of 92
VAN DYKE, M. 1975
Perturbation Methods in Fluid Mechanics
, Par-
abolic Press.
WALLACE, J.M. and FOSS, J.F. 1995 The measurement of vorticity
in turbulent flows. Ann. Rev. Fluid Mech.
27
, 469–514.
WEBER, M. 1930 Das allgemeine
̈
Ahnlichkeitsprinzip der Physik und
sein Zusammenhang mit der Dimensionslehre und der Modellwissenschaft.
Jahrbuch der Schiffbautechnischen Gessellschaft
31
, 274–354.
WEYL, H. 1949 Shock waves in arbitrary fluids. Comm. Pure Appl.
Math.
2
, 103–122.
WILCZYNSKI, E.J. 1900 An application of group theory to hydro-
dynamics. Trans. American Math. Soc.
1
, 339–352.
ZIEREP, J. 1971
Similarity Laws and Modeling
. Marcel Dekker.
Chapter 2: Pipe Flow
General References
ALLEN, J. 1970 The life and work of Osborne Reynolds. In
Osborne
Reynolds and Engineering Science Today
(D.M. McDowell and J.D. Jackson,
eds.), Manchester Univ. Press, 1–82.
BARR, G. 1931
A Monograph of Viscometry
. Oxford Univ. Press.
Want Ch. 2, pp 9–47 and title page. p. 10 describes Poiseuille’s work.
BERMAN, J. and MOCKROS, L.F. 1984 Flow in a rotating non-
aligned straight pipe. J. Fluid Mech.
144
, 297–310.
BINGHAM, E.C. 1922
Fluidity and Plasticity
. McGraw-Hill.
BLASIUS, H. 1913
BREUER, K.S. 1985
BROCKMAN, M.R. 1956
BUCKINGHAM, E. 1914 On physically similar systems: illustrations
of the use of dimensional equations. Physical Review (2)
4
, 345–376.
BUCKINGHAM, E. 1914 Physically similar systems. Journal of the
Washington Academy of Sciences
4
, 347–353.
BUCKINGHAM, E. 1915 The principle of similitude. Nature
96
,
396–397.
Remarks on Rayleigh.
BUCKINGHAM, E. 1915 Model experiments and the forms of em-
pirical equations. Transactions, American Society of Mechanical Engineers
37
, 263–292 (discussion, 292–296).
11
BUCKINGHAM, E. 1924 Dimensional analysis. Phil. Mag.
48
, 141–
145.
Rebuttal to N. Campbell.
CHAPMAN, D.R. and KUHN, G.D. 1981 Two-component Navier-
Stokes computational model of viscous sublayer turbulence. AIAA Paper
81-1024.
CHAPMAN, D.R. and KUHN, G.D. 1986 The limiting behaviour of
turbulence near a wall. J. Fluid Mech.
170
, 265-292.
COLES, D. and VAN ATTA, C. 1966 Progress report on a digital
experiment in spiral turbulence. AIAA J.
4
, 1969–1971.
COURANT, R. and HILBERT, D. 1953
Methods of Mathematical
Physics
(first English edition), Vol. I, Interscience, New York.
DEELEY, R.M. and PARR, P.H. 1913 The viscosity of glacier ice.
Phil. Mag. (6)
26
, 85–111.
Suggested name “poise” for viscosity.
DONALDSON, C. duP. 1952 Skin friction and heat transfer through
turbulent boundary layers for incompressible and compressible flows. In
Proc. 1952 Heat Transfer and Fluid Mechanics Institute
, Stanford Univ.
Press, 19–35 (slightly revised as “On the form of the turbulent skin-friction
law and its extension to compressible flows,” NACA TN 2692, 1952).
FANNING, J.T. 1886
Practical Treatise on Hydraulic and Water-Sup-
ply Engineering
(5th ed.), Van Nostrand, New York.
HELE-SHAW, H.A. 1897 Experiments on the nature of the surface
resistance in pipes and on ships. Transactions of the Institution of Naval
Engineers
39
, 145–153, 4 plates (discussion 153–156).
HELMHOLTZ, H. (and von PIOTROWSKI, G.) 1860 Ueber Reibung
tropfbarer Fl ̈ussigkeiten. Sitzungberichte der mathematisch-naturwissen-
schaftlichen Classe k. k. Akademie der Wissenschaften zu Wien
40
, 607–558,
or
Wissenschaftliche Abhandlungen
, Vol. 1, Barth, Leipzig, 172–222, 1882.
Poiseuille friction law by theory. Cites Poisson, Navier, Stokes, p 218; also
Gerard, which see.
HELMHOLTZ, H. 1868 Zur Theorie der station ̈aren Str ̈ome in reiben-
den Flussigkeiten. Verh. naturhist.-med. Vereins zu Heidelberg
5
, 1–7, or
Wissenschaftliche Abhandlungen
, Band 1, Barth, Leipzig, 223–230, 1882.
Should be minimum dissipation. Ref in Lamb, p 618; mentions also Ko-
rteweg.
HOLTON, G. 1978
The Scientific Imagination: Case Studies.
Cam-
bridge Univ. Press.
Chapter 2: Subelectrons, presuppositions, and the
Millikan-Ehrenheft dispute.
IPPEN, A.T. 1970 Hydraulic scale models. In
Osborne Reynolds and
Engineering Science Today
(D.M. McDowell and J.D. Jackson, eds.), Manch-
ester Univ. Press, 199–224.
12
ISHIGAKI, H. 1996 Analogy between turbulent flows in curved pipes
and orthogonally rotating pipes. J. Fluid Mech.
307
, 1–10.
IVERSEN, H.W. 1956 Orifice coefficients for Reynolds numbers from
4 to 50,000. Trans. ASME
78
, 359–364.
IZAKSON, A. 1937 On the formula for the velocity distribution near
walls. Techn. Phys. USSR
4
, 155-162, or O formule raspredeleniia skorostei
vblizi stenki. Zh. Eksp. Teor. Fiziki
7
, 919-924.
JACOBSON, H. 1860 Beitr ̈age zur Haemodynamik. Reichert’s und
du Bois-Reymond’s Archiv f ̈ur Anatomie, Physiologie und wissenschaftliche
Medicin, 80–113.
von KARMAN, T. 1911
̈
Uber die Turbulenzreibung verschiedener Fl ̈us-
sigkeiten. Physikalische Zeitschrift
12
, 283–284 (also in
Collected Works of
Theodore von Karman
, Vol. I, 321–323, Butterworths, 1956).
Mentioned in
“Aerodynamics,” with figures, pp. 78–81. Work is by Bose and Rauert and
by Bose and Bose; see refs p 98 of “Aerodynamics.”
von KARMAN, T. 1921
̈
Uber laminare und turbulente Reibung. Zeit-
schr. angew. Math. Mech.
1
, 233-252, or Abh. Aerodyn. Inst. Tech.
Hochschule Aachen
1
, Springer, Berlin, 1-20, or
Collected Works
, Butter-
worths, 1956, Vol. II, 70-97 (in English as “On laminar and turbulent fric-
tion,” NACA TM 1092, 1946).
von KARMAN, T. 1930 Mechanische
̈
Ahnlichkeit und Turbulenz, Nach-
richten von der Gesellschaft der Wissenschaften zu G ̈ottingen, Mathematisch-
Physikalische Klasse, 58-76 or
Collected Works
, Butterworths, 1956, Vol. II,
322-336. (in English as “Mechanical similitude and turbulence,” NACA TM
611, 1931). Same title but revised text in
Proc. Third Int’l. Congr. Appl.
Mech
., Stockholm, 1930, 85-93, or
Collected Works
, Butterworths, 1956, Vol.
II, 337-341.
von KARMAN, T. 1932 Theorie des Reibungswiderstandes. In
Proc.
Konf. ̈uber hydromechanische Probleme des Schiffsantriebs
, Hamburg, 50-
73, or
Collected Works
, Butterworths, 1956, Vol. II, 394-414.
von KARMAN, T. 1939 The analogy between fluid friction and heat
transfer. Trans. ASME
61
, 705–710, or
Collected Works
, Butterworths,
1956, Vol. III, 355–367.
von KARMAN, T. 1954
Aerodynamics
. Cornell Univ. Press (reprinted,
McGraw-Hill, 1963), 78–82.
von KARMAN, T. (with L. EDSON) 1967
The Wind and Beyond
.
Little, Brown and Co.
KJELLSTR
̈
OM, B. and HEDBERG, S. 1970
KLEINSTEIN, G. 1967 Generalized law of the wall and eddy-viscosity
model for wall boundary layers. AIAA J.
5
, 1402-1407, 2289.
13
KORTEWEG, D.J. 1883 On a general theorem of the stability of the
motion of a viscous fluid. Phil. Mag. (5)
16
, 112–118.
LAMB, H. 1932
Hydrodynamics
(6th ed.). Cambridge Univ. Press;
reprinted Dover, 1945.
LEITE, R.J. 1958
LIGHTHILL, M.J. 1970 Turbulence. In
Osborne Reynolds and Engi-
neering Science Today
(D.M. McDowell and J.D. Jackson, eds.), Manchester
Univ. Press, 83–146.
LIN, C.C. 1952 Note on a modification of a method of Kamp ́e de
F ́eriet for estimating the critical Reynolds number of turbulence. NAVORD
Rep. 2243.
Variational method for parabolic profile in pipe.
MATHIEU, E. 1863 Sur le mouvement des liquides dans les tubes
de tres-petit diametre. Comptes Rendus Hebdomadaires des Seances de
l’Academie des Sciences, Paris
57
, 320–324.
Parabolic profile in pipe, and
confirmation of Poiseuille’s formula.
MILLER, B. 1949 The laminar-film hypothesis. Trans. ASME
71
,
357-367.
MILLIKAN, C.B. 1938 A critical discussion of turbulent flows in chan-
nels and circular tubes. In
Proc. Fifth International Congress for Applied
Mechanics
, Cambridge, Mass., 386-392.
MURPHREE, E.V. 1932 Relation between heat transfer and fluid
friction. Ind. Eng. Chem.
24
, 726–736.
MUSKER, A.J. 1979 Explicit expression for the smooth wall velocity
distribution in a turbulent boundary layer. AIAA J.
17
, 655-657.
NEWMAN, B.G. and LEARY, B.G. 1950
NEWTON, I. 1687
Principia Mathematica
. See Cajori, F.,
Sir Isaac
Newton’s Mathematical Principles of Natural Philosophy and His System of
the World: a revision of Motte’s [1729] translation
. Univ. California Press,
Berkeley, 1934.
OBERLACK, M. 1999 Similarity in non-rotating and rotating turbu-
lent pipe flows. J. Fluid Mech.
379
, 1–22.
OKA, S. 1960 The principles of rheometry. In
Rheology, Theory and
Applications
, Vol. 3 (F.R. Eirich, ed.), Academic Press, 17–82.
OSWATITSCH, K. and WEIGHARDT, K. 1987 Ludwieg Prandtl
and his Kaiser-Wilhelm-Institut. Annual Review of Fluid Mechanics
19
,
1–25.
PATEL, R.P. 1974
POWELL, H.N. and BROWNE, W.G. 1957 Use of coiled capillaries
in a convenient laboratory flowmeter. Rev. Sci. Instr.
28
, 138–141.
Includes
effect of curvature on critical Re.
14
PRANDTL, L. 1910 Bemerkungen ̈uber Dimensionen und Luftwider-
standsformeln. Zeitschr. Flugtechnik u. Motorluftschiffahrt
1
, 157-161,
or
Gesammelte Abhandlungen
(W. Tollmien et al., eds.), Springer-Verlag,
Vol. 1, 1961, 290-299.
PRANDTL, L. 1925 Bericht ̈uber Untersuchungen zur ausgebildeten
Turbulenz. Zeitschr. f. angew. Math. u. Mech.
5
, 136-139 (in English as
“Report on investigation of developed turbulence,” NACA TM 1231, 1949),
or
Gesammelte Abhandlungen
(W. Tollmien et al., eds.), Springer-Verlag,
Vol. 2, 1961, 714–718.
PRANDTL, L. 1926
̈
Uber die ausgebildete Turbulenz. In
Proc. Sec-
ond Int’l. Congr. Appl. Mech.
, Zurich, 62-75 (in English as “Turbulent
flow,” NACA TM 435, 1927), or
Gesammelte Abhandlungen
(W. Tollmien
et al., eds.), Springer-Verlag, Vol. 2, 1961, 736–751.
PRANDTL, L. 1927
̈
Uber den Reibungswiderstand str ̈omender Luft.
Ergebnisse der Aerodynamischen Versuchsanstalt zu G ̈ottingen, III Lief.,
Oldenbourg, 1-13, or
Gesammelte Abhandlungen
(W. Tollmien et al., eds.),
Springer-Verlag, Vol. 2, 1961, 620–626.
PRANDTL, L. 1932 Zur turbulenten Str ̈omung in Rohren und l ̈angs
Platten. Ergebnisse der Aerodynamischen Versuchsanstalt zu G ̈ottingen, IV
Lief., Oldenbourg, 18-29, or
Gesammelte Abhandlungen
(W. Tollmien et al.,
eds.), Springer-Verlag, Vol. 2, 1961, 632–648.
PRANDTL, L. and TIETJENS, O. 1934
Applied Hydro- and Aerome-
chanics
. McGraw-Hill (reprinted Dover, 1957), 36–39. Also pp 14–19, 29–
35, 48–52.
Transition in pipe flow.
RAYLEIGH, LORD (John William Strutt) 1892 On the question of
the stability of the flow of fluids. Phil. Mag. (5)
34
, 59-70; also
Scientific
Papers
, Vol. 3, Cambridge Univ. Press, 1902, reprinted Dover, 1964, Vol.
III, 575-584.
Uses exponents to get dimensionless variables, working on
pressure in pipe flow. Also comments on minimum dissipation.
RAYLEIGH, LORD (John William Strutt) 1904 Fluid friction on
even surfaces. Phil. Mag. (6)
8
, 66-67; also
Scientific Papers
, Vol. 5,
Cambridge Univ. Press, 1912, reprinted Dover, 1964, Vol. V, 196-197.
C
f
=
F
(
Re
)
by dimensional analysis.
RAYLEIGH, LORD (John William Strutt) 1909 Notes as to the ap-
plication of the principle of dynamical similarity. Rep. Advisory Committee
for Aeronautics, 1909-1910, 38 (R&M 15, Part 2); also
Scientific Papers
,
Cambridge Univ. Press, 1912, reprinted Dover, 1964, Vol. V, 532-533.
RAYLEIGH, LORD (John William Strutt) 1911 The principle of dy-
namical similarity in reference to the results of experiments on the resistance
of square plates normal to a current of air. In Rep. Advisory Committee on
15
Aeronautics, 1910-1911, 26-27 (R&M 39); also
Scientific Papers
, Cambridge
Univ. Press, 1912, reprinted Dover, 1964, Vol. V, 534-535.
RAYLEIGH, LORD (John William Strutt) 1911 On the motion of
solid bodies through viscous liquid. Phil. Mag. (6)
21
, 697-711; also
Sci-
entific Papers
, Cambridge Univ. Press, 1920, reprinted Dover, 1964, Vol.
VI, 29-40.
Credits Stokes (Cambr. Phil. Trans.
9
, 1850, or Math. and
Phys. Papers, Vol. 3, p. 1) with solution for plate oscillating in its own
plane. Also impulsive motion. Also dimensional argument with
Re
for drag
of sphere. Also quotes Lanchester on drag of flat plate, with remarks that
use Stokes problem as model.
RAYLEIGH, LORD (John William Strutt) 1913 On the motion of a
viscous fluid. Phil. Mag. (6)
26
, 776-786; also
Scientific Papers
, Vol. 6,
Cambridge Univ. Press, 1920, reprinted Dover, 1964, Vol. VI, 187-196.
Minimum dissipation; see Kirchoff, Helmholz.
RAYLEIGH, LORD (John William Strutt) 1915 The principle of sim-
iltude. Nature
95
, 66-68, 644; also
Scientific Papers
, Cambridge Univ.
Press, 1920, reprinted Dover, 1964, Vol. VI, 300-305.
Nice survey.
RESHOTKO, E. 1958
REYNOLDS, O. 1886 On methods of investigating the qualities of
lifeboats. Proc. Manchester Literary and Philosophical Society
26
, see also
Papers on Mechanical and Physical Subjects
2
, 321–325, Cambridge Univ.
Press, 1901.
ROTT, N. 1990 Note on the history of the Reynolds number. Ann.
Rev. Fluid Mech.
22
, 1-11.
ROTT, N. 1992 Lord Rayleigh and hydrodynamic similarity. Phys.
Fluids
A4
, 2595-2600.
SILVER, R.S. 1970 Reynolds flux concept in heat and mass transfer.
In
Osborne Reynolds and Engineering Science Today
(D.M. McDowell and
J.D. Jackson, eds.), Manchester Univ. Press, 176–189.
SOMMERFELD, A. 1908 Ein Beitrag zur hydrodynamischen Erkl ̈arung
der turbulenten Fl ̈ussigkeitsbewegung. Fourth Int’l. Math. Congr., Vol. 3,
116-124; also
Gesammelte Schriften
, Band 1 (?), Vieweg, 599-607, 1968.
SOMMERFELD, A. 1950
Lectures on Theoretical Physics
. Vol. II,
Mechanics of Deformable Bodies
, Academic Press, New York.
SPALDING, D.B. 1961 A single formula for the “law of the wall.”
Trans. ASME
28E
(J. Appl. Mech.), 455-457.
STANTON, T.E. and PANNELL, J.R. 1914
STANTON, T.E. 1923
Friction
. Longmans, Green and Co.
STOKES, G.G. 1849 On the theories of the internal friction of fluids
in motion, and of the equilibrium and motion of elastic solids. Trans. Cam-
16
bridge Phil. Soc.
8
, 287–319; also
Mathematical and Physical Papers
, Vol.
1, Cambridge Univ. Press, 75–129, 1880.
See Knibbs, 1895. Pages 75–105
are N-S equations.
STRANATHAN, J.D. 1942
The “Particles” of Modern Physics
. Blak-
iston.
See pp 46–64 for capillarity and oil-drop experiment.
TOLLMIEN, W. 1926 Berechnung turbulenter Ausbreitungsvorg ̈ange.
Zeitschr. angew. Math. Mech.
6
, 1-12 (in English as “Calculation of tur-
bulent expansion processes,” NACA TM 1085, 1945).
UNWIN, W.C. 1910 Hydraulics. In
Encyclopaedia Britannica
, 11th
ed., Vol. 14 (HUS-ITA), Cambridge Univ. Press, 35-110.
VAN DEN BERG, H.R., TEN SELDAM, C.A., and VAN DER GULIK,
P.S. 1993 Compressible laminar flow in a capillary. J. Fluid Mech.
246
,
1–20.
VAN DRIEST, E.R. 1956 On turbulent flow near a wall. J. Aeron.
Sci.
23
, 1007-1011, 1036.
WADA, K. 1927 On frictional resistance of fluid of small viscosity.
J. Soc. Naval Architects Japan
41
, 103–114.
Anticipates Karman similarity,
which see.
WALKER, V. 1970 Some contemporary problems in heat transfer.
In
Osborne Reynolds and Engineering Science Today
(D.M. McDowell and
J.D. Jackson, eds.), Manchester Univ. Press, 190–198.
WARD SMITH, A.J. 1971 Pressure losses in ducted flows. Butter-
worths.
WHITE, F.M. 1974
Viscous Fluid Flow
. McGraw-Hill.
WIEDEMANN, G. 1856 Ueber die Bewegung der Fl ̈ussigkeiten im
Kreise der gescholssenen galvanischen S ̈aule und ihre Beziehungen zur Elek-
trolyse. Annalen der Physik und Chemie
99
, 177–233.
Theory for Poiseuille
flow; see p 220.
17
Fully developed turbulent pipe flow including papers on co-
herent structure
Major surveys or theory
AICHELEN, W. 1947 Der geometrische Ort f ̈ur die mittlere Geschwin-
digkeit bei turbulenter Str ̈omung in glatten und rauhen Rohren. Zeitschrift
f ̈ur Naturforschung
2A
, 108–110.
Mean velocity occurs at
r/R
= 0
.
762
.
BARENBLATT, G.I. and CHORIN, A.J. 1998 Scaling of the inter-
mediate region in wall-bounded turbulence: the power law. Physics of Fluids
10
, 1043–1044.
BAZIN, H. 1896 Exp ́eriences nouvelles sur la distribution des vitesses
dans les tuyaux. Comptes Rendus des S ́eances de l’Academie des Sciences
122
, 1250–1253.
BENTON, G.S. 1956 The effect of the earth’s rotation on laminar
flow in pipes. Trans. ASME (J. Appl. Mech.
23
, 123–127.
BERGER, S.A., TALBOT, L., and YAO, L.-S. 1983 Flow in curved
pipes. Ann. Rev. Fluid Mech.
15
, 461–512.
BIEL, R. 1907 Ueber den Druckh ̈ohenverlust bei der Fortleitung tropf-
barer und gasf ̈ormiger Fl ̈ussigkeiten. Verein deutscher Ingenieure, Mitteilun-
gen ̈uber Forschungsarbeiten, Heft 44 (summary as Der Druckh ̈ohenverlust
bei der Fortleitung tropfbarer und gasf ̈ormiger Fl ̈ussigkeiten. Zeitschrift des
Vereines deutscher Ingenieure
52
, 1035–1038, 1065–1071, 1908).
BINGHAM, E.C. 1930 The data of Poiseuille on the flow of water. J.
Rheology
1
, 439.
Corrections to tables in “Fluidity and Plasticity”.
BLASIUS, H. 1912 Das Aehnlichkeitsgesetz bei Reibungsvorg ̈angen.
Zeitschrift des Vereines deutscher Ingenieure
56
, 639–643.
BLASIUS 1913
Survey of friction data by Nusselt, Reynolds, Lang,
Darcy, Saph and Schoder, Iben.
BOND, W.N. 1936 Fundamental physical constants. Phil. Mag.
22
,
624–632.
BRILLOUIN, M. 1907
Lecons sur la Viscosit ́e des Liquides et des
Gaz. Premi`ere Partie. G ́en ́eralit ́es. Viscosit ́e des Liquides
. Gauthier-
Villars, Paris.
BRILLOUIN, M. 1907
Lecons sur la Viscosit ́e des Liquides et des
Gaz. Seconde Partie. Viscosit ́e des Gaz. Caract`eres G ́en ́eraux des Th ́eories
Mol ́eculaires
. Gauthier-Villars, Paris.
CHURCHILL, S.W. 1997 New simplified models and formulations for
turbulent flow and convection. A.I.Ch.E.J.
43
, 1125–1140.
18
CHURCHILL, S.W. and CHOI, B. 1973 A simple expression for the
velocity distribution in turbulent flow in smooth pipes. A.I.Ch.E.J.
19
,
196–197.
COANTIC, M. 1965 Remarques sur la structure de la turbulence `a
proximit ́e d’une paroi. CR Acad. Sci. Paris
A260
, 2981–2984.
Analytical;
expansions in power series from wall, including pressure. Not general case.
COLEBROOK, C.F. 1939 Turbulent flow in pipes, with particular
reference to the transition region between the smooth and rough pipe laws.
J. Inst’n. Civil Eng.
11
, 133–156.
Survey of friction data by Enger, Bryan,
Scobey, also rough pipes.
DAVIES, S.J. and WHITE, C.M. 1929 A review of flow in pipes and
channels. Engineering
128
, 69–72, 98–100, 131–132.
Survey of friction
data by Darcy (1858), Fitzgerald (1896), Marx, Wing, and Hoskins (1900),
Scobey (1916, survey), Scobey (1920), and others. Also rough pipes, flumes.
DONNELLY, R.J. 1991 Liquid and gaseous helium as test fluids. In
High Reynolds Number Flows Using Liquid and Gaseous Helium
(R.J. Don-
nelly, ed.), Springer, 3–49.
DORSEY, N.E. 1926 The flow of liquids through capillaries. Physical
Review
28
, 833–845.
Exit jet from capillary. See Barr, p. 28.
DREW, T.B., KOO, E.C., and McADAMS, W.H. 1932 The friction
factor for clean round pipes. Trans. A.I.Ch.E.
28
, 56–72.
Survey of friction
data by Smith (1886), Saph and Schoder (1903), Nusselt (1910), Blasius
(1913), Gibson (1914), Ombeck (1914), Stanton and Pannell (1914), Jakob
(1922), Freeman (1923), Mills (1923), Jakob and Erk (1924), Clapp and
Fitzsimmons (1928), Hermann (1930), Hsiao (1930), Richter (1930), Niku-
radse (1932).
EGGELS, J.G.M., WESTERWEEL, J., and NIEUWSTADT, F.T.M.
1993 Direct numerical simulation of turbulent pipe flow. Appl. Sci. Res. 51,
No. 1–2 (
Advances in Turbulence IV,
F.T.M. Nieuwstadt, ed.), 319–324.
FRITZSCHE 1908
Survey of friction data by Weisbach (1866), Stock-
alper (1880), Devillez (1881), Althans (1887), Meissner (1890), Riedler
(1891), Ledoux (1892), Lorenz (1892), Reitschel (1892), Fliegner (1898),
Zeuner (1900), Brabee (1905), some tabulated.
G
̈
UMBEL 1913 Das Problem des Oberfl ̈achenwiderstandes. Jarbuch
der Schiffbautechnischen Gesellschaft
14
, 393–498 (discussion, 498–509).
Profile formulas (see Karman, TM 1092, p 12)
HERSCHEL, W.H. 1917 Determination of absolute viscosity by the
Saybolt Universal and Engler viscometers. Proc. American Society for Test-
ing Materials
17
, Part II, 551–568 (discussion, 569–570).
Says “poise” was
suggested by Deeley and Parr, Phil. Mag.
26
, 85–111, 1913.
19
HINZE, J.O. 1962 Turbulent pipe-flow. In
M ́ecanique de la Turbu-
lence
, CNRS, Paris, 129–165 (reprinted as
The Mechanics of Turbulence
,
Gordon and Breach, 1964).
Survey of profile data by Nikuradse (1932),
Deissler (1950), Laufer (1954), Nunner (1956), Abbrecht and Churchill
(1960).
JAKOB, M. 1922 Bestimmung von str ̈omenden Gas- und Fl ̈ussig-
keitsmengen aus dem Druckabfall in Rohren. Zeitschrift des Vereines deutsch-
er Ingenieure
66
, 178–182, 862–864.
Survey, with no surprises as to data.
KAYS, W.M. 1966
Convective Heat and Mass Transfer
. McGraw-
Hill.
Introductory.
KEMLER, E. 1933 A study of the data on the flow of fluids in pipes.
Trans. ASME
55
, Paper HYD-55-2, 7–22 (discussion 23–32).
Very thorough
survey for commercial pipes.
KESTIN, J., SOKOLOV, M., and WAKEMAN, W. 1973 Theory of
capillary viscometers. Appl. Sci. Res.
27
, 241–264.
KIRSCHMER, O. 1952 Kritische Betrachtungen zur Frage der Rohrrei-
bung. Zeitschrift des Vereines deutscher Ingenieur
94
, 785–791.
Survey of
smooth-rough transition, but several new references.
KNIBBS, G.H. 1897 On the steady flow of water in uniform pipes
and channels. J. and Proc., Royal Soc. New South Wales
31
, 314–355.
LAWFORD, G.M. 1903 The flow of water in long pipes. Minutes of
Proc. Inst’n. Civil Engrs.
153
, 297–311, 1 plate.
Good review. See for Chezy
formula.
LIU, S. and MASLIYAH, J.H. 1993 Axially invariant laminar flow in
helical pipes with a finite pitch. J. Fluid Mech.
251
, 315–353.
MEYER, O. 1866 Ueber die Reibung der Gase. Zweite Abhandlung.
Ueber die Str ̈omung der Gase durch Capillarr ̈ohren. Annalen der Physik
und Chemie
127
, 253–281.
MILLIKAN, R.A. 1938 Die wahrscheinlichsten Werte f ̈ur das Elek-
tron und damit verkn ̈upfte Konstanten f ̈ur 1938. Annalen der Physik (5)
32
, 34–43.
Sixth paper and summary.
OMBECK 1914
Survey of friction data by Arson (1867), Stockalper
(1880), Devillez (1881), Althans (1887), Ledoux (1892), Lorenz (1892), Pe-
tit (1900), Brabee (1905), Fritzsche (1908), Nusselt (1909), all tabulated.
Also new data.
PROSSER, L.E., WORSTER, R.C., and BONNINGTON, S.T. 1951
Friction losses in turbulent pipe-flow. Proc. Inst’n. Mech Engrs
165
, 88–
94 (discussion 94–111)
See also preceding paper by Blair. Smooth-rough
transition*, figure 18.
20
RAPP, I.M. 1914 The flow of air through capillary tubes. Physical
Review (2)
2
, 363–382.
Cites Reynolds.
REICHARDT, H. 1951 Vollst ̈andige Darstellung der turbulenten Ge-
schwindigkeitsverteilung in glatten Leitungen. Zeitschr. f. angew. Math. u.
Mech.
31
, 208-219 (in English as Complete representation of the turbulent
velocity distribution in smooth pipes, NACA N-43013).
Formula for mean-
velocity profile in pipes and channels. Footnote on p 211 on power-series
expansion. Cites his own sublayer data (ZaMM
20
, 297, 1940).
ROSS, D. 1952 Turbulent flow in smooth pipes: a reanalysis of Niku-
radse’s experiments. Penn. State Coll., School of Eng., Rep. NOrd 7958-
246.
ROSS, D. 1953 A new analysis of Nikuradse’s experiments on turbu-
lent flow in smooth pipes. In
Proc. 3rd Midwestern Conference on Fluid
Mechanics
, Univ. Minnesota, 651–667.
ROTHFUS, R.R., ARCHER, D.H., AND SIKCHI, K.G. 1958 Distri-
bution of eddy viscosity and mixing length in smooth tubes. A.I.Ch.E.J.
4
,
27–32.
Very wide range of Re; includes
̄
u/u
max
. See Coantic, Fig. 1.
ROUSE, H. 1946
Elementary Mechanics of Fluids
. Wiley.
A little on
pipe flow.
RUDSKI, M.P. 1893 Note on the flow of water in a straight pipe.
Phil. Mag. (5)
35
, 439–440.
See Knibbs 1897 p. 321.
SAMUELS, D.C. 1991 Vorticity matching in superfluid helium. In
Annual Research Briefs—1991,
NASA Ames Research Center and Stanford
University, Center for Turbulence Research, 93–104.
SCHILLER, L. 1925 Das Turbulenzproblem und verwandte Fragen.
Phys. Zeitschr.
26
, 566–595.
Major paper. Some data can be recovered on
C
f
in smooth and rough pipes. All pipes are rough at large
Re
. See for early
references.
SMITH, H. Jr. 1886
Hydraulics
. Wiley and Sons, New York; Tr ̈ubner,
London.
SMITS, A.J. and ZAGAROLA, M.V. 1998 Response to “Scaling of
the intermediate region in wall-bounded turbulence: the power law.” Phys.
Fluids
10
, 1045–1046.
SREENIVASAN, R. 1998 The importance of higher-order effects in
the Barenblatt-Chorin theory of wall-bounded fully developed turbulent
shear flows. Phys. Fluids
10
, 1037–1039.
SUTERA, S.P. and SKALAK, R. 1993 The history of Poiseuille’s law.
Ann. Rev. Fluid Mech.
25
, 1–19.
WARD SMITH, A.J. 1971
Pressure Losses in Ducted Flows
. Butter-
worths, London.
21
WEISSBERG, H.L. 1962 End correction for slow viscous flow through
long tubes. Phys. Fluids
5
, 1033–1036.
Variational method, low
Re
.
WILBERFORCE, L.R. 1891 On the calculation of the coefficient of
viscosity of a liquid from its rate of flow through a capillary tube. Phil. Mag.
(5)
31
, 407–414.
Shows error in reasoning by Hagenbach. Cites Reynolds.
ZAGAROLA, M.V., PERRY, A.E., and SMITS, A.J. 1997 Log laws
or power laws: the scaling in the overlap region. Phy. Fluids
9
, 2094–2100.
ZARIC, Z. 1972 Wall turbulence studies. Advances in Heat Transfer
8
, 285–350.
ZHANG, Y., GANDHI, A., TOMBOULIDES, A.G., and ORSZAG, S.A.
1994 Simulation of pipe flow. In
Application of Direct and Large Eddy Sim-
ulation to Transition and Turbulence,
AGARD CP 551, Paper 17.
Velocity*,
figure 3.
Experimental data
ADLER, M. 1934 Str ̈omung in gekrummten Rohren. Z. f ̈ur angew.
Math. und Mech.
14
, 257–275.
Friction*, figures 15–17, 18.
ANWER, M., SO, R.M.C., and LAI, Y.G. 1989 Perturbation by and
recovery from bend curvature of a fully developed turbulent pipe flow. Phys.
Fluids
A1
, 1387–1397.
ARAGO, BABINET, PIOBERT, and REGNAULT 1842 Rapport sur
un m ́emoire de M. le docteur Poiseuille, ayant pour titre: Recherches exp ́eri-
mentales sur le mouvement des liquides dans les tubes de tr`es-petits diam`etres.
Comptes Rendus Hebdomadaires les Seances de l’Academie des Sciences,
Paris
15
, 1167–1186.
Long summary and blessing for publication of Poi-
seuille’s work in Savants
́
Etrangers.
ANWER, M. and SO, R.M.C. 1990 Frequency of sublayer bursting in
a curved bend. J. Fluid Mech.
210
, 415–435.
ARAGO, BABINET, PIOBERT, and REGNAULT 1843a Rapport
fait `a l’Acad ́emie des Sciences, le 26 d ́ecembre 1842, sur un M ́emoire de
M. le docteur Poiseuille, ayant pour titre: Recherches exp ́erimentales sur le
mouvement des liquides dans les tubes de tr`es-petits diam`etres. Annales de
Chimie et de Physique (3)
7
, 50–74.
ARAGO, BABINET, PIOBERT, and REGNAULT 1843b Experimen-
telle Untersuchungen ̈uber die Bewegung der Fl ̈ussigkeiten in R ̈ohren von
sehr kleinen Durchmessern: vom Dr. Poiseuille (Bericht . . . ̈uber diese Ab-
handlungen). Annalen der Physik und Chemie
58
, 424–448 (reprinted in
Drei Klassiker der Str ̈omungslehre: Hagen, Poiseuille, Hagenbach
(L. Schiller,
ed.), Akademische Verlagsgesellschaft, Leipzig, 1933, 20–41).
22
BAKEWELL, H.P. Jr. and LUMLEY, J.L. 1967 Viscous sublayer
and adjacent wall region in turbulent pipe flow. Phys. Fluids
10
, 1880–
1889 (see also Ph.D. thesis by BAKEWELL, “An experimental investiga-
tion of the viscous sublayer in turbulent pipe flow,” Dept. Aerospace Eng.,
Pennsylvania State Univ., 1966).
Mean velocity*, one profile, figures 14, 15.
Reynolds stress*, figure 23, table II. See Lehigh paper.
L/D
= 26
.
BANERJEA, G.B. and PLATTANAIK, B. 1938 Die Bestimmung der
Elektronenladung und die Viskosit ̈at der Luft. Zeitschrift f ̈ur Physik
110
,
676–687.
Mu for Millikan.
BARNES, H.T. and COKER, E.G. 1905 The flow of water through
pipes. Experiments on stream-line motion and the measurement of critical
velocity. Proc. Roy. Soc. London
A74
, 341–356 (preliminary announcement
in BARNES and COKER, On a method for the determination of the critical
velocity of fluids, Phys. Rev.
12
, 372–374, 1901).
Transition according to
Reynolds’ ideas. Lower limit when disturbed flow becomes laminar. No
reference to Reynolds number.
BAZIN, H. 1902 Exp ́eriences nouvelles sur la distribution des vitesses
dans les tuyaux. M ́emoires pr ́esent ́es par divers savants `a l’Acad ́emie des
Sciences de l’Institut de France
32
, No. 6, 1–27, 4 plates (in English as
“Experiments upon the distribution of velocities in pipes,” in discussion
following paper by G.S. Williams et al.; see Trans. ASCE
47
, 245–266,
1902).
BEARDEN, J.A. 1939 A precise determination of the viscosity of air.
Physical Review
56
, 1023–1040.
Mu for Millikan. Kestin and Wakeham say
best value.
BECKER, A. 1907
̈
Uber den Luftwiderstand. Annalen der Physik
24
, 863–889.
BENTON, A.F. 1919 Gas flow meters for small rates of flow. Journal
of Industrial and Engineering Chemistry
11
, 623–629.
BERTELRUD, A. 1974 Pipe flow calibration of Preston tubes of dif-
ferent diameters and relative lengths including recommendations on data
presentation for best accuracy. FFA (Sweden) Rep. 125. Short version
is “Preston tube calibration accuracy”, AIAA J.
14
, 98–100, 1976.
Em-
phasis on correct inference of ambient static pressure. Data are tabulated.
Mean velocity*, figures B3-B5, table 4. Wall-law for Preston tube, figure 20.
Friction coefficient, tables A1, A2.
L/D
= 84
.
BINGHAM, E.C. and WHITE, G.F. 1912 Fluidit ̈at und die Hydrat-
theorie. I. Die Viskosit ̈at von Wasser. Zeitschrift f ̈ur physikalische Chemie
80
, 670-686.
One tube broken into six pieces.
BINGHAM, E.C. and THOMPSON, T.R. 1928 The fluidity of mer-
23
cury. Journal of the American Chemical Society
50
, 2878-2883.
No-slip
condition. See Barr. Appearance of surface*, figure 3.
BINNIE, A.M. and PHILLIPS, O.M. 1958 The mean velocity of slight-
ly buoyant and heavy particles in turbulent flow in a pipe. J. Fluid Mech.
4
, 87–96.
BLASIUS, H. 1911 Das
̈
Ahnlichkeitsgesetz bei Reibungsvorg ̈angen.
Physikalische Zeitschr.
12
, 1175–1177.
Brief note;
C
f
Re
1
4
for pipe.
Precedes VDI Foheft.
BLASIUS, H. 1913 Das Aehnlichkeitsgesetz bei Reibungsvorg ̈angen
in Fl ̈ussigkeiten. Mitteilungen ̈uber Forschungsarbeiten auf dem Gebiete des
Ingenieurwesens, Verein deutscher Ingenieure, Heft 131, 1–40 (preliminary
note, “Das
̈
Ahnlichkeitsgesetz bei Reibungsvorg ̈angen,” in Phys. Zeitschr.
12
, 1175–1177, 1911).
Friction coefficient*, figures 9–16, tables 9–16. See
Drew et al.
BOND, W.N. 1937 The viscosity of air. Proceedings of the Physical
Society of London
49
, 205–213.
BOSE, E. and BOSE, M. 1911
̈
Uber die Turbulenzreibung verschied-
ener Fl ̈ussigkeiten. Physikalische Zeitschrift
12
, 126–135, (preliminary ver-
sion is BOSE, E. and RAUERT, D., Experimentalbeitrag zur Kenntnis
der turbulenten Fl ̈ussigkeitsreibung, Physikalische Zeitschrift
10
, 406–409,
1909).
Cites Reynolds.
BOURKE, P.J., BROWN, C.G., and DRAIN, L.E. 1971 Measure-
ment of Reynolds shear stress in water by laser anemometry. DISA Infor-
mation, No. 12, 21–24.
Reynolds shearing stress*, figure 2.
BOVEY, H.T. and STRICKLAND, T.P. 1898 Some experiments on
the resistance to flow of water in pipes. Trans. Royal Society of Canada (2)
4
, Sect. III, 45–53, 3 plates.
Some data, tabulated. Cites Reynolds.
BREITENBACH, P. 1899 Ueber die innere Reibung der Gase und
deren Aenderung mit der Temperatur. Annalen der Physik und Chemie
67
,
803–827.
Pipe flow, air. See Bingham. Cites Meyer and others.
BREMHORST, K. and WALKER, T.B. 1973 Spectral measurements
of turbulent momentum transfer in fully developed pipe flow. J. Fluid Mech.
61
, 173–186.
Reynolds stresses*, figures 1, 2. Thesis by Bremhorst, U.
Queensland, 1962.
BROCKMAN, M.R. 1956 Resistance of flow in teflon and brass tubes.
National Bureau of Standards, Washington, Rep. 4673.
BRODMANN, C. 1892 Untersuchungen ̈uber den Reibungskoefficien-
ten von Fl ̈ussigkeiten. Annalen der Physik und Chemie
45
, 159–184.
BROOKSHIRE, W.A. 1961 A study of the structure of turbulent
shear flow in pipes. Ph.D. thesis, Dept. Chem. Eng., Louisiana State
24
Univ.
Look for journal paper with von Rosenberg, chemical engineering,
about 1963.
L/D
= 96
.
BROWNE, L.W.B. and DINKELACKER, A. 1995 Turbulent pipe
flow: pressures and velocities. Fluid Dynamics Research
15
, 177–204.
See
for centerline
u
+
vs
R
+
for range of
Re
. Velocity*, figure 3. Reynolds
stress*, figure 8. Second transition in structure?
L/D
= 208
.
BUCKINGHAM, E. and EDWARDS, J.D. 1920 Efflux of gases through
small orifices. Scientific papers of the Bureau of Standards
15
, 573–615, 7
plates (Paper No. 359).
BURKE, M.F. 1955 High-velocity tests in a penstock. Trans. ASCE
120
, 863–883 (discussion 884–896).
Mean velocity, 15 profiles, table p 297.5.
Friction coefficient, tables p 297.7 to 297.9. Very high Re. Look for effects
of roughness, short length.
CAROTHERS, S.D. 1912 Portland experiments on the flow of oil in
tubes. Proc. Roy. Soc. London
A87
, 154–163.
Seems to have
C
f
(
Re
)
.
CHEVRIN, P.-A. 1988 The structure of Reynolds stress in the near
wall region of a turbulent pipe flow. Ph. D. thesis, Dept. Mech. Eng., Penn-
sylvania State Univ.
Student of Merkle, Deutsch. Pressure*, figure 3. Mean
velocity*, figures 7, 8. Reynolds stresses*, figure 10. Skewness, flatness.
CLARK, W.H. 1970 Measurement of two-point velocity correlations
in a pipe flow using laser anemometers. Ph.D. thesis, Dept. Aerosp. Eng.,
Univ. Virginia.
Mean velocity*, 3 profiles, figure 17. Reynolds stresses*,
figures 18–20. Laminar profile*, figure 16. Mean/max velocity ratio*, figure
15.
COANTIC, M. 1966 Contribution `a l’ ́etude de la structure de la tur-
bulence dans une conduite de section circulaire. Sc.D. thesis, Facult ́e des
Sciences, Univ. d’Aix-Marseille. Also private communication.
Mean ve-
locity*, 4 profiles, figure 62. Reynolds stresses*, figures 63–65. Centerline
intensity, figure 68. Filtered energy near wall, figures 75, 76. Radial varia-
tion of static pressure*, figure 59.
L/D
= 49
.
COANTIC, M. 1967
́
Evolution, en fonction du nombre de Reynolds,
de la distribution des vitesses moyennes et turbulentes dans une conduite.
C.R. Acad. Sci. Paris
264A
, 849–852.
Profiles of mean velocity, mean
u
u
near wall and on axis. Re=50,000 to 450,000.
COKER, E.G. 1912 Flow of mercury in small tubes. Engineering
94
,
581.
Flow of mercury in steel pipe; no slip observed. Friction*, figure 3.
COKER, E.G. and CLEMENT, S.B. 1903 An experimental determi-
nation of the variation with temperature of the critical velocity of flow of
water in pipes. Phil. Trans. Roy. Soc. London
A201
, 45–61.
COUETTE 1890
25
DARCY, H. 1858 Recherches exp ́erimentales relatives au mouvement
de l’eau dans les tuyaux. M ́emoires pr ́esent ́es par divers savants `a l’Acad ́emie
des Sciences de l’Institut Imp ́erial de France
15
, 141–403.
Numerous tables.
See Blasius, Davies and White.
DAVIDSON, G.F. 1914 Experiments on the flow of viscous fluids
through orifices. Proc. Roy. Soc.
89
, 91–99.
DAWE, R.A.and SMITH, E.B. 1970 Viscosities of the inert gases at
high temperatures. Journal of Chemical Physics
52
, 693–703.
DEISSLER, R.G. 1950 Analytical and experimental investigation of
adiabatic turbulent flow in smooth tubes. NACA TN 2138, and private
communication.
Friction coefficient, figure 5. Flow development*, figures
2–3
.
DEN TOONDER, J.M. and NIEUWSTADT, F.T.M. 1997 Reynolds
number effects in a turbulent pipe flow for low to moderate Re. Phys. Fluids
9
, 3398–3409.
Velocity*, figures 4, 5. Reynolds stresses*, figures 7, 8, 14.
DUCLAUX, E. 1872 Recherches sur les lois des mouvements des liq-
uides dans les espaces capillaires. Annales de Chimie et de Physique (4)
25
,
433–501.
No-slip condition, according to Knibbs 1895, p 93.
DURST, F. and WHITELAW, J.H. 1971 Measurements of mean ve-
locity, fluctuating velocity, and shear stress in air using a single channel
optical anemomenter. DISA Information, No. 12, 11–16.
Laminar profile*,
figure 3. See also for data in round jet.
DURST, F., JOVANOVIC, J., and SENDER, J. 1995 LDA measure-
ments in the near-wall region of a turbulent pipe flow. J. Fluid Mech.
295
, 305–335.
Velocity near wall*, figure 8. Velocity*, figure 9. Reynolds
stresses*, figures 11, 16a.
L/D
= 80
.
EGER, H. 1908 Untersuchungen ̈uber das Durchstr ̈omen von Gasen
durch Kapillaren bei niederen Drucken. Annalen der Physik (4)
27
, 819–
843.
Glassblower’s art. Data look clumsy, but see references, especially paper
by Poiseuille and Hagen. This is Arago et al, Pogg. Ann.
58
, 424, 1843.
EGGELS, J.G.M. WESTERWEEL, J., NIEUWSTADT, F.T.M., and
ADRIAN, R.J. 1993 Comparison of vortical flow structures in DNS and
PIV studies of turbulent pipe flow. In
Near-Wall Turbulent Flows
(R.M.C.
So, C.G. Speziale, and B.E. Launder, eds.), Elsevier, 413–422.
EGGELS, J.G.M., UNGER, F., WEISS, M.H., WESTERWEEL, J.,
ADRIAN, R.J., FRIEDRICH, R., and NIEUWSTADT, F.T.M. 1994 Ful-
ly developed turbulent pipe flow: a comparison between direct numerical
simulation and experiment. J. Fluid Mech.
268
, 175–209.
Mean velocity*,
figures 2, 4. Table 1*. Reynolds stresses*, figure 8.
EKMAN 1911
26
ELENA, M. 1977 Etude experimentale de la turbulence au voisinage
de la paroi d’une tube legerement chauffe. Int’l. J. Heat Mass Transf.
20
,
935–944.
Pipe with unheated starting section. One good figure* of
u
,
T
in
sublayer. Moments of pdf, scales. Reynolds stresses, figure 4. From thesis,
Marseilles, 1975.
ERK, S. 1927 Z ̈ahigkeitsmessungen an Fl ̈ussigkeiten und Untersuchun-
gen von Viskosimetern. Forschungsarbeiten auf dem Gebiete des Ingenieur-
wesens, Verein deutscher Ingenieure, Heft 288.
Laminar flow, viscometry.
Uses two capillary tubes in series. See for comments on exit jet.
ERK, S. 1928 Unsere Kenntnis der Z ̈ahigkeit von Quecksilber. Zeit-
schrift f ̈ur Physik
47
, 886–894.
No-slip condition. See Barr. Viscosity*,
figure 2.
EUSTICE, J. 1911 Experiments on stream-line motion in curved pipes.
Proc. Roy. Soc. London
A85
, 119–131.
FAGE, A. 1936 On the static pressure in fully-developed turbulent
flow. Proc. Roy. Soc. London
A155
, 576–596.
Reynolds stresses*, figures
3, 4. Also plane wake.
FAGE, A. 1936 Turbulent flow in a circular pipe. Phil. Mag. (7)
21
, 80–105.
Mean velocity*, 4 profiles, figures 5, 7–9, table I, II. Reynolds
stresses, figures 10, 14a (values look high). Friction coefficient*, figure 6a.
Mean/max velocity ratio*, figure 6b
.
FAGE, A. 1955 Studies of boundary-layer flow with a fluid-motion
microscope. In
50 Jahre Grenzschichtforschung
, Vieweg, Braunschweig,
132–146.
Summary of work in 1930’s. Mean velocity*, figure 6.
L/D
= 110
.
Used in symphony.
FITZGERALD, D. 1896 Flow of water in 48-in. pipes. Trans. ASCE
35
, 241–275 (discussion 276–304).
Ref in Davies and White.
FLYNN, G.P., HANKS, R.V., LEMAIRE, N.A., and ROSS, J. 1963
Viscosity of nitrogen, helium, neon, and argon from
78
.
5
to 100
below
200 atmospheres. Journal of Chemical Physics
38
, 154–162.
Experimental
value for
m
is 1.175. See for effect of pressure on viscosity. May be Ph. D.
thesis by Hanks (1958), Flynn (1962) Lemaire (1962), Brown University.
FR
̈
OSSEL, W. 1936 Str ̈omung in glatten, geraden Rohren mit
̈
Uber-
und Unterschallgeschwindigkeit. Forschung auf dem Gebiete des Ingenieur-
wesens
7
, 75–84.
High speed gas in smooth pipe. Goldstein p. 400. Pres-
sure*, figure 6. Friction*, figure 10. Development*, figure 11.
FREEMAN, J.R. 1892 Experiments upon the flow of water in pipes
and pipe fittings made at Nashua, New Hampshire, June 28 to October 22,
1892. ASME, New York, 1941.
FRITZSCHE, O. 1908 Untersuchungen ̈uber den Str ̈omungswiderstand
27
der Gase in geraden zylindrischen Rohrleitingen. Mitteilungen ̈uber For-
schungsarbeiten auf dem Gebiete des Ingenieurwesens, Verein deutscher
Ingenieure, Heft 60.
Friction coefficient, figures 1, 2, tables 2–8, 11, 12.
Marginal data. See Ombeck. No translation
.
FRY, J.D. and TYNDALL, A.M. 1911 On the value of the Pitot con-
stant. Phil. Mag.
21
, 348–366.
Pitot constant. A few primitive profiles.
GESSNER 1965
GIBSON, A.H. 1909 An investigation of the resistance to the flow of
air through a pipe, with the deduction and verification of a rational formula.
Phil. Mag. (6)
17
, 389–402.
GIBSON, A.H. 1914 The resistance to the flow of brine solutions
through pipes. Proc. Inst’n. Mech. Engrs.
201
, 201–210.
GILCHRIST, L. 1913 An absolute determination of the viscosity of
air. Physical Review (2)
1
, 124–140.
In support of Millikan oil-drop experi-
ment. Want table on p 136 and at end of paper. Used concentric cylinders.
GLASER, H. 1907
̈
Uber die innere Reibung z ̈aher und plastisch-fester
K ̈orper und die G ̈ulkigkeit des Poiseuilleschen Gesetzes. Ann. Phys.
22
,
694–720.
GOLDSTEIN, R.J. and HAGEN, W.F. 1967 Turbulent flow measure-
ments utilizing the Doppler shift of scattered laser radiation. Phys. Fluids
10
, 1349–1352.
Square pipe. Friction*, figure 5.
GREGORIG, R. 1933 Turbulente Str ̈omungen in geraden und ge-
kr ̈ummten glatten Rohrleitungen bei hohen Reynolds’schen Zahlen. Thesis,
Eidgen ̈ossischen Technischen Hochschule, Z ̈urich.
Mu for Millikan.
GRIFFITHS, A. and KNOWLES, C.H. 1912 The resistance to the
flow of water along a capillary soda-glass tube at low rates of shear. Proc.
Physical Society of London
24
, 350–357.
Apparent viscosity changes if mi-
croscopic growths are present.
GRINDLEY, J.H. and GIBSON, A.H. 1908 On the frictional resis-
tances to the flow of air through a pipe. Proc. Royal Soc. London
A80
,
114–139.
HA MINH, H. and CHASSAING, P. 1977 Perturbations of turbulent
pipe flow. In
Turbulent Shear Flows 1
, Springer-Verlag, 178–197.
Various
cases of sudden enlargement in pipe; includes free jet. Centerline velocity,
maximum turbulence intensity, maximum
u
v
.
Profiles of mean velocity,
turbulence intensity, shearing stress; energy balance. Purpose is to support
modeling. In preprints (Pennsylvania State Univ.), see 13.9–13.17. Mean
velocity, figures 8, 9, 10. Reynolds stresses, figures 11, 12. Centerline tur-
bulence*, figure 5. Energy balance. See thesis by Ha Minh.
28
HAGEN, G. 1839 Ueber die Bewegung des Wassers in engen cylin-
drischen R ̈ohren. Annalen der Physik und Chemie
46
, 423–442, 1 plate.
Friction tabulated. Square entrance. See Prandtl and Tietjens p 15.
HAGEN, G. 1854
̈
Uber den Einfluss der Temperatur auf die Bewe-
gung des Wassers in R ̈ohren. Mathematische Abhandlungen der K ̈oniglichen
Akademie der Wissenschaften zu Berlin
17
, 17–98, 1 plate.
Friction coeffi-
cient, various tables. See Prandtl and Tietjens. Also transition. Clear about
laminar and turbulent flow.
HAGEN, G. 1869
̈
Uber die Bewegung des Wassers in Str ̈omen. Math-
ematische Abhandlungen der k ̈oniglichen Akademie der Wissenschaften zu
Berlin, 1–29.
See especially p 6. Ref in Knibbs 1897 p 325.
HAGENBACH, E. 1860 Ueber die Bestimmung der Z ̈ahigkeit einer-
Flussigkeit durch den Ausfluss aus R ̈ohren. Annalen der Physik undChemie
109
, 385–426.
See Prandtl and Tietjens, p. 24. Kinetic-energy correction,
incorrectly done. Derives parabolic profile?
HARRINGTON, E.L. 1916 A redetermination of the absolute value
of the coefficient of viscosity of air. Phys. Rev. (2)
8
, 738–751.
Work
suggested by R.A. Millikan in support of oil-drop experiment. Couette flow,
outer cyl rotating.
HASEGAWA, T., SUGANUMA, M., and WATANABE, H. 1997 Anom-
aly of excess pressure drops of the flow through very small orifices. Phys. Flu-
ids
9
, 1–3.
Pressure drop*, figure 1. Velocity*, figure 4.
HASSAN, Y.A., JONES, B.G., and ADRIAN, R.J. 1980 Measure-
ments and axisymmetric model of spatial correlations in turbulent pipe flow.
AIAA J.
18
, 914–920 (see also Ph.D. thesis by HASSAN, “Experimental and
modeling studies of two-point stochastic structure in turbulent pipe flow,”
Dept. Nuclear Eng., Univ. Illinois, 1980).
Mean velocity*, one profile, fig-
ure 3.1-1. Reynolds stress*, figures 3.1-2, 3.1-3. Space-time correlations.
L/D
= 105
.
HEIDRICK, T., AZAD, R.S., and BANERJEE, S. 1971 Phase veloc-
ities and angle of inclination for frequency components in fully developed
turbulent flow through pipes. In
Turbulence in Liquids
, Univ. Missouri
(Rolla), 149–157 (see also Ph.D. thesis by HEIDRICK, “The structure of
fully developed flow in pipes,” Dept. Mech. Eng., Univ. Manitoba, 1974).
Mean velocity, figures 5-1, A.1-2. Reynolds stress*, figure 5.2. No tables.
HERZOG, S. 1986 The large scale structure in the near-wall region
of turbulent pipe flow. Ph. D. thesis, Cornell Univ.
Mean velocity*, figures
15, 16. Reynolds stresses*, figure 17. Sublayer only.
HETTLER, J.-P. 1965 Contribution a l’ ́etude du frottement turbu-
lent des fluides en conduites lisses. These d’Ingenieur Docteur, Univ. Stras-
29
bourg; also Pub. Sci. Techn. Min. de l’Air, No. 414 (short report by
Hettler, J.-P., Muntzer, P., and Scrivener, O., “Frottement turbulent dans
les conduits. M`esure des vitesses instantanees au voisinage de la paroi”, C.R.
Acad. Sci.
258
, 4201–4203, 1964).
Particles show instantaneous velocity in
sublayer to
y
+ = 80
. Shotgun cloud, reduced to mean but not to rms. (This
is thesis, Strasbourg.) Mean velocity*, figure 47. Data are tabulated.
HISHIDA, M. and NAGANO, Y. 1979 Structure of turbulent velocity
and temperature fluctuations in fully developed pipe flow. Trans. ASME (J.
Heat Transf.)
101
, 15–22.
A few profiles of mean velocity, Reynolds stresses.
Otherwise spectra, correlations. Mean velocity*, figures 2, 3. Reynolds
stresses*, figures 6–8.
L/D
= 167
.
HOFFMANN, P. 1884 Ueber die Str ̈omung der Luft durch R ̈ohren
von beliebiger L ̈ange. Annalen der Physik und Chemie
21
, 470–494, 1 plate.
Capillary viscometry. Good paper. Cites Meyer, who has
p
2
x
.
HOSKING, R. 1908 The viscosity of water. Journal of the Royal
Society of New South Wales
42
, 34–56, 6 plates. Also Phil. Mag. (6)
17
,
502–520, 1909.
Date and volume are not certain. Cites Knibbs but not
Reynolds. See for
m
. See Barr p 23.
HOUSTON, W.V. 1937 The viscosity of air. Physical Review
52
,
751–757.
Mu for Millikan.
ITO, H. 1960 Pressure losses in smooth pipe bends. Trans. ASME
(J. Basic Eng.)
82D
, 131–140 (discussion 140–143).
Transition in curved
pipe. Pressure drop*, figure 3. Loss in bend*, figure 10.
JAKOB, M. and ERK, S. 1924 Der Druckabfall in glatten Rohren und
die Druchflussziffer von Normald ̈usen. Forschungsarbeiten auf dem Gebiete
des Ingenieurwesens, Forschungsheft 267 (preliminary note, same title, in
Zeitschrift des Vereines deutscher Ingenieure
68
, 581–584, 1924).
Friction
coefficient*, figure 3, tables 4, 5
.
JONES, B.G., CHAO, B.T., and SHIRAZI, M.A. 1967 An experi-
mental study of the motion of small particles in a turbulent fluid field using
digital techniques for statistical data processing. In “Developments in Me-
chanics,”
Proc. 10th Midwestern Mechanics Conference
(J.E. Cermak and
J.R. Goodman, eds.), 1249–1274 (see also Ph. D. thesis by JONES, same ti-
tle, Dept. Nuclear Eng., Univ. Illinois, 1966).
Pipe too short; useful only for
work on development length. Mean velocity, figures 4.2-3, 5.1-1. Reynolds
stresses, figure 6.2-1, tables 6.2-1, 6.2-2.
KELLSTR
̈
OM, G. 1937 A new determination of the viscosity of air
by the rotating cylinder method. Phil. Mag.
23
, 313–338.
Mu for Millikan.
KELLSTROM, B. 1936 Viscosity of air and the electronic charge.
Physical Review
50
, 190.
Mu for Millikan.
30
KIM, K.C. and ADRIAN, R.J. 1999 Very large-scale motion in the
outer layer. Phys. Fluids
11
, 417–422.
Scale*, figure 5.
KJELLSTR
̈
OM, B. and HEDBERG, S. 1970 Calibration of a DISA
hot-wire anemometer and measurements in a circular channel for confirma-
tion of the calibration. DISA Information, No. 9, 8–21.
Mean velocity, one
profile, figure 7. Reynolds stresses*, figures 8–10. Friction coefficient, figure
6.
L/D
= 61
.
KOCH, S. 1881 Ueber die Abh ̈angigkeit der Reibungsconstante des
Quecksilbers von der Temperatur. Annalen der Physik und Chemie
14
,
1–12, 1 plate.
KOHLRAUSCH, K.W.F. 1914
̈
Uber das Verhalten str ̈omender Luft
in Nichtkapillaren R ̈ohren. Annalen der Physik (4)
44
, 297–320.
Brass
tubes. Data include transition and look OK. Several pressure taps to allow
for development. Some primitive profiles. Friction coefficient*, figures 2–6,
tables. Did not measure temperature.
LADENBURG, R. 1907
̈
Uber die innere Reibung z ̈aher Fl ̈ussigkeiten
und ihre Abh ̈angigkeit vom Druck. Ann. Phys.
22
, 287–309.
LANGEHEINEKEN, T. 1981 Zuzammenh ̈ange zwischen Wanddruck-
und Geschwindigkeitsschwankungen in turbulenter Rohrstr ̈omung (experi-
mentelle Untersuchung). Mitt. M.-P.-I. f ̈ur Str ̈omungsforschung, Nr. 70.
Mean velocity*, one profile, figure 2.7. Reynolds stresses*, figure 2.8. Sur-
face pressure fluctuations, figure 3.2. Mostly bursting.
L/D
= 190
. No wake
component.
LAUFER, J. 1953 The structure of turbulence in fully developed pipe
flow. NACA TN 2954; also TR 1174, 1953.
Mean velocity*, 2 profiles, figures
3, 4, 24. Reynolds stresses*, figures 5–8, 25. Energy balance.
L/D
= 30
.
LAWN, C.J. 1970 Application of the turbulence energy equation to
fully developed flow in simple ducts. Parts I and II. Central Electricity
Generating Board, Berkeley Nuclear Laboratories, Rep. RD/B/R1575(A).
Axisymmetric flow. Part II is experimental (pipe flow), no figures.
LAWN, C.J. 1970 Application of the turbulence energy equation to
fully developed flow in simple ducts. Parts III and IV. Central Electricity
Generating Board, Berkeley Nuclear Laboratories, Rep. RD/B/R1575(B).
Part III is data, no figures. Includes annulus.
LAWN, C.J. 1970 Application of the turbulence energy equation to
fully developed flow in simple ducts. Figures and figure captions. Central
Electricity Generating Board, Berkeley Nuclear Laboratories, Rep. RD/B/
R1575(C).
Honed pipe; rough pipe; rough and smooth-rough annulus. Fig.
10 is
C
f
(
Re
)
for smooth pipe. Fig. 11 is
u
+
(
y
+
)
. Fig. 13 is mean/max
velocity. Figs. 14-16 are Reynolds stresses. Scales, correlations, energy
31
balance. Data for
x/D
= 27
,
60
. Friction coefficient*, figure 10. Mean
velocity*, figures 11, 12. Max/mean velocity, figure 13. Reynolds stresses,
figures 14–16, 51, 55.
LAWN, C.J. 1971 The determination of the rate of dissipation in tur-
bulent pipe flow. J. Fluid Mech.
48
, 477–505.
Reynolds stresses*, figures
3–5. Energy balance.
L/D
= 58
.
LECHNER, G. 1913 Untersuchungen der Turbulenz beim Durchstr ̈om-
en von Wasser und Quecksilber durch spiralf ̈ormig gewundene Kapillaren.
Annalen der Physik
42
, 614–642.
LEDOUX,
1892
́
Etude sur les pertes de charge de l’air comprime de
la vapeur dans les tuyaux de conduite. Annales des Mines, Memoires (9)
2
, 541–598.
Title of journal is uncertain. Ref in Fritzsche, Ombeck. Good
survey.
LINDGREN, E.R. and CHAO, J. 1969 Average velocity distribution
of turbulent pipe flow with emphasis on the viscous sublayer. Phys. Fluids
12
, 1364–1371 (see also LINDGREN, “Experimental study on turbulent
pipe flows of distilled water,” Tech. Rep. No. 2, Res. Contract Nonr
2595(05), Oklahoma State Univ., 1965).
Mean velocity*, 4 profiles, figure
11.
L/D
= 185
. Friction from
dp/dx
not accounted for.
LINDGREN, E.R. 1965 Experimental study on turbulent pipe flows
of distilled water. Contract Nonr 2595(05), Oklahoma State Univ., Tech.
Rep. No. 2.
Disparages Nikuradse’s data. Elaborate study of probe errors at
pipe exit. Mean velocity and fluctuations. Same awkward reviewer geometry
as Nikuradse. Probe errors*, figures 15, 18.
LING, C.-Y. 1937 An experimental and theoretical study of turbu-
lence in liquid flow. Ph.D. thesis, Cornell Univ.
Look for journal paper with
Schoder, civil engineering, about 1938. Do not use centerline velocity for
series B.
LIU, K.N., CHRISTODOULOU, C., RICCIUS, O., and JOSEPH, D.D.
1989 Drag reduction in pipes lined with riblets. In
Structure of Turbulence
and Drag Reduction
(A. Gyr, ed.), Springer-Verlag, 545–551.
LIU, K.N., CHRISTODOULOU, C., RICCIUS, O., and JOSEPH, D.D.
1989 Drag reduction in pipes lined with riblets. AIAA J.
28
, 1697–1698.
Drag reduction*, figure 2.
LIVESEY, J.L., TURNER, J. T., and GLASSPOOLE, W.F. 1966 The
decay of turbulent velocity profiles. Proc. Inst’n. Mech. Eng.
180
, Part 3J,
127–136.
MAH, Y.A., KHOO, B.C., and CHEW, Y.T. 1992 The effect of blade
manipulator in fully developed pipe flow. Trans. ASME (J. Fluids Eng.)
114
, 687–689.
32
MAIR, J.G. 1886 Experiments on the discharge of water of different
temperatures. Minutes of Proc. Instn. Civil Engrs.
84
, 424–435, 1 plate.
MAJUMDAR, V.D. and VAJIFDAR, M.B. 1938 Coefficient of viscos-
ity of air. Proc. Indian Academy of Sciences
8A
, 171–178.
Mu for Millikan.
MARTIN, G.Q. AND JOHANSON, L.N. 1965 Turbulence character-
istics of liquids in pipe flow. AIChE J.
11
, 29–33 (see also Ph. D. thesis
by MARTIN, An investigation into the turbulence characteristics of fluids
in pipe flow, Univ. Washington, 1963).
Pipe Re 20,000 to 160,000. Cen-
terline
u
.
Otherwise correlations only. Pipe may not be smooth. Friction
coefficient, tables 3–5. Reynolds stresses, figure 13
.
MARX, C.D., WING, C.B., and HOSKINS, L.M. 1900 Experiments
on the flow of water in the six-foot steel and wood pipe line of the Pioneer
Electric Power Company at Ogden, Utah. Second series. Trans. ASCE
44
, 34–54 (discussion 55-91).
Data are tabulated. Other data are cited in
discussion.
MCCONACHIE, P.J. 1981 The distribution of convection velocities
in turbulent pipe flow. J. Fluid Mech.
103
, 65–85.
MICKELSON, R.W. 1964 Laminar, transition, and turbulent flow in
capillary tubes. Ph.D. thesis, Wayne State Univ.
Friction coefficient, figures
6–17, table XIII. Main interest is viscometry. Good on entrance effects
(figure 20). Look for journal version with Donnelly
.
MITCHELL, J.E. and HANRATTY, T.J. 1966 A study of turbulence
at a wall using an electrochemical wall shear-stress meter. J. Fluid Mech.
26
, 199–221.
Follows two papers by Reiss and Hanratty (1962, 1963). Pipe
1” dia. Details of round and rectangular electrodes. Spectra; pdf of wall
stress; slope of
u
+
vs
y
+
. Scale
λ
+
is peculiar?
MORRISON, W.R.B. and KRONAUER, R.E. 1969 Structural simi-
larity for fully developed turbulence in smooth tubes. J. Fluid Mech.
39
,
117-141 (see also Ph. D. thesis by MORRISON, Two-dimensional frequency-
wave number spectra and narrow band shear stress correlations in turbulent
pipe flow, Univ. Queensland, 1969).
Correlations, celerity. Mean velocity*,
figures 3.3, 3.4. Reynolds stresses*, figures 3.10, 3.11, 3.12, 6.4.
L/D
= 75
.
MORROW, J. 1905 On the distribution of velocity in a viscous fluid
over the cross-section of a pipe, and on the action at the critical velocity.
Proc. Roy. Soc. London
A76
, 205–216.
Mean velocity*, figure 6, tables 2,
3. Max/mean velocity, figure 7. Temperature is uncertain.
MURPHREE, D.L. 1961 The behavior of the wall law constants in
turbulent pipe flow. Aerophysics Dept., Mississippi State Univ., Research
Note No. 13.
MURTHY, S.V., GEE, K., and STEINLE, F.W. 1988 Compressibil-
33
ity effects on flow friction in a fully developed pipe flow. In
Preprints,
AIAA/ASME/SIAM/APS Proc. First National Fluid Dynamics Congress
,
AIAA, Part 2, 901–910.
Mach number*, figures 3, 4. Friction coefficient*,
figures 5, 6.
NEDDERMAN, R.M. 1961 The measurement of velocities in the wall
region of turbulent liquid pipe flow. Chem. Eng. Sci.
16
, 120–126.
Pipe flow,
R
= 12000
, 19000. Stereo photography of bubbles.
x/d
= 60
. Run 3 includes
u
,
v
,
w
(see thesis, Cambridge, 1960). Only mean profile given here. Mean
velocity*, figures 1–4.
NEWMAN, B.G. and LEARY, B.G. 1950 The measurement of the
Reynolds stresses in a circular pipe as a means of testing a hot wire anemome-
ter. Aeronautical Research Laboratories, Dept. Supply, Australia, Rep.
A.72.
Mean velocity*, one profile, figures 9, 10. Reynolds stress*, figure 11.
NIKURADSE, J. 1932 Gesetzm ̈assigkeiten der turbulenten Str ̈omung
in glatten Rohren. Forschung auf dem Gebiete des Ingenieurwesens
3
, Aus-
gabe B, VDI Forschungsheft 356 (in English as “Regularity of turbulent flow
in smooth pipes,” Project Squid, Tech. Memo. No. PUR-11, Purdue Univ.,
1949, ans as “Laws of turbulent flow in smooth pipes,” NASA TT F-10,
359, 1966). Preliminary versions are “
̈
Uber turbulente Wasserstr ̈omungen
in geraden Rohren bei sehr grossen Reynoldsschen Zahlen,” in
Vortr ̈age aus
dem Gebiete der Aerodynamik und verwandter Gebiete
(A. Gilles, L. Hopf,
and T. von Karman, eds.), Springer, 63–69, 1930, and “Widerstandsgesetz
und Geschwindigkeitsverteilung von turbulenten Wasserstr ̈omung in glat-
ten und rauhen Rohren,” in
Proc. Third International Congress for Applied
Mechanics
(C.W. Oseen and W. Weibull, eds.), Stockholm, 239–247, 1930.
OMBECK, H. 1914 Druckverlust stromender Luft in geraden zylin-
drischen Rohrleitungen. Forschungsarbeiten auf dem Gebiete des Ingenieur-
wesens, VDI, Heft 158 und 159.
Friction coefficient, figures 19, 20, tables
4–14. Translate part of text. See Drew et al.
PATEL and HEAD 1969
PATEL, R.P. 1974 A note on fully developed turbulent flow down a
circular pipe. Aeron. J.
78
, 93–97 (see also PATEL, R.P., Reynolds stresses
in fully developed turbulent flow down a circular pipe, Mech. Eng. Res.
Labs., McGill Univ., Rep. No. 68-7, 1968).
Reynolds stresses*, figures
7-15, A2-A4, table II.
L/D
= 142
.
PATEL, V.C. 1965 Calibration of the Preston tube and limitations
on its use in pressure gradients. J. Fluid Mech.
23
, 185–208.
One profile
of mean velocity in pipe and boundary layer. Calibration of Preston tubes;
connection with constants in law of wall. Mean velocity, figure 2.
PATTERSON, G.K., EWBANK, W.J., and SANDBORN, V.A. 1967
34
Radial pressure gradient in turbulent pipe flow. Phys. Fluids
10
, 2082–2084.
Static pressure profile*, figure 2.
PENNEL, W.T., SPARROW, E.M., and ECKERT, E.R.G. 1972 Tur-
bulence intensity and time-mean velocity distributions in low Reynolds num-
ber turbulent pipe flows. Int’l. J. Heat Mass Transf.
15
, 1067–1074.
Veloc-
ity*, figure 2. Reynolds stresses, figures 3–5. Friction not measured.
PERRY, A.E. and ABELL, C.J. 1975 Scaling laws for pipe-flow tur-
bulence. J. Fluid Mech.
67
, 257–271 (see also Ph.D. thesis by ABELL, same
title, Univ. Melbourne, 1974).
Reynolds stresses*, figures 3.4–3.7, 3.9, table
3.1, pp 134–136. Also data for rough wall.
L/D
= 85
.
POISEUILLE, J.L.M. 1840a Recherches exp ́erimentales sur le mou-
vement des liquides dans les tubes de tr`es petits diam`etres. Comptes Rendus
Hebdomadaires des Seances de l’Academie des Sciences, Paris
11
, 961–967.
POISEUILLE, J.L.M. 1840b Recherches exp ́erimentales sur le mou-
vement des liquides dans les tubes de tr`es petits diam`etres. Comptes Rendus
Hebdomadaires des Seances de l’Academie des Sciences, Paris
11
, 1041–
1048.
POISEUILLE, J.L.M. 1841 Recherches exp ́erimentales sur le mouve-
ment des liquides dans les tubes de tr`es petits diam`etres. Comptes Rendus
Hebdomadaires des Seances de l’Academie des Sciences, Paris
12
, 112–115.
POISEUILLE, J.L.M. 1846 Recherches exp ́erimentales sur le mou-
vement des liquides dans les tubes de tr`es petits diam`etres. M ́emoires
Pr ́esentes par Divers Savants a l’Acad ́emie Royale des Sciences de l’Institut
de France
9
, 433–543, one plate (in English as Experimental investigations
upon the flow of liquids in tubes of very small diameter,
Rheological Memoirs
(E. C. Bingham, ed.), Vol. 1, No. 1, Lancaster Press, 1–101, 1940).
Kreith
& Eisenstadt say wrongly that 433–444 are laminar entry length. von Mises
says p 518 is first data on laminar pipe flow. Knibbs 1895 says no entrance
correction. Tables but no figures.
POLLARD, A., THOMANN, H., and SAVILL, A.M. 1990 Manipu-
lation and modelling of turbulent pipe flow: some parametric studies of
single and tandem ring devices. In
Turbulence Control by Passive Means
(K. Coustols, ed.), Kluwer, 79–96.
Friction*, figures 10, 11.
RAMAPRIAN, B.R. and TU, S.W. 1979 Experiments on transitional
oscillatory pipe flow. Iowa Inst. Hydr. Res., IIHR Rep. No. 221.
Pressure
drop, figure 4, table 1. Friction coefficient*, figure 5. Mean velocity*, figures
6, 7, table 2
.
REIGER, R. 1906
̈
Uber die G ̈ultigkeit des Poiseuilleschen Gesetzes
bei z ̈ahfl ̈ussigen und festen K ̈orpern. Ann. Phys.
19
, 985–1006.
35
REISS, L.P. and HANRATTY, T.J. 1962 Measurement of instanta-
neous rates of mass transfer to a small sink on a wall. A.I.Ch.E.J.
8
, 245–247.
REISS, L.P. and HANRATTY, T.J. 1963 An experimental study of
the unsteady nature of the viscous sublayer. A.I.Ch.E.J.
9
, 154–160.
Reynolds
analogy*, figure 9.
REITSCHEL,
1905 Versuche ̈uber den Widerstand bei Bewegung
der Luft in Rohrleitungen. Gesundheits-Ingenieure, Festnummer, 9–27.
See
Fritzsche p 3, 57, 58, 63.
REYNOLDS, H.C., DAVENPORT, M.E., and McELIGOT, D.M. 1968
Velocity profiles and eddy diffusivities for fully developed, turbulent, low
Reynolds number pipe flow. ASME Paper 68-WA/FE-34.
A few profiles
with scatter. Check references. Mean velocity, figure 3.
REYNOLDS, O. 1883 An experimental investigation of the circum-
stances which determine whether the motion of water shall be direct or
sinuous, and of the law of resistance in parallel channels. Phil. Trans. Royal
Soc.
174
, 935–982; also
Papers on Mechanical and Physical Subjects
, Vol.
II, 51–105, Cambridge Univ. Press, 1901 (short version, same title, in Proc.
Royal Soc. London
A35
, 84–99, 1883).
REYNOLDS, O. 1886 On the theory of lubrication and its application
to Mr. Beauchamp Tower’s experiments, including an experimental deter-
mination of the viscosity of olive oil. Phil. Trans. Royal Society
177
, 157– ;
also
Papers on Mechanical and Physical Subjects
, Vol. II, Cambridge Univ.
Press, 1901, 228–310.
Gives Re crit for pipe as 1400. Says no-slip condition
put to severe test by Poiseuille (Lamb p 575). Emphasis on
μ
as physical
property of liquid.
REYNOLDS, O. 1895 On the dynamical theory of incompressible vis-
cous fluids and the determination of the criterion.
(complete citation)
Also in
Papers on Mechanical and Physical Subjects
, Vol. 2, Cambridge
Univ. Press, 1901, 535–577.
Introduction of Reynolds stresses.
RICHTER, H. 1932 Druckverlust im glatten geraden Kreisrohr. Zeit-
schr. Ver. deutscher Ingenieure
76
, 1269–1274.
Friction coefficient*, figure
3.
RIGDEN, P.J. 1938 The viscosity of air, oxygen, and nitrogen. Phil.
Mag. (7)
25
, 961–981.
Mu for Millikan.
RONCERAY, P. 1911 Recherches sur l’ecoulement dans les tubes ca-
pillaires. Annales de Chimie et de Physique
22
, 107–125.
Exit jet. Cites
Reynolds.
RUCKES, W. 1908 Untersuchungen ̈uber den Ausfluss komprimierter
Luft aus Kapillaren und die dabei auftretenden Turbulenzerscheinungen.
Annalen der Physik (4)
25
, 983–1021 (short report in RUCKES, same title,
36
ZVdI
52
, 2065–2068).
Thesis, Wurzburg, 1907. Glass and metal capillaries
at several atmospheres. Length varied. Includes transition range; may be
usable. See Nusselt; Ombeck p 64.
SABOT, J. and COMTE-BELLOT, G. 1976 Intermittency of coher-
ent structures in the core region of fully developed pipe flow. J. Fluid Mech.
74
, 767–796 (see also D.Sc. thesis by SABOT, Etude de la coherence spatiale
et temporelle de la turbulence etablie en conduite circulaire, Univ. Claude
Bernard de Lyon, 1976).
Pipe 10 cm dia,
x/d
= 95
.
Re
= 68000
or 135000.
Hole analysis of
uv
signal. Bursts are time-shared for opposite walls? Fric-
tion coefficient, figure IV-1. Mean velocity*, figures IV-4, IV-5. Reynolds
stresses*, figures IV-7, IV-10. Space and space-time* correlations.
SACKMANN, L.A. 1963 Frottement turbulent dans des tubes lisses.
J. Mecanique
2
, 43–54.
Cites Hettler, thesis, Strasbourg, 1961. Also CRAS
253
, 849–851, 1961. Sublayer thickness*, figure 4.
SANDBORN, V.A. 1955 Experimental evaluation of momentum terms
in turbulent pipe flow. NACA TN 3266. Also private communication.
Mean
velocity, 4 profiles, figure 7. Reynolds stresses, figures 9–11, 13, 18, 19.
Centerline stresses, figures 15, 16.
L/D
= 58
.
5
.
SAPH, A.V. and SCHODER, E.W. 1903 An experimental study of
the resistances to the flow of water in pipes. Trans. ASCE
51
, 253–312.
Some data for square-cut entrance, table 9
.
SCHAEFER, C. and HEISEN, G. 1923 Experimentelle Beitr ̈age zur
Str ̈omung von Fl ̈ussigkeiten in R ̈ohren. Zeitschr. f. Phys.
12
, 165–176.
Friction*, figure 3.
SCHILLER, L. 1922 Experimentelle Feststellungen zum Turbulenz-
problem. Physik. Zeitschr.
23
, 14–18 (discussion, 18–19).
Friction coeffi-
cient*, figures 1, 2, 3.
SCHILLER, L. 1930 Rohrwiderstand bei hohen Reynoldsschen Zahlen.
In
Vortr ̈age auf dem Gebiete der Aerodynamik und verwandter Gebiete
(A.
Gilles, L. Hopf, T. von K ́arm ́an, eds.), Springer, Berlin, 69–78 (discussion,
78–80).
SHERWOOD, T.K., SMITH, K.A., and FOWLES, P.E. 1968 The ve-
locity and eddy viscosity distribution in the wall region of turbulent pipe
flow. Chem Eng. Sci.
23
, 1225–1236, (see also Ph. D. thesis by FOWLES,
The velocity and turbulence distribution in the laminar sublayer. Sc. D.
thesis, MIT, 1966).
Mean velocity*, figures 3, 4. Reynolds stresses*, fig-
ure 6. Mean velocity*, figures II-1, 2, IV-41, 42, 44, 45, V-1. Reynolds
stresses*, figures II-3, IV-43. See tables F-1, H-1, H-3, H-4.
L/D
= 84
.
SIRKAR, K.K. 1969 Turbulence in the immediate vicinity of a wall
and fully developed mass transfer at high Schmidt numbers. Ph.D. thesis,
37
Dept. Chem. Eng., Univ. Illinois.
See JFM
44
, 589, 1970 and others.
SLATER, J.G., VILLEMONTE, J.R., and DAY, H.J. 1957 Pipe fric-
tion loss at high pressures. Proc. ASCE (J. Hydr. Div.)
83
, Paper 1163,
1–21.
C
f
only, not tabulated. Friction coefficient*, figures 4–7.
LEITE,
R.J. 1959
SORKAU, W. 1911 Experimentelle Untersuchungen ̈uber die innere
Reibung einiger organischer Fl ̈ussigkeiten im turbulenten Str ̈omungszustande.
Phys. Zeitschr.
12
, 582–595.
SORKAU, W. 1912
̈
Uber den Einfluss von Temperatur, spezifischem
Gewicht und chemischer Natur von Fl ̈ussigkeiten auf die Turbulenzreibung.
Phys. Zeitschr.
13
, 805–820.
SORKAU, W. 1913
̈
Uber den Zusammenhang zwischen Molekular-
gewicht und Turbulenzreibungskonstante. Phys. Zeitschr.
14
, 147–152.
SORKAU, W. 1913 Zur Turbulenzreibung des Wassers. Phys. Zeit-
schr.
14
, 759–766.
SORKAU, W. 1913 Zur Turbulenzreibung des Wassers. II. Phys.
Zeitschr.
14
, 828–831.
SORKAU, W. 1914 Zur Kenntnis der Turbulenzreibung. Phys. Zeit-
schr.
15
, 582–587.
SORKAU, W. 1914 Zur Kenntnis des
̈
Uberganges von der geordneten
zur Turbulenzstr ̈omung in Kapillarr ̈ohren. I. Phys. Zeitschr.
15
, 768–772.
SORKAU, W. 1915 Zur Kenntnis des
̈
Uberganges von der geordneten
zur Turbulenzstr ̈omung in Kapillarr ̈ohren. II. Phys. Zeitschr.
16
, 97–101.
SORKAU, W. 1915 Zur Kenntnis des
̈
Uberganges von der geordneten
zur Turbulenzstr ̈omung in Kapillarr ̈ohren. III. Phys. Zeitschr.
16
, 101–102.
STANTON, T.E. and PANNELL, J.R. 1914 Similarity of motion in
relation to the surface friction of fluids. Phil. Trans. Roy. Soc. London
A214
, 199–224.
STANTON, T.E., MARSHALL, D., and BRYANT, C.N. 1920 On the
conditions at the boundary of a fluid in turbulent motion. Proc. Roy. Soc.
London
A97
, 413–434.
Friction coefficient*, figure 7.
STANTON, T.E. 1911
TAMMANN, G. and HINN
̈
UBER, J. 1927 Die innere Reibung von
Quecksilber. Zeitschrift f ̈ur anorganische und allgemeine Chemie
167
, 230–
236.
TAYLOR, T.S. 1920 The flow of air through small brass tubes. Trans.
ASME
42
, 121–128.
Faired profiles; tabulated ratio of mean to maximum
velocity, tables 1, 2
.
TOWNEND, H.C.H. 1934 Statistical measurements of turbulence in
the flow of air through a pipe. Proc. Roy. Soc. London
A145
, 180–211.
38
Square pipe. Series of sparks; spots followed to get
u
, etc.
TREER, M.F. 1929 Die Geschwindigkeitsverteilung bei geradlinigen
turbulenten Str ̈omungen. Phys. Zeitschr.
30
, 542–551.
TURNER, J.T. and LIGHTNING, G. 1977 Measurement of mean
flow and turbulence structure in an axisymmetric pipe flow with high initial
shear. In
Preprints, Symposium on Turbulent Shear Flows
, Penn. State
Univ., 8.29–8.34.
Severe initial distortion of profile. Strange oscillations in
local flow rate vs
x/D
to
x/D
= 40
. Careful work. Relaxation downstream
from orifice. Mean velocity*, figure 3. Correlation, figure 10.
UEDA, H. and MIZUSHINA, T. 1977 Turbulence structure in the
inner part of the wall region in a fully developed turbulent tube flow. In
Symposium on Turbulence
(G.K. Patterson and J.L. Zakin, eds.), Rolla,
357–366.
Hot-film anemometry. Profiles of mean Reynolds stress; single
and joint pdf, skewness, flatness. Reynolds stresses*, figures 2, 3. Joint
pdf*, figure 12.
URUSHIHARA, T., MEINHART, C.D., and ADRIAN, R.J. 1993 In-
vestigation of the logarithmic layer in pipe flow using particle image ve-
locimetry. In
Near-Wall Turbulent Flows
(R.M.C. So, C.G. Speziale, and
B.E. Launder, eds.), Elsevier, 433–446.
VAN DER HOEVEN, J.G.T., WESTERWEEL, J., NIEUWSTADT,
F.T.M., and ADRIAN, R.J. 1993 Application of digital particle image
velocimetry to a turbulent pipe flow. In
Eddy Structure Identification in
Free Turbulent Shear Flows
(J.P. Bonnet and M.N. Glauser, eds.), Kluwer,
405–414.
VAN SCIVER, S.W. 1991 Experimental investigations of He II flows
at high Reynolds number. In
High Reynolds Number Flows Using Liquid and
Gaseous Helium
(R.J. Donnelly, ed.), Springer, 223-232.
Friction*, figure 4.
VAN SHAW, P., REISS, L.P., and HANRATTY, T.J. 1963 Rates of
turbulent transfer to a pipe wall in the mass transfer entry region. A.I.Ch.E.J.
9
, 362–364.
Correlation*, figures 4, 5. Reynolds stress*, figure 15.
WALSTROM, P.L., WEISEND, J.G. II, MADDOCKS, J.R., and VAN
SCIVER, S.W. 1988 Turbulent flow pressure drop in various He II trans-
fer system components. Cryogenics
28
, 101–109.
Friction coefficient*, figure
3.
WEBER, W. 1955 Die Temperaturabh ̈angigkeit der Viskosit ̈at des
Wassers zwischen 0
and 40
. Zeitschrift f ̈ur angewandte Physik
7
, 96–98.
WHETHAM, W.C.D. 1890 On the alleged slipping at the boundary
of a liquid in motion. Phil. Trans.
181
, 559–582.
WHITE, C.M. 1929 Streamline flow through curved pipes. Proc. Roy.
Soc. London
A123
, 645–663.
Reasonably careful experiments; see Taylor,
39
PRSA
124
, for analysis and further work. Friction*, figure 9. Effect of
curvature on transition*, figure 9.
WICHNER, R.P. 1965 Determination of the Reynolds stresses for air
and water pipe flows by the constant-current, linearized response hot-wire
anemometer. Ph. D. thesis, Dept. Eng. Science, Univ. Tennessee.
Mean
velocity*, figures 57, 58, 61, 62, tables 14-16, 20, 21. Reynolds stresses*,
figures 59, 64, 66-69, tables 23, 25, 27, 29-35, 37. Friction was not mea-
sured
.
WILDHAGEN, M. 1923
̈
Uber den Str ̈omungswiderstand hochverdicht-
eter Luft in Rohrleitungen. Zeitschrift angew. Math. Mech.
3
, 181–197.
WILLERS, A. 1909
̈
Uber die Viskosit ̈atsanomalien von Emulsionen
im turbulenten Str ̈omungszustande. Phys. Zeitschrift
10
, 244–248.
Precedes
Bose. Includes transition. Uses term turbulence.
YANG, L.C., PETRAC, D., ELLEMAN, D.D., and SAFFREN, M.M.
1981 Characterization of superfluid helium transfer. Cryogenics
21
, 207–
212.
YOUNG, J.B. and HANRATTY, T.J. 1991 Optical studies on the
turbulent motion of solid particles in a pipe flow. J. Fluid Mech.
231
, 665–
688.
Reynolds stresses*, figures 6, 7.
ZAGAROLA, M.V. and SMITS, A.J. 1998 Mean-flow scaling of tur-
bulent pipe flow. J. Fluid Mech.
373
, 33–79.
Friction*, figure 8. Center-
line*, figure 11. Velocity*, figures 14, 29.
ZAGAROLA, M.V., SMITS, A.J., ORSZAG, S.A., and YAKHOT, V.
1996 Experiments in high Reynolds number turbulent pipe flow. AIAA
Paper 96-0654.
Geometry*, figure 1. Friction*, figure 2. Velocity*, figures 4,
6. Volume flow*, figure 7.
ZHANG, J., STASSINOPOULOS, D., ALSTROM, P., and LEVINSEN,
M.T. 1994 Stochastic transition intermittency in pipe flows: experiment
and model. Phys. Fluids
6
, 1722–1726.
Intermittency*, figure 6.
Laminar development length in pipe flow
Major surveys or theory
ABARBANEL, S., BENNETT, S., BRANDT, A., and GILLIS, J. 1970
Velocity profiles of flow at low Reynolds numbers. Trans. ASME (J. Appl.
Mech.)
37
, 2–4.
Development*, figure 1.
40
ATKINSON, B., BROCKLEBANK, M.P., CARD, C.C.H., and SMITH,
J.M. 1969 Low Reynolds number developing flows. A.I.Ch.E.J.
15
, 548-
553.
Development*, figures 6, 10.
ATKINSON, G.S. and GOLDSTEIN, S. 1938 In
Modern Develop-
ments in Fluid Dynamics
(S. Goldstein, ed.), Vol. 1, Clarendon Press, Ox-
ford, 304–308.
Friction*, figure 79.
BENDER, E. 1969 Druckverlust bei laminarer Str ̈omung im Rohrein-
lauf. Chemie-Ingenieur-Technik
41
, 682–686.
Pressure drop*, figure 2, tab-
ulated. Also with heat transfer.
BENTON, A.F. 1919 The end correction in the determination of gas
viscosity by the capillary tube method. Physical Review (2)
14
, 403–408.
Brillouin is ok; Fisher is no good. Cites Stanton and Pannell.
BOGUE, D.C. 1959 Entrance effects and prediction of turbulence in
non-Newtonian flow. Ind. Eng. Chem.
51
, 874–878.
Theory for turbulent
entry length.
BOUSSINESQ, J. 1890 Th ́eorie du r ́egime permanent graduellement
vari ́e qui se produit pr`es de l’entr ́ee ́evas ́ee d’un tube fin, o`u les filets d’un
liquide qui s’y ́ecoule n’ont pas encore acquis leurs in ́egalit ́es normales de
vitesse. Comptes Rendus Acad. Sci. Paris
110
, 1160–1166.
First paper.
BOUSSINESQ, J. 1890 Th ́eorie du mouvement permanent qui se pro-
duit pr`es de l’entr ́ee ́evas ́ee d’un tube fin: application `a la deuxi`eme s ́erie
d’exp ́eriences de Poiseuille. Comptes Rendus Acad. Sci. Paris
110
, 1238–
1242.
Second paper.
BOUSSINESQ, J. 1890 Th ́eorie du r ́egime permanent graduellement
vari ́e qui se produit pr ́es de l’entr ́ee ́evas ́ee d’un tuyau de conduite, o`u les
filets fluides n’ont pas encore acquis leurs in ́egalit ́es normales de vitesse.
Comptes Rendus Acad. Sci. Paris
110
, 1292–1298.
Third paper.
BOUSSINESQ, J. 1891 Sur la mani`ere dont les vitesses, dans un tube
cylindrique de section circulaire, ́evas ́e `a son entr ́ee, se distribuent depuis
cette entr ́ee jusqu’aux endroits o`u se trouve ́etabli un r ́egime uniforme.
Comptes Rendus Acad. Sci. Paris
113
, 9–15.
Fourth paper.
BOUSSINESQ, J. 1891 Calcul de la moindre longueur que doit avoir
un tube circulaire, ́evas ́e `a son entr ́ee, pour qu’un r ́egime sensiblement uni-
forme s’y ́etablisse, et de la d ́epense de charge qu’y entraˆıne l’ ́etablissement
de ce r ́egime. Comptes Rendus Acad. Sci. Paris
113
, 49–52.
Fifth paper.
CAMPBELL, W.D. and SLATTERY, J.C. 1963 Flow in the entrance
of a tube. Trans. ASME (J. Basic Eng.)
85D
, 41–45 (discussion, 45–46).
Centerline velocity*, figure 1. Pressure drop*, figure 5.
CHEN, R.-Y. 1973 Flow in the entrance region at low Reynolds num-
bers. Trans. ASME (J. Fluids Eng.)
95
, 153–158.
Moment method, pipe and
41
channel. Low
Re
means 1–20. See for refs. Centerline velocity*, figure 1.
Pressure drop*, figure 3. Also channel.
CHRISTIANSEN, E.B. and LEMMON, H.E. 1965 Entrance region
flow. A.I.Ch.E. J.
11
, 995–999.
Computed laminar flow in pipe entrance for
full NS equations. Plots go only to
L/
(
d Re
) = 0
.
04
. Velocity contours*,
figures 2, 3.
COLLINS, M. and SCHOWALTER, W.R. 1963 Behavior of non-Newt-
onian fluids in the entry region of a pipe. A.I.Ch.E. J.
9
, 804–809.
Table of
m
*, table 1.
DORSEY, N.E. 1926 The flow of liquids through capillaries. Phys.
Rev.
28
, 833–845.
Clumsy arguments on
m
with square-cut tubes. Includes
low
Re
. Data of Poiseuille, Bond. Recalculation of
m
for Poiseuille.
FRIEDMANN, M., GILLIS, J., and LIRON, N. 1968 Laminar flow
in a pipe at low and moderate Reynods numbers. Appl. Sec. Res.
19
, 426–
438.
Entrance length
x/d
= 0
.
055
Re
for velocity on axis to settle to 1%
(
u/U
= 1
.
98)
. Development length*, table 1. Centerline velocity*, figure 1.
Velocity contours*, figures 3, 4.
GARG, V.K. 1981 Stability of developing flow in a pipe: non-axisym-
metric disturbances. J. Fluid Mech.
110
, 209-216.
GOVINDA RAO, N.S., RAMAMOORTHY, M.V., and SARMA, K.V.N.
1966 Study of transition zone of laminar flow at the entrance to a pipe
based on varying friction. Proc. National Institute of Sciences of India
A
32
, 266–280.
Development*, figure 4. Pressure drop*, figure 6.
HORNBECK, R.W. 1965 Laminar entrance flow in the entrance re-
gion of a pipe. Appl. Sci. Res.
A13
, 224–232.
Numerical solution, compared
to Campbell and Slattery and to Langhaar. Short table of
p
and
u
(
r
)
. Cen-
terline velocity*, figure 3. Pressure*, figure 2, tabulated. Velocity contours*,
figure 6.
KANDA, H. and OSHIMA, K. 1986 Numerical study of the entrance
flow and its transition of a circular pipe. In
Proc. Symposium on Mechanics
for Space Flight
, Inst. of Space and Astron. Science, Rep. SP 4, 71-87.
Pressure drop*, figures 10, 11.
KANDA, H. and OSHIMA, K. 1987 Numerical study of the entrance
flow and its transition in a circular pipe (2). In
Proc. Symposium on Mechan-
ics for Space Flight 1986
, Inst. of Space and Astronautical Science, Tokyo,
Rep. SP No. 5, 47–76.
Development length*, figure 5. Table of authors*,
table 1.
KANDA, H. 1988 Numerical study of the entrance flow and its tran-
sition in a circular pipe. Institute of Space and Astronautical Science, Rep.
No. 626.
Entrance length*, figure 19.
42
KESTIN, J.K, SOKOLOV, M. and WAKEHAM, W. 1973 Theory of
capillary viscometers. Appl. Sci. Res.
27
, 241–264.
Good review, with large
selection of values for
m
. Velocity profiles*, figure 7. Centerline velocity*,
figure 8. Pressure*, figure 14.
KNIBBS, G.H. 1895 The history, theory, and determination of the
viscosity of water by the efflux method. J. Roy. Soc. New South Wales
29
,
77-146.
KNIBBS, G.H. 1896 Note on recent determinations of the viscosity
of water by the efflux method. J. Roy. Soc. New South Wales
30
, 186-193.
LANGHAAR, H.L. 1942 Steady flow in the transition length of a
straight tube. J. Appl. Mech.
9
, (Trans. ASME
64
), A55–A58.
Linearied
solution in entry length in terms of
(
x/d
)/
Re
. Exit jet comes to rest at
constant pressure? May mention minimum dissipation principle. Velocity
profiles*, figure 2. Centerline velocity*, figure 1, tabulated.
LEW, H.S. and FUNG, Y.C. 1968 On the entry flow in a circular
cylindrical tube at arbitrary Reynolds numbers. Univ. Calif. San Diego,
Dept. AMES, Rep. AFOSR 69-0061 TR.
LEW, H.S. and FUNG, Y.C. 1969 On the low-Reynolds-number entry
flow in a circular cylindrical tube. J. Biomechanics
2
, 105–119.
Oseen
equation with arbitrary axisymmetric inlet flow. Results for uniform entry
profile,
Re
from 0 to 100. Velocity profiles*, figure 1. Pressure and velocity
are tabulated.
LUNDGREN, T.S., SPARROW, E.M., and STARR, J.B. 1964 Pres-
sure drop due to the entrance region in ducts of arbitrary cross section.
Trans. ASME (J. Basic Eng.)
86D
, 620–626.
Developing laminar entrance
flow. Values of
m
, table 1.
M
̈
ULLER, W. 1936 Zum Problem der Anlaufstr ̈omung einer Fl ̈ussig-
keit im geraden Rohr mit Kreisring- und Kreisquerschnitt. Zeitschr. f.
angew. Math. u. Mech.
16
, 227–238.
Theoretical development of laminar
entrance flow. Velocity profiles*, figures 2, 4. Also annulus.
RIVAS, M.A. Jr. and SHAPIRO, A.H. 1956 On the theory of dis-
charge coefficients for rounded-entrance flow-meters and venturis. Trans.
ASME
78
, 489–497.
Entrance length. Smooth entrance; potential flow plus
boundary layer. Geometry*, figures 2, 3.
SCHMIDT, F.W. and ZELDIN, B. 1969 Laminar flows in inlet sec-
tions of tubes and ducts. A.I.Ch.E.J.
15
, 612–614.
Full equations; finite
difference method. Pressure drop*, figure 2. Table for
m
*, table 1. Also
channel.
SHAH, R.K. 1978 A correlation for laminar hydrodynamic entry length
solutions for circular and noncircular ducts. Trans. ASME (J. Fluids Eng.)
43
100
, 177–179.
SMITH, A.M.O. 1960 Remarks on transition in a round tube. J.
Fluid Mech.
7
, 565–576.
Survey of data, with
e
9
argument; suggestion that
inlet boundary layer goes unstable, not parabolic profile. Laminar develop-
ment length. Theory by Punnis is not good. Velocity profiles*, figure 1.
Centerline velocity*, figure 3.
SPARROW, E.M., LIN, S.H., and LUNDGREN, T.S. 1964 Flow de-
velopment in the hydrodynamic entrance region of tubes and ducts. Phys.
Fluids
7
, 338–347.
Theory for development of laminar flow. Check for
results and references. Velocity contours*, figure 1. Centerline velocity*,
figure 3. Also channel.
TANNER, R.I. and MANTON, M.J. 1966 On the nonuniqueness of
the entry length. A.I.Ch.E.J.
12
, 816–819.
Numerical
m
for various inlet
profiles.
TATSUMI, T. 1952 Stability of the laminar inlet-flow prior to the
formation of Poiseuille regime, I. J. Phys. Soc. Japan
7
, 489–495.
VOGELPOHL, G. 1933
̈
Uber die Ermittlung der Rohreinlaufstr ̈omung
aus den Navier-Stokesschen Gleichungen. Zeitschrift f ̈ur angewandte Math-
ematik und Mechanik
13
, 446–447.
VRENTAS, J.S., DUDA, J.L., and BARGERON, K.G. 1966 Effect of
axial diffusion of vorticity on flow development in circular conduits. Part 1.
Numerical solution. A.I.Ch.E. J.
12
, 837–844.
Entrance flow in pipe. Com-
plete equations. Velocity contours*, figures 4–8. Values of
m
*, tables 1, 2.
Look for Part 2.
WILBERFORCE 1891
Experimental data
ASTHANA, K.C. 1951 Study of the zone of transition in laminar flow
near the entrance to a smooth pipe. Ph.D. thesis, Cornell Univ.
Max/mean
velocity*, figure 16, tables p 71-77
.
ATKINSON, B., KEMBLOWSKI, Z., and SMITH, J.M. 1967 Mea-
surements of velocity profile in developing liquid flows. A.I.Ch.E.J.
13
,
17–20.
Pipe flow. Screens used to get flat entrance profile. Crude theory for
entrance flow. Velocity profiles*, figure 4.
BERMAN, N.S. and SANTOS, V.A. 1969 Laminar velocity profiles
in developing flows using a laser Doppler technique. A.I.Ch.E.J.
15
, 323-
327, and private communication.
Mean velocity, 18 profiles, figures 3-5.
Maximum velocity*, figures 6, 7. cites Burke, 1969.
44
BINNINGTON, R.J. and BOGER, D.V. 1989 Laminar circular entry
flows of viscoelastic fluids. In
Tenth Australasian Fluid Mechanics Confer-
ence
, Univ. Melbourne, Vol. 1, 6.25–6.28.
Flow viz*, figures 2, 3, 6.
BOND, W.N. 1921 The effect of viscosity on orifice flows. Proc.
Phys. Soc. London
33
, 225-230.
One orifice; mixtures of glycerine and
water. Pressure drop* against Re, figures 1, 2.
BREUER, K.S. 1985 An experimental investigation into transitional
pipe flow. S.M. thesis, Dept. Aeron. Astron., MIT (also FDRL Rep. No.
85-1).
Laminar profile*, figures 15,16.
BURKE, J.P. and BERMAN, N.S. 1969 Entrance flow development
in circular tubes at small axial distances. ASME Paper 69-WA/FE-13 (see
also M.S. thesis by BURKE, Flow development using the laser Doppler
technique, Arizona State Univ., 1969).
Mean velocity, figures 3-6, 8. Data*
are tabulated
.
DAVIS, W. and FOX, R.W. 1967 An evaluation of the hydrogen bub-
ble techique for the quantitative determination of fluid velocities within clear
tubes. Trans. ASME (J. Basic Eng.)
89D
, 771-777.
Centerline velocity*,
figure 11. See thesis by Fox.
EMERY, A.F. and CHEN, C.S. 1968 An experimental investigation
of possible methods to reduce laminar entry lengths. Trans. ASME (J.
Basic Eng.)
90D
, 134-137.
Experiments on laminar development length in
pipe. Only annulus inlet is effective. Pressure and centerline velocity against
x/
(
D
Re)
.
Pressure drop*, figures 1, 2. See MS thesis by Liu.
FARGIE, D. and MARTIN, B.W. 1971 Developing laminar flow in a
pipe of circular cross-section. Proc. Roy. Soc. London
A321
, 461-476.
Maximum velocity*, figures 3, 4. Good review.
.
GIBSON, A.H. 1933 The breakdown of streamline motion at the higher
critical velocity in pipes of circular cross section. Philosophical Magazine
15
, 637–647.
KREITH, E. AND EISENSTADT, R. 1957 Pressure drop and flow
characteristics of short capillary tubes at low Reynolds numbers. Trans.
ASME
79
, 1070-1074 (discussion 1074-1078).
Re = 8 to 1500,
L/D
= 0
.
45
to 18. Friction coefficient*, figures 2, 5, table 2.
.
KURZWEG, H. 1933 Neue Untersuchungen ̈uber die Entstehung der
turbulenten Rohrstr ̈omung. Annalen der Physik (5)
18
, 193–216.
Geome-
try*, figure 9. Flow viz*, figures 13–16.
LINDEN, H.R. and OTHMER, D.F. 1949 Air flow through small ori-
fices in the viscous region. Trans. ASME
71
, 765-772.
Square-edged orifices.
Flow rate*, figure 3
.
McCOMAS, S.T. and ECKERT, E.R.G. 1965 Laminar pressure drop
45
associated with the continuum entrance region and for slip flow in a circular
tube. Trans. ASME (J. Appl. Mech.)
32E
, 765–770.
Measurements of
pressure to determine
m
for
Re
from 200 to 600. This is Ph. D. thesis
by McComas, Dept. Mech. Eng., U Minnesota, 1964. Centerline velocity*,
figure 3.
MICKELSON 1964
MOHANTY, A.K. and ASTHANA, S.B.L. 1977 Incompressible lam-
inar and turbulent flow in the entrance region of a smooth circular pipe. In
Proc. 6th Australasian Hydraulics and Fluid Mechanics Conference
, Ade-
laide, Vol. 2, 532–536.
Development*, figures 2, 3. Pressure drop, figure 4.
MOHANTY, A.K. and ASTHANA, S.B.L. 1979 Laminar flow in the
entrance region of a smooth pipe. J. Fluid Mech.
90
, 433-447.
Boundary-
layer thickness, figure 4. Friction coefficient*, figure 6.
PFENNINGER, W. and MEYER, W.A. 1953 Transition experiments
in the inlet length of a 1-inch I.D. tube at high Reynolds numbers and low
turbulence. Northrop Aircraft, Inc., Rep. BLC-24.
Fifth report.
PFENNINGER, W. 1950 Experiments with laminar flow in a two-
inch-diameter, 40-foot-long tube at high Reynolds numbers. Northrop Air-
craft, Inc., Rep. AM-128.
First report.
PFENNINGER, W. 1951 Further laminar flow experiments in a 40-
foot-long 2-inch-diameter tube. Northrop Aircraft, Inc., Rep. AM-133.
Second report.
PFENNINGER, W. 1951 Further laminar flow experiments ina tube
at high Reynolds numbers. Northrop Aircraft, Inc., Rep. AM-147.
Third
report.
PFENNINGER, W. 1952 Experiments with laminar flow in the inlet
length of a tube at high Reynolds numbers with and without boundary layer
suction. Northrop Aircraft, Inc., (no report number).
Fourth report.
PFENNINGER, W. 1961 Boundary layer suction experiments with
laminar flow at high Reynolds numbers in the inlet length of a tube by var-
ious suction methods. In
Boundary Layer and Flow Control
(G. V. Lach-
mann, ed.), Pergamon, Vol. 2, 961-980.
Centerline velocity*, figures 8-12.
Velocity profiles*, figures 13-15.
REIMAN, W. III 1928 The value of the Hagenbach factor in the de-
termination of viscosity by the efflux method. J. Am. Chem. Soc.
50
, 46–55.
Viscometry in capillary tubes. Kinetic energy correction.
m
= 1
.
124
±
0
.
006
.
Values of
m
*, table 2.
RESHOTKO, E. 1958 Experimental study of the stability of pipe
flow. I. Establishment of an axially symmetric Poiseuille flow. Jet Propul-
sion Laboratory, Prog. Rep. 20-364.
Mean velocity*, 16 profiles, figures
46