Australasian Fluid Mechanics Conference
, Univ. Tasmania, Vol. II, 1097–
1100.
Geometry*, figure 1. Velocity*, figures 4, 5. Pressure*, figure 7.
AHMED, A. 1993 Topology of radial jet reattachment. Exp. in Fluids
14
, 178–180.
Geometry*, figure 1. Flow viz*, figures 2, 3.
OSTOWARI, C., PAIKERT, B., and PAGE, R.H. 1988 Heat transfer
measurements of radial jet reattachment on a flat plate. AIAA Paper 88-
3772.
Geometry*, figure 1. Pressure*, figure 4. Stanton number*, figures
5–9.
Chapter 11: The Plane Plume
Classical plane plume
Major surveys and theory
BATCHELOR, G.K. 1954 Heat convection and buoyancy effects in
fluids. Quart. J. Royal Meteorological Society
80
, 339–358.
BRADSHAW, P. 1969 The analogy between streamline curvature and
buoyancy in turbulent shear flow. J. Fluid Mech.
36
, 177–191.
BRAND, R.S. and LAHEY, F.J. 1967 The heated laminar vertical
jet. J. Fluid Mech.
29
, 305–315.
Mixed case; solutions in closed form for
certain Prandtl numbers.
HOSSAIN, M.S. and RODI, W. 1977 Influence of buoyancy on the
turbulence intensities in horizontal and vertical jets. In
Heat Transfer and
Turbulent Buoyant Convection
(D.B. Spalding and N. Afghan, eds.), Vol.
1, Hemisphere, 39–51.
LIST, E.J. and IMBERGER, J. 1973 Turbulent entrainment in buoy-
ant jets and plumes. Proc. ASCE (J. Hydr. Div., No. HY9)
xx
, 1461–1474.
MORTON, B.R., TAYLOR, G.I., and TURNER, J.S. 1956 Turbulent
gravitational convection from maintained and instantaneous sources. Proc.
Roy. Soc.
A234
, 1–23.
Entrainment theory for plumes in stratified fluids.
PIAU, J.-M. 1972 La convection naturelle en regime turbulent, aux
grands nombres de Grashof. Comptes Rendus Acad. Sci. Paris
A274
, 420–
423.
SCHMIDT, E. 1963 Heat transfer by natural convection. In
Interna-
tional Developments in Heat Transfer
, Proc. 1961–62 Heat Transfer Confer-
ence, ASME, xxix–xl.
401
Experimental data
BRODOWICZ, K. and KIERKUS, W.T. 1966 Experimental inves-
tigation of laminar free-convection flow in air above horizontal wire with
constant heat flux. Int’l. J. Heat Mass Transf.
9
, 81–93.
Velocity by strobo-
scopic observation of particles. Temperature by interferometry. Main data
are tabulated. Nice work. Flow viz*, figures 1, 2. Mean velocity*, figures 3,
7. Mean temperature, figure 4.
FORSTROM, R.J. and SPARROW, E.M. 1967 Experiments on the
buoyant plume above a heated horizontal wire. Int’l. J. Heat Mass Transf.
10
, 321–331.
Mean temperature*, figures 3, 4. This is thesis by Forstrom,
Minnesota, 1966.
FUJII, T., MORIOKA, I., and UEHARA, H. 1973 Buoyant plume
above a horizontal line heat source. Int’l. J. Heat Mass Transf.
16
, 755–768.
Theory and experiment for laminar case.
KOTSOVINOS, N.E. 1975 A study of the entrainment and turbu-
lence in a plane buoyant jet. Ph. D. thesis, California Inst. Technology.
KOTSOVINOS, N.E. 1977 A study of the interactions of turbulence
and buoyancy in a plane vertical buoyant jet. In
Heat Transfer and Tur-
bulent Buoyant Convection
(D.B. Spalding and N. Afghan, eds.), Vol. 1,
Hemisphere, 15–26.
T fluctuations*, figure 2.
KOTSOVINOS, N.E. 1977 Plane turbulent buoyant jets. Part 2.
Turbulence structure. J. Fluid Mech.
81
, 45–62, 3 plates. See also Ph.
D. thesis, A study of the entrainment and turbulence in a plane buoyant jet,
California Inst. Technology, 1975, by N.E. KOTSOVINOS, (Keck Lab. Rep.
KH-R-32).
See also Part 1. Large range of Richardson number. Profiles
of rms temperature fluctuations; intermittency; moments of pdf. Reynolds
stresses*, figures 1, 2, 6, 17. Intermittency*, figure 10.
KOTSOVINOS, N.E. and LIST, E.J. 1977 Plane turbulent buoyant
jets. Part 1. Integral properties. J. Fluid Mech.
81
, 25–44. See also Ph.
D. thesis, A study of the entrainment and turbulence in a plane buoyant
jet, California Inst. Technology, 1975, by N.E. KOTSOVINOS, (Keck Lab.
Rep. KH-R-32).
Reprise of similarity arguments for jets and plumes; role
of Richardson number. Growth rate, axial decay; entrainment. Temperature
decay*, figure 2. Richardson number*, figure 3. Momentum flux, figure 4.
Growth rate*, figure 7.
LEE, S.-L. 1961 Natural convection above a line fire. Ph. D. thesis,
Dept. Mech. Eng., Harvard Univ.
Density*, figures 5-2, 5-3. Growth*,
figures 5-4, 5-8. Flame height*, figures 5-10, 5-11.
LEE, S.-L. and EMMONS, H.W. 1961 A study of natural convection
402
above a line fire. J. Fluid Mech.
11
, 353–368, 1 plate.
Buoyancy*, figure 6.
Growth rate*, figure 7.
MUROTA, A. and NAKASUJI, K. 1988 On large scale coherent struc-
ture in turbulent plane plume. In
Transport Phenomena in Turbulent Flows
(M. Hirata and N. Kasagi, eds.), Hemisphere, 239–252.
NOTO, K. 1989 Swaying motion in thermal plume above a horizontal
line heat source. J. Thermophysics and Heat Transfer
3
, 428–434.
Rayleigh
number*, figure 3.
OOSTHUIZEN, P.H. and LEMIEUX, G.P. 1987 An experimental study
of an inclined buoyant plane turbulent air jet. Chem. Eng. Commun.
50
,
113–133.
Nozzle
1
×
58
cm. Trajectory. Velocity*, figures 4, 5. Reynolds
stresses*, figures 8, 9–16, 22–26. Temperature*, figure 19.
PERA, L. and GEBHART, B. 1975 Laminar plume interactions. J.
Fluid Mech.
68
, 259–271, 10 plates.
Nice photographs.
ROUSE, H., YIH, C.S., and HUMPHREYS, H.W. 1952 Gravitational
convection from a boundary source. Tellus
4
, 201–210.
Similarity argument
for pure plane and round plumes. Profiles of mean velocity (vane anemome-
ter), mean density (thermocouple). Mean velocity, temperature*, figures 2,
3.
YOSINOBU, H. and WAKITANI, S. 1985 Transition to turbulence
in a natural convection plume above a horizontal line heat source. In
Recent Studies on Turbulent Phenomena
(T. Tatsumi, H. Maruo, and H.
Takami, eds.), Association for Science Documents Information, Tokyo, 179–
191.
Mean velocity*, figure 2. Centerline velocity, temperature*, figure 4.
Fluctuations*, figures 5, 6. Spectra.
Classical round plume
Major surveys and theory
BAINES, W.D. 1977 Turbulent buoyant plumes. In
Heat Transfer
and Turbulent Buoyant Convection
(D.B. Spalding and N. Afghan, eds.),
Vol. 1, Hemisphere, 235–250.
Geometry*, figures 1, 2, 7.
KUIKEN, H.K. and ROTEM, Z. 1971 Asymptotic solution for plume
at very large and small Prandtl numbers.
Matched asymptotic expansions
and composite solutions.
LIN, S.-C., TSANG, L., and WANG, C.P. 1972 Temperature field
structure in strongly heat buoyant thermals. Phys. Fluids
15
, 2118–2128.
403
MOLLENDORF, J.C. and GEBHART, B. 1973 An experimental and
numerical study of the viscous stability of a round laminar vertical jet with
and without thermal buoyancy for symmetric and asymmetric disturbances.
J. Fluid Mech.
61
, 367–399.
Critical Re. Geometry*, figure 1. Flame
length*, figures 10, 11.
PRIESTLEY, C.H.B. and BALL, F.K. 1955 Continuous convection
from an isolated source of heat. Quart. J. Royal Meteorological Society
81
,
144–157.
ROONEY, G.G. and LINDEN, P.F. 1996 Similarity considerations
for non-Boussinesq plumes in an unstratified environment. J. Fluid Mech.
318
, 237–250.
SHUI, V.H. and WEYL, G.K. 1975 Motion of a rising thermal. Phys.
Fluids
18
, 15–19.
Competent analytical estimates (see Wang, Phys. Fluids,
14
, 16).
THOMAS, T.G. and TAKHAR, H.S. 1988 Second-order effects in an
axisymmetric plume. Quart. J. Mech. Appl. Math.
41
, 1–16.
YIH, C.-S. and WU, F. 1981 Round buoyant laminar and turbulent
plumes. Phys. Fluids
24
, 794–801.
Experimental data
BAINES, W.D., FERGUSON, D.C., and SCHNITT, F. 1982 Mea-
surements of the radial and axial velocity in a buoyant jet using laser-
Doppler anemometry. In
Laser Anemometry in Fluid Mechanics
, First In-
ternational Symposium (R. J. Adrian et al., eds.), LADOAN-Instituto Supe-
rior Tecnico, Lisbon, 211–220.
Mean velocity*, figures 4, 5. Fluctuations*,
figures 6, 7, 8.
CETEGEN, B.M. and KASPER, K.D. 1996 Experiments on the os-
cillatory behavior of buoyant plumes of helium and helium-air mixtures.
Phys. Fluids
8
, 2974–2984.
DAI, Z., TSENG, L.-K., and FAETH, G.M. 1994? Velocity statistics
round, fully developed, buoyant turbulent plumes. Manuscript in press, J.
Heat Transfer, Dec. 94.
DAI, Z., TSENG, L.-K., and FAETH, G.M. 1994 Buoyant turbulent
plumes revisited. In
Heat and Mass Transfer 94,
Tata McGraw-Hill Pub-
lishing Company Limited, New Delhi, 57–66.
DAI, Z., TSENG, L.-K., and FAETH, G.M. 1994 Structure of round,
fully developed, buoyant turbulent plumes. Trans. ASME (J. Heat Transfer)
116
, 409–417.
Geometry*, figure 1. Density profiles*, figures 3, 4.
404
DAI, Z., TSENG, L.-K., and FAETH, G.M. 1994 Velocity/mixture
fraction statistics of round, self-preserving, buoyant turbulent plumes. Man-
uscript, Dec. 94.
GEORGE, W.K. Jr., ALPERT, R.L., and TAMANINI, F. 1977 Tur-
bulence measurements in an axisymmetric buoyant plume. Int’l. J. Heat
Mass Transfer
20
, 1145–1154.
Mean velocity*, figures 4, 5. Reynolds stress*,
figure 11.
GRIFFITHS, R.W. 1991 Entrainment and stirring in viscous plumes.
Phys. Fluids
A3
, 1233–1242.
Topology*, figure 1.
KOTSOVINOS, N.E. and LIST, E.J. 1977 Turbulent buoyant jets.
In
Heat Transfer and Turbulent Buoyant Convection
(D.B. Spalding and N.
Afghan, eds.), Vol. 1, Hemisphere, 349–359.
Density decay*, figures 3, 4.
NAKAGOME, H. and HIRATA, M. 1977 The structure of turbulent
diffusion in an axi-symmetrical thermal plume. In
Heat Transfer and Tur-
bulent Buoyant Convection
(D.B. Spalding and N. Afghan, eds.), Vol. 1,
Hemisphere, 361–372.
Velocity, temperature profiles*, figure 6. Fluctua-
tions*, figures 9, 10.
OOSTHUIZEN, P.H. 1977 Vertical buoyant air jets. In
Heat Transfer
and Turbulent Buoyant Convection
(D.B. Spalding and N. Afghan, eds.),
Vol. 1, Hemisphere, 303–312.
Velocity fluctuation*, figures 8, 9. Velocity
decay*, figures 10, 11, 13.
PAPANICOLAOU, P.N. and LIST, E.J. 1988 Investigations of round
vertical turbulent buoyant jets. J. Fluid Mech.
195
, 341–391.
Growth rate;
profiles of mean velocity, concentration, Reynolds stresses; relaxation from
jet to plume. Thesis is Keck Rep KH-R-46, 1984. Growth rate*, figure 2.
Decay*, figures 5, 6. Mean velocity, concentration*, figures 7, 12. Fluctua-
tions*, figures 13, 14.
PAPANTONIOU, D.A. 1985 Observations in turbulent buoyant jets
by use of laser-induced fluorescence. Ph. D. thesis, California Institute of
Technology.
PAPANTONIOU, P.N. and LIST, E.J. 1989 Large-scale structure in
the far field of buoyant jets. J. Fluid Mech.
209
, 151–190.
LIF in round
buoyant jet. Profiles of
c
and
c
′
; intermittency. Flow viz*, figure 1. Mean
concentration*, figures 5, 10, 12. Fluctuations, figure 6. Intermittency*,
figures 9, 11. Celerity*, figure 25.
PRYPUTNIEWICZ, R.J. and BOWLEY, W.W. 1975 An experimen-
tal study of vertical buoyant jets discharged into water of finite depth. Trans.
ASME (J. Heat Transf.)
97C
, 274–281.
Upward jet-plume in tank with free
water surface. Profiles of mean temperature; centerline decay; surface tem-
perature. Decay*, figures 4–6.
405
RAILSTON, W. 1954 The temperature decay law of a naturally con-
vected air stream. Proc. Phys. Soc. London
67B
, 42–51.
Temperature*,
figure 4. Growth*, figure 5.
SHABBIR, A. and GEORGE, W.K. 1994 Experiments on a round
turbulent buoyant plume. J. Fluid Mech.
275
, 1–32.
Very ragged data.
Geometry*, figure 2. Density profiles*, figures 5, 6.
SPARROW, E.M., HUSAR, R.B., and GOLDSTEIN, R.J. 1970 Ob-
servations and other characteristics of thermals. J. Fluid Mech.
41
, 793–800,
1 plate.
Flow tends to be periodic; see conjecture by Howard in 11th Int’l.
Congr., 1964. Periodicity*, figure 3. Flow viz*, figure 1.
WITTE, A.B. and MANTROM, D.D. 1975 Interferometric technique
for measuring mixing of a buoyant plume. AIAA J.
13
, 535–536.
Isopycnics
for
N
2
in
SF
6
. See ref 4 (Mantrom & Haigh) for more detail. Vortex closer
to torus than to sphere. Flow viz*, figure 1.
Free convection boundary layer
Major surveys or theory
BOUTROS, Y.Z., ABD-EL-MALEK, M.B., and BADRAN, N.A. 1990
Group theoretic approach for solving time-independent free-convective bound-
ary layer flow on a nonisothermal vertical flat plate. Archives of Mechanics
42
, 377–395.
School of Moran and Gaggioli.
ECKERT, E.R.G. and JACKSON, T.W. 1950 Analysis of turbulent
free-convection boundary layer on flat plate. NACA TN 2207.
GEBHART, B. 1973 Instability, transition, and turbulence in buoyancy-
induced flows. Ann. Rev. Fluid Mech.
5
, 213–246.
GEORGE, W.K. Jr. and CAPP, S.P. 1978 Natural convection turbu-
lent boundary layers next to heated vertical surfaces. Turbulence Res. Lab.,
State Univ. New York (Buffalo), Tech. Rep. No. TRL-103A.
GEORGE, W.K. and CAPP, S.P. 1979 A theory for natural convec-
tion turbulent boundary layers next to heated vertical surfaces. Int’l. J.
Heat Mass Transf.
22
, 813–826.
HENKES, R.A.W.M. 1991 Scaling of the turbulent natural-convection
boundary layer along a hot vertical plate. In
Preprints, Eighth Symposium
on Turbulent Shear Flows
, Technical University of Munich, Vol. 2, Paper 24-
2.
406
HUMPHREY, J.A.C. and TO, W.M. 1985 Numerical prediction of
turbulent free convection. In
Preprints, Fifth Symposium on Turbulent
Shear Flows
, Cornell Univ., 22.19–22.25.
MENZEL, K. 1973
̈
Uber das Stabilit ̈atsverhalten der freien Konvek-
tionsstr ̈omung an einer beheizten vertikalen Platte. Deutsche Luft- und
Raumfahrt, Forschungsbericht 73–92.
OSTRACH, S. 1952 An analysis of laminar free-convection flow and
heat transfer about a flat plate parallel to the direction of the generating
body force. NACA TN 2635.
PAPAILIOU, D.D. 1991 Turbulence models for natural convection
flows along a vertical heated plane. In
Appraisal of the Suitability of Tur-
bulence Models in Flow Calculations,
AGARD Advisory Rep. 291, Paper 4.
Temperature profile*, figures 2–5.
PEETERS, T.W.J. and HENKES, R.A.W.M. 1992 The Reynolds-
stress model of turbulence applied to the natural-convection boundary layer
along a heated vertical plate. Int’l. J. Heat Mass Transf.
35
, 403–420.
SCHMIDT, E. 1961 Heat transfer by natural convection. In Int’l.
Developments in Heat Transfer, Proc. 1961–62 Heat Transfer Conf., ASME,
xxix-xl.
SCHMIDT, E. and BECKMANN, W. 1930 Das Temperatur- und
Geschwindigkeitsfeld vor einer W ̈arme abgebenden senkrechten Platte bei
nat ̈urlicher Konvektion. Technische Mechanik und Thermodynamik
1
, 341–
349, 391–406 (at vol. 2, title became Forschung auf dem Gebiete des Inge-
nieurwesens).
TAKHAR, H.S. 1968 Free convection from a flat plate. J. Fluid Mech.
34
, 81–89.
TO, W.M. and HUMPHREY, J.A.C. 1986 Numerical simulation of
buoyant, turbulent flow. I. Free convection along a heated, vertical, flat
plate. Int’l. J. Heat Mass. Transf.
29
, 573–592.
Turbulence modeling. Useful
for experimental references.
UMEMURA, A. and LAW, C.K. 1990 Natural-convection boundary-
layer flow over a heated plate with arbitrary inclination. J. Fluid Mech.
219
, 571–584.
Theory; nice.
YANG, R. and YAO, L.S. 1985 Natural convection along a finite ver-
tical plate. ASME Paper 85-WA/HT-3.
Experimental data
AUDUNSON, T. and GEBHART, B. 1972 An experimental and an-
alytical study of natural convection with appreciable thermal radiation ef-
407
fects. J. Fluid Mech.
52
, 57–95, 1 plate.
Mean temperature*, figures 5, 6,
7, 9. Nusselt number*, figure 8. Probably thesis.
BILL, R.G. Jr. and GEBHART, B. 1979 The development of turbu-
lent transport in a vertical natural convection boundary layer. Int’l. J. Heat
Mass Transf.
22
, 267–277.
Fluctuations only.
CAIRNIE, L.R. and HARRISON, A.J. 1982 Natural convection ad-
jacent to a vertical isothermal hot plate with a high surface-to-ambient tem-
perature difference. Int’l. J. Heat Mass Transf.
25
, 925–934.
Mean temper-
ature*, figures 1, 2, 3. Mean velocity*, figures 4, 5.
CHEESEWRIGHT, R. 1968 Turbulent natural convection from a ver-
tical plane surface. Trans. ASME (J. Heat Transf.)
90C
, 1–6 (discussion
6–8).
Profiles of mean velocity, mean temperature. See discussion. Mean
velocity*, figures 8, 9. Mean temperature*, figures 4, 5, 6, 7. Heat transfer*,
figures 1, 2. This is Ph. D. thesis, Univ. London, 1966.
CHEESEWRIGHT, R. and DOAN, K.S. 1978 Space-time correlation
measurements in a turbulent natural convection boundary layer. Int’l. J.
Heat Mass Transf.
21
, 911–921.
Correlations*, figures 1, 2, 5. Celerity*,
figures 3, 4. Thesis by Doan, Poitiers, 1977.
CHEN, T.S., ARMALY, B.F., and RAMACHANDRAN, N. 1986 Cor-
relations for laminar mixed convection flows on vertical, inclined, and hor-
izontal flat plates. Trans. ASME (J. Heat Transf.)
108
, 835–840.
Nusselt
number*, figures 3–6.
ECKERT, E.R.G. S
̈
OHNGEN, E., and SCHNEIDER, P.J. 1955 Stu-
dien zum Umschlag laminar-turbulent der freien Konvektions-Str ̈omung an
einer senkrechten Platte. In
50 Jahre Grenzschichtforschung
(H. G ̈ortler
and W. Tollmien, eds.) Vieweg & Sohn, 407–418.
GODAUX, F. and GEBHART, B. 1974 An experimental study of the
transition of natural convection flow adjacent to a vertical surface. Int’l. J.
Heat Mass Transfer
17
, 93–107.
Stability plane*, figure 8.
GOLDSTEIN, R.J. and ECKERT, E.R.G. 1960 The steady and tran-
sient free convection boundary layer on a uniformly heated vertical plate.
Int’l. J. Heat Mass Transf.
1
, 208–218.
Nusselt number*, figure 6. Temper-
ature*, figure 7.
HOOGENDOORN, C.J. and EUSER, H. 1978 Velocity profiles in the
turbulent free-convection boundary layer. In
Proc. Sixth International Heat
Transfer Conference
, Hemisphere, Vol. 2, 193–197.
Reynolds stresses*, fig-
ure 7.
JALURIA, Y. and GEBHART, B. 1974 On transition mechanisms in
vertical natural convection flow. J. Fluid Mech.
66
, 309–337.
Velocity*,
figure 2. Temperature*, figure 4. Intermittency*, figure 6, 7. Transition*,
408
table 1.
KITAMURA, K. and INAGAKI, T. 1987 Turbulent heat and mo-
mentum transfer of combined forced and natural convection along a vertical
flat plate—aiding flow. Int’l. J. Heat Mass Transf.
30
, 23–41.
KITAMURA, K., KOIKE, M., FUKUOKA, I., and SAITO, T. 1985
Large eddy structure and heat transfer of turbulent natural convection along
a vertical flat plate. Int’l. J. Heat Mass Transf.
28
, 837–850.
KNOWLES, C.P. and GEBHART, B. 1969 An experimental investi-
gation of the stability of laminar natural convection boundary layers. Progress
in Heat and Mass Transfer
2
, 99–124.
See thesis by Knowles, Cornell, 1967.
Flow viz*, figures 11–13.
KUTATELADZE, S.S., KIRDYASHKIN, A.G., and IVAKIN, V.P. 1972
Turbulent natural convection on a vertical plate and in a vertical layer. Int’l.
J. Heat Mass Transf.
15
, 193–202.
LAI, M.-C., JENG, S.-M., and Faeth, G.M. 1986 Structure of turbu-
lent adiabatic wall plumes. Trans. ASME (J. Heat Transf.)
108
, 827–834.
Mean velocity*, figure 5. Mean concentration*, figures 6, 7. Fluctuations*,
figures 8–10. Also wall jet. This is thesis by Lai.
LLOYD, J.R. 1971 Laminar, transition, and turbulent natural con-
vection adjacent to vertical and upward facing inclined surfaces. Ph.D.
thesis, Dept. Mechanical Eng., Univ. Minnesota.
Includes plate at angle.
LOCK, G.S.H. and TROTTER, F.J. deB. 1968 Observations on the
structure of a turbulent free convection boundary layer. Int’l. J. Heat Mass
Transf.
11
, 1225–1232.
Mean temperature*, figures 2, 3, 6. Mean velocity*,
figures 4, 5. Intermittency*, figure 10. This is MS thesis by Trotter.
MEHTA, J. 1975 Interferometric studies of laminar and transitional
free convection heat transfer in water. M.S. thesis, Dept. Mech. Eng., Geor-
gia Institute of Technology.
Nusselt number *, figure 8.
MIYAMOTO, M. and OKAYAMA, M. 1982 An experimental study
of turbulent free convection boundary layer in air along a vertical plate using
LDV. Bull. JSME
25
, 1729–1736.
Heat transfer*, figure 3. Temperature
fluctuation*, figure 5. Velocity*, figures 8, 9.
MIYAMOTO, M., KATOH, Y., KURIMA, J., and KAJINO, H. 1983
An experimental study of turbulent free convection boundary layer along a
vertical surface using LDV. In
The Application of Laser Doppler Velocime-
try,
Association for the Study of Flow Measurements, Osaka, 83–104.
Data
are tabulated. Velocity*, figures 4, 12. Temperature*, figure 10.
PAPAILIOU, D.D. and LYKOUDIS, P.S. 1974 Turbulent free con-
vection flow. Int’l. J. Heat Mass Transfer
17
, 161–172.
T fluctuations*,
figure 5.
409
PIROVANO, A., VIANNAY, S., and JANNOT, M. 1970 Convec-
tion naturelle en regime turbulent le long d’une plaque plane verticale. In
Proc. Fourth International Heat Transfer Conference
, Elsevier, Vol. 4, Paper
NC1.8.
Heat transfer*, figure 2.
POLYMEROPOULOS, C.E. and GEBHART, B. 1967 Incipient in-
stability in free convection laminar boundary layers. J. Fluid Mech.
30
,
225–239, 2 plates.
Vibrating ribbon. Banana plot*, figure 10. This is from
thesis by Polymeropoulos.
QURESHI, Z.H. and GEBHART, B. 1978 Transition and transport
in a buoyancy driven flow in water adjacent to a vertical uniform flux sur-
face. Int’l. J. Heat Mass Transfer
21
, 1467–1479.
Transition*, figure 4.
Temperature*, figures 5, 6, 7.
SIEBERS, D.L., MOFFAT, R.F., and SCHWIND, R.G. 1985 Exper-
imental, variable properties natural convection from a large, vertical, flat
surface. Trans. ASME (J. Heat Transf.)
107
, 124–132.
Nusselt number*,
figures 2–4. Mean temperature*, figures 6, 7. This is thesis by Siebers,
Stanford, 1983.
SZEWCZYK, A.A. 1961 Stability and transition of the free-convection
layer along a vertical flat plate. Institute for Fluid Dynamics and Applied
Mathematics, Univ. Maryland, Tech. Note BN–247.
Velocity*, figure 1.
Temperature*, figures 9, 11. Stability curve*, figure 13. Flow viz*, figures
21–24.
TSUJI, T. and NAGANO, Y. 1988 Characteristics of a turbulent nat-
ural convection boundary layer along a vertical flat plate. Int’l. J. Heat Mass
Transf.
31
, 1723–1734.
Laminar and turbulent cases. Very nice profiles of
u, T
. Mean velocity*, figures 3, 6, 8, 9. Mean temperature*, figures 4, 10,
11. Reynolds stresses*, figures 12-15. Nusselt number*, figure 5. Friction
coefficient*, figure 7
.
TSUJI, T. and NAGANO, Y. 1988 Turbulence measurements in a
natural convection boundary layer along a vertical flat plate. Int’l. J. Heat
Mass Transf.
31
, 2101–2111.
TSUJI, T. and NAGANO, Y. 1988 Velocity and temperature mea-
surements in a natural convection boundary layer along a vertical flat plate.
In
Proc. First World Conference on Experimental Heat Transfer, Fluid Me-
chanics, and Thermodynamics
(R.K. Shah, E.N. Ganic, and K.T. Yang,
eds.), Elsevier, 169–176.
TSUJI, T. and NAGANO, Y. 1989 Velocity and temperature mea-
surements in a natural convection boundary layer along a vertical flat plate.
Exp. Thermal Fluid Sci.
2
, 208–215.
Nusselt number, figures 2, 7. Velocity,
figures 3, 4. Temperature, figures 3, 6, 7. Reynolds stresses, figures 3, 5, 6,
410
7, 8, 11. See IJHMT.
TSUJI, T., NAGANO, Y., and TAGAWA, M. 1990 Experiment on
spatial and temporal turbulent structures of a natural convection boundary
layer. In
Heat Transfer in Turbulent Flow
(R.S. Amano, M.E. Crawford,
and N.K. Anand, eds.), HTD Vol. 138, ASME, 19–26.
Reynolds stresses*,
figure 2.
TSUJI, T., NAGANO, Y., TAGAWA, M. 1991 Thermally driven tur-
bulent boundary layer. In
Preprints, Eighth Symposium on Turbulent Shear
Flows,
Munich, Vol. 2, Paper 24–3.
Energy and thermal budgets.
Jimenez
collection No. 9.
Velocity*, temperature*, Reynolds stresses*, figures 1,
2. Energy balance.
WARNER, C.Y. 1966 Turbulent natural convection in air along a ver-
tical flat plate. Ph. D. thesis, Dept. Mech. Eng., Univ. Michigan.
Student
of Arpaci. Laminar flow*, figure 16. Turbulent flow*, figures 18–22. Heat
transfer*, figures 26–29. Data are tabulated.
WARNER, C.Y. and ARPACI, V.S. 1968 An experiential investiga-
tion of turbulent natural convection in air at low pressure along a vertical
heated flat plate. Int’l. J. Heat Mass Transf.
11
, 397–406.
Mean tempera-
ture*, figures 2, 3, 4, 7. Heat transfer*, figures 8, 9. This is Ph. D. thesis
by Warner.
Plume with crossflow or stratification
Major surveys and theory
FAY, J.A., ESCUDIER, M.P., and HOULT, D.P. 1969 A correlation
of field observations of plume rise. Fluid Mechanics Laboratory, Dept. Mech.
Eng., MIT, Pub. No. 69–4.
FAY, J.A., ESCUDIER, M.P., and HOULT, D.P. 1969 Discussion of
“Plume rise measurements at industrial chimneys,” Atm. Env.
2
, 575–598,
1968, in Atm. Env.
3
, 311–315, 1969.
HOLT, S.E., KOSEFF, J.R., and FERZIGER, J.H. 1989 The evolu-
tion of turbulence in the presence of mean shear and stable stratification. In
Preprints, Seventh Symp. on Turbulent Shear Flows,
Stanford Univ., Paper
12–2.
HOULT, D.P., FAY, J.A., and FORNEY, L.J. 1968 A theory of plume
rise compared with field observations. Fluid Mechanics Lab., Dept. Mechan-
ical Eng., Massachusetts Institute of Technology, Pub. No. 68–2.
411
HOULT, D.P., FAY, J.A., and FORNEY, L.J. 1969 A theory of plume
rise compared with field observations. J. Air Pollution Control Association
19
, 585–590.
WOOD, I.R. 1992 Jets, plumes and ocean outfalls. In
Proc. Eleventh
Australasian Fluid Mechanics Conference
, Univ. Tasmania, Vol. II, 1297–
1307.
Experimental data
ANDREOPOULOUS, J. 1985 Wind tunnel experiments of cooling-
tower plumes in the presence of cross flow. In
Preprints, Fifth Symposium
on Turbulent Shear Flows
, Cornell Univ., 7.29–7.36.
Mean velocity*, figures
11, 12.
ANWAR, H.O. 1969 Experiment on an effluent discharging from a
slot into stationary or slow moving fluid of greater density. J. Hydr. Res.
7
,
411–431.
Fresh-water slot jet into stationary or upward-moving salt water.
Profiles of mean concentration; growth rate.
ANWAR, H.O. 1969 Measurement on horizontal buoyant jet in calm
ambient fluid, with theory based on variable coefficient of entrainment de-
termined experimentally. La Houille Blanche
27
, 311–319.
Warm water
discharged horizontally into large tank. Profiles of mean and rms tempera-
ture; velocity on axis (doubtful); growth rate; trajectory.
CRAWFORD, T.V. and LEONARD, A.S. 1962 Observations of buoy-
ant plumes in calm stably stratified air. J. Appl. Met.
1
, 251–256.
Heated
round plume in stably stratified air above ice rink. Schlieren used to observe
maximum rise.
FAN, L.-N. 1967 Turbulent buoyant jets into stratified or flowing am-
bient fluids. Ph. D. thesis, California Inst. Technology (Keck Lab. Rep.
KH-R-15).
Good review, including non-buoyant round jet into transverse
stream. Measurements include buoyant jet at angle to flow. Dilution ratio*,
figure 6. Trajectory*, figures 20–29, 51–55. Good literature survey.
WRIGHT, S.J. 1977 Effects of ambient crossflows and density strati-
fication on the characteristic behavior of round turbulent buoyant jets. Ph.
D. thesis, California Inst. Technology, (Keck Lab. Rep. KH-R-36).
Massive
experimental study. Review of literature with uniform level of treatment for
dimensional arguments. Good work. Trajectory*, figures 5.2, 5.4, 5.5–5.7,
5.13–5.15. Mean concentration, figures 5.42–5.47. Intermittency, figures
5.48–5.49.
412