19, 29, 30. Data are tabulated.
KOOPMAN, R.N. 1975 Local and average transfer coefficients for
multiple impinging jets. Ph. D. thesis, Univ. Minnesota.
Student of Spar-
row. Row of circular jets; naphthalene sublimation. Local and average mass-
transfer coefficients. Mass transfer*, figures 6.1–6.8.
395
LEISTER, P. 1977 Experimental investigation on the turbulence struc-
ture of an impinging, pulsating jet. In
Preprints, Symposium on Turbulent
Shear Flows
, Pennsylvania State Univ., 3.35–3.44.
Mean velocity*, figures
4–8. Surface pressure, figure 9. Friction coefficient, figure 10. Reynolds
stresses*, figures 18, 19, 23. Space-time correlations.
LUDWIG, G.R. 1964 An investigation of the flow in uniform and
nonuniform jets impinging normally on a flat surface. AIAA Paper 64-796.
Wall pressure*, figure 7. Mean velocity*, figures 10, 11.
MASLIYAH, J.H. and NGUYEN, T.T. 1976 Holographic determina-
tion of mass transfer due to impinging square jet. Can. J. Chem. Eng.
54
,
299–304.
Sherwood number*, figure 8.
MITACHI, K. and ISHIGURO, R. 1977 Heat transfer of wall jets.
Second report, measurements of temperature field and heat transfer for ra-
dial wall jet. Heat Transfer — Japanese Research
6
, 55–65 (Trans. JSME
41-348
, 2448–2454, 1975).
One off-center portion of plate heated. Profiles
of mean velocity, mean temperature; growth rate, velocity decay; surface heat
transfer. Velocity*, figure 5. Growth*, figure 7. Decay*, figure 8.
NAKATOGAWA, T., NISHIWAKI, N., HIRATA, M., and TORII, K.
1970 Heat transfer of round turbulent jet impinging normally on flat plate.
In
Proc. 4th International Heat Transfer Conference
, Vol. II, Elsevier, Paper
FC5.2.
Pressure*, figure 2. Growth*, figure 5. Geometry*, figures 1, 3. Heat
transfer*, figure 14.
OBOT, N.T. and TRABOLD, T.A. 1987 Impingement heat transfer
within arrays of circular jets. Part 1. Effects of minimum, intermediate,
and complete crossflow for small and large spacings. Trans. ASME (J. Heat
Transfer)
109
, 872–879.
Geometry*, figure 1. Heat transfer*, figures 3–11,
13.
OLADIRON, M.T. 1987 Heat transfer coefficients beneath inclined
turbulent impinging jets. In
Proceedings of the Twenty-second Intersociety
Energy Conversion Engineering Conference,
AIAA, Vol. 1, 18–22, A88-
11779.
Heat transfer*, figures 2-4, 6-7. Angle*, figure 8.
OSTOWARI, C., PAIKERT, B., and PAGE, R.H. 1988 Heat transfer
measurements of radial jet reattachment on a flat plate. In
Proc. First Na-
tional Fluid Dynamics Congress
, AIAA, 1901–1907 (Paper 88-3772).
Wall
pressure, figure 4. Heat transfer*, figures 5–9.
OZDEMIR, I.B. and WHITELAW, J.H. 1992 Impingement of an ax-
isymmetric jet on unheated and heated flat plates. J. Fluid Mech.
240
,
503–532.
Geometry*, figure 1. Velocity*, figure 6. Reynolds stresses.
PERRY, K.P. 1954 Heat transfer by convection from a hot gas jet to
a plane surface. Proc. Inst’n. Mech. Eng.
168
, 775–780.
Nusselt number*,
396
figures 3, 4.
POREH, M. and CERMAK, J.E. 1959 Flow characteristics of a cir-
cular subjerged jet impinging normally on a smooth boundary. In
Proc. 6th
Midwestern Conference on Fluid Mechanics
, 198–212 (see also M. S. thesis
by POREH, same title, Colorado State Univ., 1959).
Geometry*, figure 1.
Velocity decay*, figures 2, 3. Velocity*, figure 7.
POREH, M., TSUEI, Y.G., and CERMAK, J.E. 1967 Investigation
of a turbulent radial wall jet. Trans. ASME (J. Appl. Mech.)
34E
, 457–463
(ASME Paper 67-APM-10); see also Ph. D. thesis, Axisymmetric boundary
layer of a jet impinging on a smooth plate, Colorado State Univ., 1963,
by Y.G. Tsuei.
Radial wall jet following normal impingement; profiles of
mean velocity, Reynolds stresses; radial growth rate and velocity decay; wall
static pressure and surface friction (floating element). Velocity*, figures 2,
7, 10. Decay*, figure 5. Growth*, figure 6. Reynolds stresses*, figures 11,
12. Friction*, figure 9.
SCHOLTZ, M.T. and TRASS, O. 1970 Mass transfer in a nonuniform
impinging jet. Part I. Stagnation flow–velocity and pressure distribution.
Part II. Boundary layer flow–mass transfer. A.I.Ch.E.J.
16
, 82–96.
Mean
velocity*, figure 7. Surface pressure*, figures 8, 9, 10. Sherwood number*,
figures 3–9.
SCHRADER, H. 1961 Trocknung feuchter Oberfl ̈achen mittels Warm-
luftstrahlen: Str ̈omungsvorg ̈ange und Stoff ̈ubertragung. Forschung auf dem
Gebiete des Ingenieurwesens
27
, Ausgabe B, VDI Forschungsheft 484.
Mean
velocity*, figures 3, 4, 9, 10, 12, 14, 16. Mean temperature, figures 28, 29.
Growth rate, figures 6, 32. Sherwood number, figures 42, 46–50. Nusselt
number*, figures 51–58.
SICLARI, M.J., HILL, W.G. Jr., and JENKINS, R.C. 1981 Stagna-
tion line and upwash formation of two impinging jets. AIAA J.
19
, 1286–
1293.
Mean velocity, figures 3, 4.
SITHARAMAYYA, S. and SUBBA RAJU, K. 1969 Heat transfer be-
tween an axisymmetric jet and a plate held normal to the flow. Can. J.
Chem. Eng.
47
, 365–368.
Nusselt number*, figures 3, 4, 5.
SMIRNOV, V.A., VEREVOCHKIN, G.E., and BRDLICK, P.M. 1961
Heat transfer between a jet and a plate held normal to flow. Int. J. Heat
Mass Transf.
2
, 1–7.
Nusselt number*, figures 2, 3, 4.
STRONG, D.R., SIDDON, T.E., and CHU, W.T. 1967 Pressure fluc-
tuations on a flat plate with oblique jet impingement. Inst. Aerosp. Studies,
Univ. Toronto, Tech. Note 107.
Surface pressure, figures 3–5. Space-time
correlations.
TANAKA, T. and TANAKA, E. 1977 Experimental studies of a ra-
397
dial turbulent jet. Second report, wall jet on a smooth flat plate. Bull. JSME
20
, 209–215.
Radial wall jet. Profiles of mean velocity, turbulence inten-
sity, static pressure. Growth rate, velocity decay, surface friction. Mean
velocity*, figures 4–6. Reynolds stresses, figure 8. Static pressure*, figure
9. Velocity decay*, figures 11, 12. Growth rate*, figure 13. Wall friction*,
figure 15.
TANAKA, T. and TANAKA, E. 1978 Experimental studies of a ra-
dial turbulent jet. Third report, flow before an attachment point of attaching
jet flow. Bull. JSME
21
, 665–672.
Essentially radial air curtain. Trajectory;
profiles of mean velocity, Reynolds stress; wall pressure. Some flow visual-
ization. Includes case of radial free jet. Velocity decay*, figure 3. Static
pressure*, figure 5. Jet trajectory*, figure 7.
TANAKA, T. and TANAKA, E. 1978 Experimental studies of a ra-
dial turbulent jet. Fourth report, flow at and after an attaching point of
attaching jet flow. Bull. JSME
21
, 1349–1356.
Flow after attachment of
radial air curtain. Growth rate, center velocity, wall pressure, virtual ori-
gin. Profiles of mean velocity, Reynolds stresses in radial wall jet. Wall
pressure*, figures 5–7. Mean velocity*, figure 10. Reynolds stresses*, figure
11.
TANI, I. and KOMATSU, Y. 1966 Impingement of a round jet on a
flat surface. In
Proc. 11th International Congress of Applied Mechanics
(H.
G ̈ortler, ed.), Springer-Verlag, 672–676.
Jet standoff distance varied from 2
to 8 diameters. Nice. Velocity*, figures 2, 4. Pressure*, figure 3.
TSUEI, Y.-G. 1962 Axisymmetric boundary layer of a jet impinging
on a smooth plate. Ph.D. thesis, Colorado State Univ.
Mean velocity*,
figures 7, 16, 21–26. Reynolds stresses*, figures 17, 29–34, 36–38. Surface
pressure, figures 18, 19. Growth rate, figure 27. Friction coefficient, figures
43–45.
TU, C.V., HOOPER, J.D., and WOOD, D.H. 1992 Wall pressure and
shear stress measurements for normal jet impingement. In
Proc. 11th Aus-
tralasian Fluid Mechanics Conf.,
Univ. Tasmania, Vol. II, 1109–1112.
Pres-
sure*, figures 2, 3. Wall friction*, figure 4.
van der MEER, T.H. and HOOGENDOORN, C.J. 1979 Turbulent
convective heat transfer from impinging premixed flame jets on a flat plate.
In
Preprints, 2nd Symposium on Turbulent Shear Flows
, Imperial College,
3.31–3.36.
Mean velocity*, figures 2, 6. Nusselt number*, figures 8–10, 12.
VLACHOPOULOS, J. and TOMICH, J.F. 1971 Heat transfer from
a turbulent hot air jet impinging normally on a flat plate. Can. J. Chem.
Eng.
49
, 462–466.
Faired data only.
YOKOBORI, S., KASAGI, N., HIRATA, M., NAKAMARU, M., and
398
HARAMURA, Y. 1979 Characteristic behaviour of turbulence and trans-
port phenomena at the stagnation region of an axi-symmetrical impinging
jet. In
Preprints, 2nd Symposium on Turbulent Shear Flows
, Imperial Col-
lege, 4.12–4.17.
Behavior sorted out by standoff distance. Transport en-
hanced by streamwise vortices. Mostly correlations and flow visualization.
Heat transfer, figure 18.
ZEGADI, R., BALINT, J.L., MOREL, R., and CHARNAY, G. 1983
The influence of a low Reynolds number on an impinging round jet. In:
Structure of Complex Turbulent Shear Flow
(R. Dumas and L. Fulachier,
eds.), Springer-Verlag, 240–250.
Mean velocity, figure 3. Reynolds stresses*,
figures 4, 5. Intermittency*, figure 7.
Stability of laminar wall jet
Major surveys or theory
CHUN, D.H. and SCHWARZ, W.H. 1967 Stability of the plane in-
compressible viscous wall jet subjected to small disturbances. Phys. Fluids
10
, 911–915.
Banana curve*, figure 2. Amplification*, figure 6.
COHEN, J., AMITAY, M., and BAYLY, B.J. 1991 Laminar-turbulent
transition of wall-jet flows subjected to blowing and suction. In
Boundary
Layer Transition and Control,
Royal Aeronautical Society, London, 6 pp.
WERNZ, S. and FASEL, H.F. 1996 Vortex motion in an unsteady
forced wall jet. Phys. Fluids
8
, S11–S12.
Flow viz*, figure 2.
Experimental data
BAJURA, R.A. and CATALANO, M.R. 1975 Transition in a two-
dimensional plane wall jet. J. Fluid Mech.
70
, 773–799, 3 plates.
Mean
velocity*, figure 3. Eigenfunctions, figure 4. Intermittency, figure 6. See
thesis by BAJURA.
BAJURA, R.A. and SZEWCZYK, A.A. 1970 Experimental investi-
gation of a laminar two-dimensional plane wall jet. Phys. Fluids
13
, 1653–
1664.
Initial
Re
a few hundred. Profiles of mean velocity. Apparent origin.
Amplification rate; spectra. Thesis by Bajura? Mean velocity*, figure 2.
Amplification rate*, figure 7.
HORNE, C. and KARAMCHETI, K. 1979 Experimental observations
of a 2-D planar wall jet. AIAA Paper 79-0208.
Laminar wall jet with ini-
tially parabolic profile. Natural transition. Profiles of mean velocity, growth
399