Chapter 3: Channel Flow
Flow in smooth channel
Major surveys or theory
ABDULLAH, N.N. and MAWLOOD, M.K. 1993 Boundary condition
approximations and accuracy in channel flow analysis. In
Encyclopedia of
Fluid Mechanics
, Supplement 1, Applied Mathematics in Fluid Dynamics
(N.P. Cheremisinoff, ed.), 221–231.
ANTONIA, R.A. and KIM, J. 1992 Low Reynolds number effects on
near-wall turbulence. In
Proc. 11th Australasian Fluid Mechanics Confer-
ence
, Univ. Tasmania, Vol. 2, 817–820.
ANTONIA, R.A. and KIM, J. 1994 Low-Reynolds-number effects
on near-wall turbulence. J. Fluid Mech.
276
, 61–80.
Reynolds stresses*,
figure 1.
BLACKBURN, H.M., MANSOUR, N.N., and CANTWELL, B.J. 1996
Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech.
310
,
269–292.
Invariants*, figure 1. Local flow*, figure 2. PDF*, figure 6.
BRADSHAW, P., DEAN, R.B., and McELIGOT, D.M. 1973 Calcu-
lation of interacting turbulent shear layers: duct flow. Trans. ASME (J.
Fluids Eng.)
95
, 214–220.
BROOKE, J.W. and HANRATTY, T.J. 1993 Origin of turbulence-
producing eddies in a channel flow. In
Near-Wall Turbulent Flows
(R.M.C.
So, C.G. Speziale, and B.E. Launder, eds.), Elsevier, 399–402.
BUTLER, K.M. and FARRELL, B.F. 1993 Optimal perturbations
and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids
A5
, 774–777.
CHEN 1973
DEAN, R.B. 1978 Reynolds number dependence of skin friction and
other bulk flow variables in two-dimensional rectangular duct flow. Trans.
ASME (J. Fluids Eng.)
100
, 215–223.
Partly effect of aspect ratio in channel
flow*. Other people’s data. Table I is long list of experimental references
with channel dimensions and method used for measuring
τ
w
.
GAVRILAKIS, S. 1992 Numerical simulation of low-Reynolds-number
turbulent flow through a straight square duct. J. Fluid Mech.
244
, 101–129.
HAMILTON, J.M. and KIM, J. 1993 On streak spacing in wall-bounded
turbulent flows. Center for Turbulence Research, NASA Ames Research
Center and Stanford University, Annual Research Briefs–1993, 249–257.
103
HORIUTI, K. 1988 Numerical simulation of turbulent channel flow
at low and high Reynolds numbers. In
Transport Phenomena in Turbulent
Flows
(M. Hirata and N. Kasagi, eds.), Hemisphere, 743–755.
Large-eddy
simulation.
HUSER, A. and BIRINGEN, S. 1993 Direct numerical simulation of
turbulent flow in a square duct. J. Fluid Mech.
257
, 65–95.
Velocity*,
figures 4, 6. Reynolds stresses*, figures 8, 11.
AGARD CMP01
.
HUSER, A., BIRINGEN, S., and HATAY, F.H. 1994 Direct simula-
tion of turbulent flow in a square duct: Reynolds-stress budgets. In
Appli-
cation of Direct and Large Eddy Simulation to Transition and Turbulence,
AGARD CP 551, Paper 12.
AGARD CMP01
.
JOHANSSON, A.V. and ALFREDSSON, P.H. 1986 Structure of tur-
bulent channel flows. In
Encyclopedia of Fluid Mechanics
, Vol. 1, Flow Phe-
nomena and Measurement (N.P. Cheremisinoff, ed.), Gulf Publishing Co.,
824–869.
Chapter 25.
JOHANSSON, A.V., ALFREDSSON, P.H., and KIM, J. 1991 Evo-
lution and dynamics of shear-layer structures in near-wall turbulence. J.
Fluid Mech.
224
, 579–599.
KASAGI, N., TOMITA, Y., and KURODA, A. 1992 Direct numer-
ical simulation of passive scalar field in a turbulent channel flow. Trans.
ASME (J. Heat Transf.)
114
, 598–606.
ERCOFTAC 45. Velocity*, fig-
ure 2.
Jimenez collection No. 45.
KIM, J., MOIN, P., and MOSER, R. 1987 Turbulence statistics in
fully developed channel flow at low Reynolds number. J. Fluid Mech.
177
,
133–166. AGARD Case PCH 10.
Re
= 6600
. Full Navier-Stokes solution.
Jiminez collection No. 32.
MADABHUSHI, R.K. and VANKA, S.P. 1993 Direct numerical sim-
ulation of turbulent flow in a square duct at low Reynolds number. In
Near-Wall Turbulent Flows
(R.M.C. So, C.G. Speziale, and B.E. Launder,
eds.), Elsevier, 297–306.
NAKAYAMA, A. and CHOW, W.L. 1986 Turbulent flows within straight
ducts. In
Encyclopedia of Fluid Mechanics
, Vol. 1, Flow Phenomena and
Measurement (N.P. Cheremisinoff, ed.), Gulf Publishing Co., 639–674.
Chap-
ter 21.
NETI, S. and EICHHORN, R. 1979 Computations of developing tur-
bulent flow in a square duct. In
Turbulent Boundary Layers, Forced, In-
compressible, Non-reacting
(H.E. Weber, ed.), ASME, 179–186.
Centerline
velocity*, figure 4. Shearing stress distribution*, figure 10.
PIOMELLI, U., ONG, L., WALLACE, J., and LADHARI, F. 1993
Reynolds stress and vorticity in turbulent wall flows. Appl. Sci. Res.
51
104
(Advances in Turbulence IV, F.T.M. Nieuwstadt, ed.), Kluwer, 365–370.
SANDHAM, N.D. 1991 A model equation for transition and turbu-
lence in plane channel flow. In
Preprints, Eighth Symposium on Turbulent
Shear Flows,
Munich, Paper 18–1.
SCHMIDT and ZELDIN 1969
SPARROW et al 1964
SU, M.D. and FRIEDRICH, R. 1991 Large eddy simulation of fully-
developed turbulent flow in a straight duct. In
Preprints, Eighth Symposium
on Turbulent Shear Flows, Vol. 2
, Technical University of Munich, Paper
II-19.
WEBBER, G.A., HANDLER, R.A., and SIROVICH, L. 1997 The
Karhunen-Lo ́eve decomposition of minimal channel flow. Phys. Fluids
9
,
1054–1066.
Experimental data
ALFREDSSON, P.H. and JOHANSSON, A.V. 1984 On the detec-
tion of turbulence-generating events. J. Fluid Mech.
139
, 325–345.
Mean
velocity*, figure 1. Reynolds stresses*, figures 1, 2.
ALLEN, J. and GRUNBERG, N.D. 1937 The resistance to the flow
of water along smooth rectangular passages, and the effect of a slight con-
vergence or divergence of the boundaries. Phil. Mag. (7)
23
, 490–503.
Fric-
tion*, figure 2. Data are tabulated
.
ANTONIA, R.A., TEITEL, M., KIM, J., and BROWNE, L.W.B. 1992
Low-Reynolds-number effects in a fully developed turbulent channel flow.
J. Fluid Mech.
236
, 579–605.
Mean velocity*, figure 2. Reynolds stresses*,
figures 4, 5, 9, 10.
ANTONIA, R.A., ZHOU, T., and ROMANO, G.P. 1997 Second- and
third-order longitudinal velocity structure functions in a fully developed
turbulent channel flow. Phys. Fluids
9
, 3465–3471.
ARINA, R., IUSO, G., ONORATO, M., and CASELLA, M. 1991 Ex-
perimental and numerical analysis of low-Reynolds number turbulent chan-
nel flows. AIAA Paper 91-1788.
Mean velocity*, figure 1. Reynolds stress*,
figure 2.
BEAVERS, G.S., SPARROW, E.M., and LLOYD, J.R. 1971 Low
Reynolds number turbulent flow in large aspect ratio rectangular ducts.
Trans. ASME (J. Basic Eng.)
93D
, 296–299.
Friction coefficient*, figure 2.
BETTS, C. and HATTON, A.P. 1971 The enhancement of turbulent
diffusion in a parallel-wall duct. Proc. Inst’n Mech. Engrs.
185
, 825–835.
105
Diffusion of nitrous oxide from line source in channel. Mean velocity*, figure
5. Friction coefficient*, figure 4.
BRUNDRETT, E. 1963 The production and diffusion of vorticity in
channel flow. Dept. Mech. Eng., Univ. Toronto, Rep. TP 6302.
This is
thesis with some additional data. Mean velocity, table C1. See thesis by
Leutheusser
.
BRUNDRETT, E. and BAINES, W.D. 1964 The production and dif-
fusion of vorticity in duct flow. J. Fluid Mech.
19
, 375–394 (see also Ph. D.
thesis by BRUNDRETT, ”The production and diffusion of vorticity in chan-
nel flow,” Dept. Mech. Eng., Univ. Toronto, 1963).
Secondary flow in chan-
nel,
L/D
= 280
. Corner bisector separates end cells in duct. No primary
data.
CLARK, J.A. 1968 A study of incompressible turbulent boundary
layers in channel flow. Trans. ASME (J. Basic Eng.)
D90
, 455–467 (see
also Ph. D. thesis, same title, Dept. Mech. Eng., Queen’s Univ., Belfast,
1966, or Rep. No. 253).
Mean velocity*, figures 4, 5, 6. Reynolds stresses*,
figures 8–14.
COMTE-BELLOT, G. 1963 Contribution a l’ ́etude de la turbulence
de conduite. Thesis, Univ. Grenoble (in English as “Turbulent flow between
two parallel walls,” Aeron. Res. Council, Gt. Britain, Rep. A.R.C. 31,609,
FM 4102, 1969).
Fully developed flow in plane channel at Re up to 230,000;
profiles of mean velocity, Reynolds normal and shearing stress; skewness and
flatness for streamwise component and its derivative; spectra of Reynolds
stresses; scales; space correlations. Th`eses present ́ees a la Facult ́e des Sci-
ences de l’Universit ́e de Grenoble, May 22, 1963. Mean velocity*, figures
4.2–4.7. Reynolds stresses*, figures 4.8–4.15.
COMTE-BELLOT, G. 1965
́
Ecoulement turbulent entre deux parois
parall`eles. Publications Scientifiques et Techniques du Minist`ere de l’Air,
No. 419 (see also thesis by COMTE-BELLOT, Contribution a l’ ́etude de la
turbulence de conduite, Univ. Grenoble, 1963).
AGARD Case PCH13
.
Flow development*, figures IV-8, IV-10. Mean velocity, figures IV-2-9.
Reynolds stresses, figures IV-8-15.
CORNISH, R.J. 1928 Flow in a pipe of rectangular cross section.
Proc. Roy. Soc. London
120A
, 691–700.
Aspect ratio about 3:1. Pressure
drop only. Friction coefficient*, figure 2. Data are tabulated
.
COX, R.N. 1957 Wall neighborhood measurements in turbulent bound-
ary layers using a hot wire anemometer. Gt. Britain, Aeron. Res. Council,
Rep. F.M. 2511.
Mean velocity*, figures 5, 11, 14. Reynolds stresses, figure
12. Max/mean velocity, figure 13. Friction coefficient*, figure 15 (tabu-
lated)
.
106
DAVIES, S.J. and WHITE, C.M. 1928 An experimental study of the
flow of water in pipes of rectangular section. Proc. Roy. Soc. London
119
,
92–107.
Friction coefficient*, figures 2, 3, table 1
.
DEAN, R.B. 1974 The application of a conditional sampling tech-
nique to the understanding of turbulent interacting shear layers in duct
flow. In
Proc. Fifth Australasian Conference on Hydraulics and Fluid Me-
chanics
, Vol. I, 340–351 (see also Ph. D. thesis, An investigation of shear
layer interaction in ducts and diffusers, Dept. Aeronautics, Imperial College,
Univ. London, 1974).
Intermittency, figure 4.
ECKELMANN, H. 1970 Experimentelle Untersuchungen in einer tur-
bulenten Kanalstr ̈omung mit starken viskosen Wandschichten. Mitt. M.-P.-
I. und AVA, Nr. 48.
Mean velocity, figure 10. Reynolds stresses, figures
13–16, 26, 27.
ECKELMANN, H. 1974 The structure of the viscous sublayer and
the adjacent wall region in a turbulent channel flow. J. Fluid Mech.
65
,
439–459.
Mean velocity*, figures 2, 3. Reynolds stresses*, figures 5, 13.
ECKELMANN, H. and REICHARDT, H. 1971 An experimental in-
vestigation in a turbulent channel flow with a thick viscous sublayer (hot-film
measurements in oil). In
Proc. Symposium on Turbulence in Liquids
, (J.L.
Zakin and G.K. Patterson, eds.), Univ. Missouri (Rolla), 144–148.
Mean
velocity, figure 2. Reynolds stresses, figures 3, 4, 10.
el TELBANY, M.M.M. and REYNOLDS, A.J. 1980 Velocity distri-
butions in plane turbulent channel flows. J. Fluid Mech.
100
, 1–29.
Reynolds
stresses*, figures 2–14.
el TELBANY, M.M.M. and REYNOLDS, A.J. 1981 Turbulence in
plane channel flows. J. Fluid Mech.
111
, 283–318.
Reynolds stresses*,
figure 2. Mean velocity*, figures 3, 4, 5. See also second paper.
GESSNER, F.B. and JONES, J.B. 1965 On some aspects of fully-
developed turbulent flow in rectangular channels. J. Fluid Mech.
23
, 689–
713 (see also Ph. D. thesis by GESSNER, Turbulence and mean-flow char-
acteristics of fully-developed flow in rectangular channels, Dept. Mech. Eng.,
Purdue Univ., 1964).
Mean velocity, figures 9, 10, 19–21. Surface friction*,
figures 26, 27. Also pipe flow*, figures D5–D13.
HALLEEN, R.M. and JOHNSTON, J.P. 1967 The influence of rota-
tion on flow in a long rectangular channel — an experimental study. Dept.
Mech. Eng., Stanford Univ., Rep. MD-18.
Mean velocity, figures 4.2, 4.3,
4.4, 4.5ab, 4.6, table D-3. Friction coefficient, figure 4.7, table D-1a, D-3
.
HARLEY, J.C., HUANG, Y., BAU, H.H., and ZEMEL, J.N. 1995
Gas flow in micro-channels. J. Fluid Mech.
284
, 257–274.
Geometry*,
figure 2. Velocity*, figures 4, 7.
107
HARTNETT, J.P., KOH, J.C.Y., and McCOMAS, S.T. 1962 A com-
parison of predicted and measured friction factors for turbulent flow through
rectangular ducts. Trans. ASME (J. Heat Transf.)
84C
, 82–88.
Friction
coefficient*, figures 7, 9, 10.
HOAGLAND, L.C. 1960 Fully developed turbulent flow in straight
rectangular ducts — secondary flow, its cause and effect on the primary
flow. Sc. D. thesis, Dept. Mech. Eng., MIT.
Mean velocity*, figures 13–26.
Friction*, figure 27. Some data are tabulated.
HUEBSCHER, R.G. 1947 Friction in round, square and rectangular
ducts. Heating, Piping and Air Conditioning
19
, 127–135.
Friction*, figure
3. Data are tabulated
HUNT, I.A. and JOUBERT, P.N. 1977 Turbulent flow in a rectan-
gular duct. In
Proc. Sixth Australasian Hydraulics and Fluid Mechanics
Conference
, Adelaide, Institution of Engineers, 403–406.
Geometry*, figure
1. Velocity*, figures 2, 3. Reynolds stresses*, figures 4, 5.
HUSSAIN, A.K.M.F. and REYNOLDS, W.C. 1975 Measurements in
fully developed turbulent channel flow. Trans. ASME (J. Fluids Eng.)
97I
,
568–578 (discussion 578–580).
Mean velocity*, figures 3, 5, 6, 7, 14. Friction
coefficient*, figure x. Reynolds stresses*, figures 8–11, 15, 16
.
JOHANSSON, A.V. and ALFREDSSON, P.H. 1982 On the structure
of turbulent channel flow. J. Fluid Mech.
122
, 295–314.
Mean velocity*,
figure 4. Reynolds stresses*, figure 5.
JOHANSSON, A.V. and ALFREDSSON, P.H. 1983 Effects of im-
perfect spatial resolution on measurements of wall-bounded turbulent shear
flows. J. Fluid Mech.
137
, 409–421.
Velocity*, figure 2. Reynolds stresses*,
figure 3. Effect of wire length*, figure 7.
JONES, O.C., Jr. 1976 An improvement in the correlation of tur-
bulent friction in rectangular ducts. Trans. ASME (J. Fluids Eng.)
98I
,
173–181.
Friction coefficient*, figures 1, 3, 4. Has new data.
KASAGI, N., HIRATA, M., and NISHINO, K. 1986 Streamwise pseudo-
vortical structures and associated vorticity in the near-wall region of a wall-
bounded turbulent shear flow. Exp. in Fluids
4
, 309–318.
Velocity*, fig-
ures 2, 14. Reynolds stresses*, figures 3, 7, 12, 13.
KLAGES, H. 1981 Experimentelle Untersuchung einer Sondeninter-
ferenz bei wandnahen Messungen in einer turbulenten Kanalstr ̈omung. Mitt.
M.-P.-I., G ̈ottingen, Nr. 71.
Mean velocity*, figure 3.1. Reynolds stresses*,
figures 3.4, 3.5.
KNIGHT, D.W. and PATEL, H.S. 1987 Boundary shear stress in
rectangular duct flow. In
Turbulence Measurements and Flow Modeling
(C.J.
Chen et al., eds.), Hemisphere, 707–716.
Wall stress*, figures 2, 4–6.
108
KREPLIN, H.-P. 1976 Experimentelle Untersuchungen der L ̈angschwan-
kungen und der wandparallelen Querschwankungen der Geschwindigkeit in
einer turbulenten Kanalstr ̈omung. Mitt. M.-P.-I. und AVA, G ́ottingen, Nr.
63.
Mean velocity*, figure 8. Reynolds stresses*, figures 9–12.
KREPLIN, H.-P. and ECKELMANN, H. 1979 Instantaneous direc-
tion of the velocity vector in a fully developed turbulent channel flow. Phys.
Fluids
22
, 1210–1211.
UV angle*, figure 5.
KREPLIN, H.-P. and ECKELMANN, H. 1979 Behavior of the three
fluctuating velocity components in the wall region of a turbulent channel
flow. Phys. Fluids
22
, 1233–1239.
Reynolds stresses*, figures 3-6.
KREPLIN, H.-P. and ECKELMANN, H. 1979 Propagation of pertur-
bations in the viscous sublayer and adjacent wall region. J. Fluid Mech.
95
,
305–322; see also Kreplin, H.-P., Experimentelle Untersuchungen..., Mitt.
MPI und AVA Nr. 63, 1976.
Heated surface elements plus hot-film probes.
Space-time correlations give sublayer celerity. Skewness, flatness of
u
′
,
w
′
with
V
-wire rather than
X
-wire. Pdf of
v/u, w/u
. Scale*, figures 9, 10.
KULICK, J.D., FESSLER, J.R., and EATON, J.K. 1994 Particle re-
sponse and turbulence modification in fully developed channel flow. J. Fluid
Mech.
277
, 109–134.
Mean velocity*, figure 5, Particle velocity*, figure 6.
LAUFER, J. 1950 Some recent measurements in a two-dimensional
turbulent channel. J. Aeron. Sci.
17
, 277–287. See also ”Investigation of
turbulent flow in a two-dimensional channel,” NACA TN 2123, 1950; TR
1053, 1951.
Mean velocity*, figures 6, 7, 8. Reynolds stresses*, figures 5, 9,
10, 14, 16–18.
LEA, F.C. and TADROS, A.G. 1931 Flow of water through a circular
tube with a central core and through rectangular tubes. Phil. Mag. (7)
11
,
1235–1247.
Friction coefficient in annulus. Friction*, figure 6.
LEUTHEUSSER, H.J. 1963 Turbulent flow in rectangular ducts. Proc.
ASCE (J. Hydr. Div., No. HY3)
89
, 1–19 (see also Ph. D. thesis, The ef-
fect of cross-section geometry upon the resistance to flow in conduits, Dept.
Mech. Eng., Univ. Toronto, 1961).
Friction coefficient*, figure 8. Mean
velocity*, figure 9. Data are tabulated in thesis.
LEUTHEUSSER, H.J. and CHOW, R.S. 1982 Characteristics of the
turbulent mean flow in a two-dimensional channel. In
Proc. 1982 Interna-
tional Symposium on Urban Hydrology, Hydraulics and Sediment Control
(H.J. Sterling, ed.), Univ. Kentucky, 431–436.
Mean velocity*, figures 4, 9,
10. Friction*, figure 7.
LIU, Z.-C., ADRIAN, R.J., and HANRATTY, T.J. 1994 Reynolds
number similarity of orthogonal decomposition of the outer layer of turbulent
wall flow. Phys. Fluids
6
, 2815–2819.
109
MELLING, A. and WHITELAW, J.H. 1976 Turbulent flow in a rect-
angular duct. J. Fluid Mech.
78
, 289–315.
Isotachs*, figures 4, 6, 7. Veloc-
ity*, figure 13.
NEZU, I., NAKAGAWA, H., and TOMINAGA, A. 1985 Secondary
currents in a straight channel flow and the relation to its aspect ratio. In
Turbulent Shear Flows 4
(L.J.S. Bradbury et al., eds.), Springer-Verlag, 246–
260.
Mean velocity*, figures 5, 8. Friction coefficient*, figure 9. Reynolds
stresses*, figures 13, 14. Secondary flow, figures 4, 6, 10.
NIEDERSCHULTE, M.A. 1989 Turbulent flow through a rectangu-
lar channel. Ph. D. thesis, Dept. Chem. Eng., Univ. Illinois.
Student of
Hanratty. Mean velocity*, figures 5.1, 5.39, 5.63. Reynolds stresses*, fig-
ures 5.4, 5.5, 5.14, 6.2, 6.19. Data are tabulated.
NIEDERSCHULTE, M.A., ADRIAN, R.J., and HANRATTY, T.J. 1990
Measurements of turbulent flow in a channel at low Reynolds numbers. Exp.
in Fluids
9
, 222–230.
Velocity*, figure 4. Reynolds stresses*, figures 3, 5,
7.
AGARD PCH 11
.
NISHINO, K. and KASAGI, N. 1989 Turbulence statistics measure-
ment in a two-dimensional channel flow using a three-dimensional particle
tracking velocimeter. In
Preprints, Seventh Symposium on Turbulent Shear
Flows
, Stanford Univ., Paper 22-1.
Mean velocity*, figure 4. Reynolds
stresses*, figures 5, 7, 8.
NISHINO, K., KASAGI, N., and HIRATA, M. 1988 Study of stream-
wise vortical structures in a two-dimensional turbulent channel flow by dig-
ital image processing. In
Transport Phenomena in Turbulent Flows
(M. Hi-
rata and N. Kasagi, eds.), Hemisphere, 157–170.
Reynolds stresses*, figure
5.
OKA, S. and KOSTIC, Z. 1972 Influence of wall proximity on hot-
wire velocity measurements. DISA Information No. 13, 29–33.
Mean veloc-
ity*, figure 3.
PATEL and HEAD 1969
PY, B. 1973 Etude tridimensionnelle de la sous-couche visqueuse dans
une veine rectangulaire par des mesures de transfert de matiere en paroi.
Int’l. J. Heat Mass Transf.
16
, 129–144.
Friction coefficient*, figure 3.
Reynolds stresses, figure 4.
RAJAEE, M., KARLSSON, S., and SIROVICH, L. 1995 On the streak
spacing and vortex roll size in a turbulent channel flow. Phys. Fluids
7
,
2439–2443.
Streak spacing*, figure 5.
REICHARDT, H. 1938 Messungen turbulenter Schwankungen. Natur-
wissenschaften
26
, 404–408.
See also Zamm
18
, 358, 1938, and following
paper by Motzfeld. Has
u
′
,
v
′
,
u
′
v
′
. Reynolds stresses*, figure 3.
110
REICHARDT, H. 1951 Vollst ̈andige Darstellung der turbulenten Ge-
schwindigkeitsverteilung in glatten Leitungen. Z. angew. Math. Mech.
31
,
208–219.
Single profile equation. New measurements in channel, especially
in sublayer but also in center of flow. Mean velocity*, figures 3, 6, 7.
REISCHMAN, M.M. and TIEDERMAN, W.G. 1975 Laser-Doppler
anemometer measurements in drag-reducing channel flows. J. Fluid Mech.
70
, 369–392 (see also TIEDERMAN, McLAUGHLIN, and REISCHMAN,
Individual realization laser Doppler technique applied to turbulent channel
flow, in
Proc. Third Symposium on Turbulence in Liquids
(G.K. Patterson
and J.L. Zakin, eds.), Univ. Missouri (Rolla), 172–184, 1973).
Mean veloc-
ity*, figures 9, 13. Friction coefficient*, figure 12.
SAVINO, J.M. and HILOVSKY, A.J. 1964 On the use of single total-
and static-pressure probes to measure the average mass velocity in thin rect-
angular channels. NASA TN D-2212.
Mean velocity*, figure 5. Max/mean
velocity*, figures 3, 4.
SCHLINGER, W.G. and SAGE, B.H. 1953 Velocity distribution be-
tween parallel plates. Ind. Eng. Chem.
45
, 2636–2639.
Profiles, tabulated.
Mean velocity*, figure 1.
SHAH, D.A., CHAMBERS, A.J., and ANTONIA, R.A. 1983 Reynolds
number dependence of a fully developed turbulent duct flow. In
Proc. 8th
Australasian Fluid Mechanics Conference, Vol. II
, Univ. Newcastle, 11A.13–
11A.16.
Reynolds stress*, figure 2.
SKINNER, G.T. 1951 Mean-speed measurements in two-dimensional,
incompressible, fully-developed turbulent channel flow. A. E. thesis, Calif.
Inst. Technology.
Mean velocity*, figures 10, 11.
SREENIVASAN, K.R. and ANTONIA, R.A. 1977 Properties of wall
shear stress fluctuations in a turbulent duct flow. Trans. ASME (J. Appl.
Mech.
44E
), 389–395.
Wall-stress fluctuations*, figure 1. PDF*, figure 2.
STEVENSON, M. 1958 Experiment on turbulent shear flows in smooth
two-dimensional tunnels. Inst. for Fluid Dynamics, Univ. Maryland, Tech.
Note BN-147.
Mean velocity*, figures 3–7, Friction coefficient, figures 8, 9.
TIEU, A.K., KOSASIH, P.B., MACKENZIE, M., and NG, S.C.D. 1989
Characteristics of viscous flows in narrow rectangular channel. In
Proc.
Tenth Australasian Fluid Mechanics Conference
, Univ. Melbourne, Vol. 1,
5.43–5.46.
Mean velocity*, figures 3, 4. Friction*, figure 5.
TRACY, H.J. 1965 Turbulent flow in a three-dimensional channel.
Proc. ASCE (J. Hydr. Div., No. HY6)
91
, 9–35 (see also Ph. D. thesis, same
title, Dept. Civil Eng., Georgia Inst. Technology, 1963).
Experimental survey
of mean velocity field in complete channel,
AR
= 6
.
4
. Lots of Reynolds
stresses. Mean velocity*, figure 10. Reynolds stresses*, figures 12, 14, 16,
111
17, 18. No tables.
VAN THINH, N. 1967 Sur la mesure de la vitesse dans un ́ecoulement
turbulent par an ́emom ́etrie `a fil chaud, au voisinage d’une paroi lisse. CR
Acad. Sci.
A264
, 1150–1152 (translated as “On the measurement of the
velocity in a turbulent flow near a smooth wall by means of a hot-wire
anemometer,” NASA TT-F-16696 (date?)); see also “On some measure-
ments made by means of a hot wire in a turbulent flow near a wall,” Disa
Information No. 7, 13–18, 1969.
Mean velocity, figure 2. Reynolds stresses,
figures 3–5.
VAN THINH, N. 1969 On some measurements made by means of a
hot wire in a turbulent flow near a wall. DISA Information, No. 7, 13–18.
Mean velocity, figure 7. Reynolds stresses*, figures 8, 9, 10.
WALKER, J.E., WHAN, G.A., and ROTHFUS, R.R. 1957 Fluid fric-
tion in non circular ducts. A.I.Ch.E.J.
3
, 484–489.
Experiments in pipe,
annulus, channel. Friction*, figure 1H. Data are available from American
Documentation Institute (see footnote p 488).
WATTENDORF, F.L. 1936 Investigations of velocity fluctuations in
a turbulent flow. J. Aeron. Sci.
3
, 200–202.
Reynolds stresses*, figure 5.
WEI, T. and WILLMARTH, W.W. 1989 Reynolds-number effects on
the structure of a turbulent channel flow. J. Fluid Mech.
204
, 57–95.
AGARD Case PCH12.
Mean velocity*, figure 13. Reynolds stresses*, figures
15, 16.
YANTA, W.J. 1973 Turbulence measurements with a laser Doppler
velocimeter. Naval Ordnance Lab., Rep. NOLTR 73-94.
Mean velocity*,
figures 28, 29. Reynolds stresses*, figures 30–32.
ZARBI, G. and REYNOLDS, A.J. 1991 Skin friction measurements
in turbulent flow by means of Preston tubes. Fluid Dynamics Research
7
,
151–164.
Mean velocity*, figure 7.
ZHU, Y. and ANTONIA, R.A. 1992 The measurement of
∂u/∂y
in
the wall region of a turbulent channel flow. In
Proc. 11th Australasian Fluid
Mechanics Conference, Vol. 2
, Univ. Tasmania, 695–698.
Friction*, figure
3.
ZHU, Y. and ANTONIA, R.A. 1995 Effect of wire separation of X-
probe measurements in a turbulent flow. J. Fluid Mech.
287
, 199–223.
112
Flow in rough channel
Major surveys or theory
Experimental data
ACHARYA, S., DUTTA, S., MYRUM, T.A., and BAKER, R.S. 1993
Periodically developed flow and heat transfer in a ribbed duct. Int’l. J.
Heat Mass Transf.
36
, 2069–2082.
Geometry*, figure 1. Reynolds stresses*,
figures 5, 6, 7. Temperature, figure 9.
AKAIKE, S., NAKANE, I., NEMOTO, M., and SAKAI, T. 1992 Flow
and friction loss in a two-dimensional channel with rough walls. In
Proc.
Eleventh Australasian Fluid Mechanics Conference
, Univ. Tasmania, Vol. II,
687–690.
Friction*, figures 4, 10. Mean velocity*, figures 5, 6.
FRITSCH, W. 1928 Der Einfluss der Wandrauhigkeit auf die turbu-
lente Geschwindigkeitsverteilung in Rinnen. Zeitschr. angew. Math. Mech.
8
, 199–216.
Mean velocity, figures 10, 11, 15. Friction coefficient*, figure
17, table I.
FUJITA, H., YOKOSAWA, H., HIROTA, M., and NAGATA, C. 1988
Fully developed turbulent flow and heat transfer in a square duct with two
roughened facing walls. Chem. Eng. Comm.
74
, 95–110.
Ercoftac 52. Ge-
ometry*, figure 1. Velocity contours*, figures 2, 5.
AGARD CMP00
.
HAN, J.C., PARK, J.S., and LEI, C.K. 1984 Heat transfer enhance-
ment in channels with turbulence promoters. ASME Paper 84-WA/HT-72.
Geometry*, figure 2. Friction*, heat transfer*, figures 3, 4, 5, 7–10.
HSIEH, S.-S. and HONG, Y.-J. 1989 Separating flow over repeated
surface-mounted ribs in a square duct. AIAA J.
27
, 770–776.
Mean veloc-
ity*, Reynolds stresses*, figures 10-13.
JACOBS, W. 1939 Umformung eines turbulenten Geschwindigkeit-
sprofiles. Zeitschr. f. angew. Math. u. Mech.
19
, 87–100.
Mean velocity*,
figures 2, 8. Reynolds stresses*, figures 4, 9.
MIYATA, M. and VASANTA RAM, V. 1980 A study of the scales
involved in the adjustment of turbulent channel flow to a step change in wall
roughness. In
Proc. First Asian Congress of Fluid Mechanics
, Bangalore,
Paper A01.
Mean velocity*, figure 1. Reynolds stresses*, figures 3, 4.
MIYATA, M., ISHIDA, N., and NAKAMURA, I. 1987 Relaxation of
asymmetric 2-D channel flow into a symmetric state caused by a step change
in wall roughness. In
Preprints, Sixth Symposium on Turbulent Shear Flows
,
Toulouse, Paper 2.3.
Mean velocity*, figures 2, 14. Reynolds stresses*,
figures 3–5.
113
SCHLICHTING, H. 1936 Ein neues Verfahren zur Messung des Str ̈om-
ungswiderstandes von rauhen W ̈anden. Werft, Reederei, Hafen
17
, 99–102.
Regular roughness. Geometry*, figures 1, 3, 4.
SCHLICHTING, H. 1936 Experimentelle Untersuchungen zum Rauhig-
keitsproblem. Ing.-Arch.
7
, 1–34 (in English as “Experimental investigation
of the problem of surface roughness,” NACA TM 823, 1937; abridged trans-
lation as “Experimental investigation of the roughness problem,” Proc. Am.
Soc. Civil Engineers
63
, No. 9, 16–31, 1937).
Channel flow with various
roughnesses, usually hexagonal pattern of well-separated spheres. Secondary
flow. Profiles of mean velocity. Concept of equivalent sand roughness. See
also Proc. Soc. Mech. Eng. USA, 1936? Werft, Reederei, Hafen
99
, 1936?
Jb der Schiffbautechn Ges 418, 1936? Mean velocity*, figures 7, 10–15.
Main parameters are tabulated
.
SCHULTZ-GRUNOW, F. 1938 Der hydraulische Reibungswiderstand
von Platten mit m ̈assig rauher Oberfl ̈achen, insbesondere von Schiffsoberfl ̈achen.
Jahrbuch der Schiffbautechnischen Gesellschaft
39
, 176–198 (discussion 198–
199).
Geometry*, figure 1. Velocity*, figures 5a-5d.
STEVENSON, M. 1959 Roughness effect and correlation of two-dimen-
sional wire roughness in turbulent shear flow. Univ. Maryland, Inst. Fluid
Dynamics and Appl. Math., Tech. Note BN-181.
Mean velocity, figure 3.
TRIPP, W. 1936 Friction losses in an artificially roughened rectangu-
lar channel. J. Aeron. Sci.
4
, 10–11.
Friction coefficient*, figure 1.
VASANTA RAM, V. and von SCHULZ-HAUSMANN, R. 1977 A study
of the relaxation process in turbulent channel flow. In
Preprints, Sympo-
sium on Turbulent Shear Flows
, Pennsylvania State Univ., 8.19–8.27.
Step
change in wall roughness. Pressure*, figure 3.
WILKIE, D., COWIN, M., BURNETT, P., and BURGOYNE, T. 1967
Friction factor measurements in a rectangular channel with walls of identical
and non-identical roughness. Int’l. J. Heat Mass Transfer
10
, 611–621.
Mean
velocity*, figure 3. Friction coefficient*, figure 5.
Heat transfer in channel flow
Major surveys or theory
KASAGI, N., OHTSUBO, Y., and TOMITA, Y. 1991 Direct numer-
ical simulation of the low Prandtl number scalar field in a two-dimensional
turbulent channel flow. In
Preprints, Eighth Symposium on Turbulent Shear
Flows,
Munich, Vol. 2, Poster paper II-11.
114
RUTLEDGE, J. and SLEICHER, C.A. 1993 Direct simulation of tur-
bulent flow at heat transfer in a channel. Part 1. Smooth walls. Int’l. J. for
Numerical Methods in Fluids
16
, 1051–1078.
WANG, W.-P. and PLETCHER, R.H. 1996 On the large eddy simu-
lation of a turbulent channel flow with significant heat transfer. Phys. Fluids
8
, 3354–3366.
Experimental data
BYRNE, J., HATTON, A.P., and MARRIOTT, P.G. 1970 Turbu-
lent flow and heat transfer in the entrance region of a parallel wall passage.
Proc. Inst’n. Mech. Engrs.
184
, 697–710.
Mean velocity*, figures 6, 8. Fric-
tion coefficient, figures 5, 9–11. Stanton number, figures 13–15. Centerline
velocity is not monotonic.
CORCORAN, W.H., PAGE, F. Jr., SCHLINGER, W.G., and SAGE,
B.H. 1952 Temperature gradients in turbulent gas streams: methods and
apparatus for flow between parallel plates. Ind. Eng. Chem.
44
, 410–419.
Mean velocity*, figures 13, 14, 16, table II
.
HAN, J.C., PARK, J.S., and IBRAHIM, M.Y. 1986 Measurement of
heat transfer and pressure drop in rectangular channels with turbulence
promoters. NASA CR 4015.
Nusselt number*, figures 10, 13. Friction*,
figure 13. Many plots of
T
w
(
x
)
. Data are tabulated
.
WASHINGTON, L. and MARKS, W.M. 1937 Heat transfer and pres-
sure drop in rectangular air passages. Ind. Eng. Chem.
29
, 337–345.
Friction
coefficient*, figures 3, 4, 5, table III. See thesis by Marks
.
ZHU, Y., ANTONIA, R.A., and KIM, J.
1993 Velocity and temper-
ature derivative measurements in the near-wall region of a turbulent duct
flow. In
Near-Wall Turbulent Flows
(R.M.C. So, C.G. Speziale, and B.E.
Launder, eds.), Elsevier, 549–561.
Miscellaneous channel flow
Major surveys or theory
ALLEBORN, N., NANDAKUMAR, K., RASZILLIER, H., and DURST,
F. 1997 Further contributions on the two-dimensional flow in a sudden
expansion. J. Fluid Mech.
330
, 169–188.
ANDERSSON, H.I., BECH, K.H., and KRISTOFFERSEN, R. 1992
On diffusion of turbulent energy in plane Couette flow. Proc. Roy. Soc.
London
A438
, 477–484.
115
BECH, K.H. ANDERSSON, H.I., and KRISTOFFERSEN, R. 1993
Inner-layer velocity statistics in plane Couette flow. In
Near-Wall Turbulent
Flows
(R.M.C. So, C.G. Speziale, and B.E. Launder, eds.), Elsevier, 317–
326.
BINDER, G. and KUENY, J.L. 1982 Measurements of the periodic
velocity oscillations near the wall in unsteady turbulent channel flow. In
Turbulent Shear Flows 3
(L.J.S. Bradbury et al., eds.), Springer-Verlag,
6–17.
BIRINGEN, S. and MAESTRELLO, L. 1984 Development of spot-
like turbulence in plane channel flow. Phys. Fluids
27
, 318–321.
Numerical.
COLEMAN, G.N. 1993 Direct simulation of isothermal-wall super-
sonic channel flow. In
Annual Research Briefs 1993,
Center for Turbulence
Research, NASA Ames Research Center and Stanford University, 313–328.
Von Driest*, figure 12.
COLEMAN, G.N., KIM, J., and MOSER, R.D. 1995 A numerical
study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech.
305
, 159–183.
Velocity*, figure 17.
GAVRILAKIS, S. 1992 Numerical simulation of low-Reynolds-number
turbulent flow through a straight square duct. J. Fluid Mech.
244
, 101–
129.
Velocity*, figures 4, 5, 6. Wall stress*, figure 7. Reynolds stresses*,
figures 10, 11.
GESSNER, F.B. 1981 Corner flow (secondary flow of the second kind).
In
Proc. 1980–81 AFOSR-HTTM-Stanford Conference on Complex Turbu-
lent Flows
, Stanford University, Vol. 1, 182–212.
Longer version is Gessner
(1979).
GESSNER, F.B. and EMERY, A.F. 1981 The numerical prediction
of developing turbulent flow in rectangular ducts. Trans. ASME (J. Fluids
Eng.)
103
, 445–453 (discussion, 454–455).
See for cited experiments. Wall
stress*, figure 3. Friction*, figure 4. Isovels*, figure 10a.
HAMILTON, J.M., KIM, J., and WALEFFE, F. 1995 Regeneration
mechanisms of near-wall turbulence structures. J. Fluid Mech.
287
, 317–
348.
HENNINGSON, D.S. and KIM, J. 1991 On turbulent spots in plane
Poiseuille flow. J. Fluid Mech.
228
, 183–205.
HORIUTI, K. 1992 Assessment of two-equation models of turbulent
passive-scalar diffusion in channel flow. J. Fluid Mech.
238
, 405–433.
Jimen-
ez collection No. 44.
HUANG, P.G., COLEMAN, G.N., and BRADSHAW, P. 1995 Com-
pressible turbulent channel flows: DNS results and modelling. J. Fluid
Mech.
305
, 185–218.
116
HWANG, C.-L. and FAN, L.-T. 1961 A finite difference analysis of
laminar magneto-hydrodynamic flow in the entrance region of a flat rectan-
gular duct. Appl. Sci. Res.
B10
, 329–343.
Velocity*, figures 3a, 4.
KIM, J., MOIN, P., and CHOI, H. 1989 Active turbulence control
in wallbounded flow using direct numerical simulations. In
Structure of
Turbulence and Drag Reduction
(A. Gyr, ed.), Springer-Verlag, 418–425.
KOMMINAHO, J., LUNDBLADH, A., and JOHANSSON, A.V. 1996
Very large structures in plane turbulent Couette flow. J. Fluid Mech.
320
,
259–285.
KOSASIH, P.B., TIEU, A.K., and MACKENZIE, M.R. 1992 Reynolds
stress expression in a superlaminar lubrication film. In
Proc. Eleventh Aus-
tralasian Fluid Mechanics Conference
, Univ. Tasmania, Vol. II, 909–912.
LEE, M.J. 1990 Direct numerical simulation of turbulent plane Cou-
ette flow. In
Annual Research Briefs–1990
, Center for Turbulence Research,
NASA Ames Research Center and Stanford Univ., 133–143.
LEE, M.J. and KIM, J. 1991 The structure of turbulence in a sim-
ulated plane Couette flow. In
Preprints, Eighth Symposium on Turbulent
Shear Flows
, Technical University of Munich, Vol. 1, Paper 5-3.
LUNDBLADH, A. and JOHANSSON, A.V. 1991 Direct simulation
of the development of turbulent spots in plane Couette flow. In
Advances in
Turbulence 3
(A.V. Johansson and P.H. Alfredsson, eds.), Springer-Verlag,
189–196.
MANKBADI, R.R. 1988 Fully developed pulsating turbulent flows.
In
Preprints, AIAA/ASME/SIAM/APS First National Fluid Dynamics Con-
gress
, AIAA, Part 1, 376–383 (AIAA Paper 88-3672).
MITUNAGA, A. and HIROSE, T. 1977 A contribution to the Coanda
effects. Bull. JSME
20
, 977–982.
MOIN, P. 1991 Advances and some novel experiments using direct
numerical simulation of turbulence. In
The Global Geometry of Turbulence
(J. Jimenez, ed.), Plenum, 123–132.
Reynolds stresses*, figure 1.
ROIDT, M. and CESS, R.D. 1962 An approximate analysis of lam-
inar magnetohydrodynamic flow in the entrance region of a flat duct. J.
Appl. Mech.
29E
, 171–176.
Velocity*, figure 10.
SUMITANI, Y. and KASAGI, N. 1995 Direct numerical simulation of
turbulent transport with uniform wall injection and suction. AIAA J.
33
,
1220–1228.
Velocity*, figures 3, 5. Friction*, figure 4. Reynolds stresses*,
figures 6, 7.
SURESHKUMAR, R., BERIS, A.N., and HANDLER, R.A. 1997 Di-
rect numerical simulation of the turbulent channel flow of a polymer solution.
Phys. Fluids
9
, 743–755.
117
TATSUMI, T. and YOSHIMURA, T. 1991 Instability of the rectan-
gular duct flow and generation of the secondary flow. In
Turbulence and
Coherent Structures
(O. M ́etais and M. Lesieur, eds.), Kluwer Academic
Publishers, 267–281.
Banana curves*, figure 4.
VAN DYKE, M. 1970 Entry flow in a channel. J. Fluid Mech.
44
,
813–823.
WILSON, S.D.R. 1971 Entry flow in a channel. Part 2. J. Fluid
Mech.
46
, 787–799.
Experimental data
ABODY-ANDERLIK, E. 1947 Investigation of turbulence in parallel,
convergent and divergent channels. Muegyetemi Kozlemenyek
2
, 94–109.
Decay of grid turbulence; correlations, scale; effect of converging or diverging
stream. Kovasnay worked on this. Publication of the Technical University,
Budapest.
AHMED, S. and BRUNDRETT, E. 1971 Turbulent flow in non-circular
ducts. Part 1. Mean flow properties in the developing region of a square
duct. Int’l. J. Heat Mass Transf.
14
, 365–375.
Pressure*, figures 3a, 3b.
This is thesis by Ahmed, U. Waterloo, 1970.
AYDIN, M. and LEUTHEUSSER, H.J. 1979 Novel experimental fa-
cility for the study of plane Couette flow. Rev. Sci. Instr.
50
, 1362–1366.
Mean velocity*, figure 8.
AYDIN, E.M. and LEUTHEUSSER, H.J. 1987 Experimental inves-
tigation of turbulent plane-Couette flow. In
Forum on Turbulent Flows—
1987
(W.W. Bower, ed.), FED Vol. 51, ASME, 51–54.
Velocity*, figures 2,
3. Reynolds stress*, figure 4.
BADRI NARAYANAN, M.A. 1965 An experimental study of the de-
cay of non-isotropic turbulence in two-dimensional channel flow. Dept.
Aeron. Eng., Indian Inst. Science, Rep. AE66FM9
Mean velocity, figures
3, 4. Reynolds stresses, figures 2, 6-15. Friction coefficient, figure 5.
BADRI NARAYANAN, M.A. 1968 An experimental study of reverse
transition in two-dimensional channel flow. J. Fluid Mech.
31
, 609–623.
Geometry*, figure 1. Velocity*, figure 2. Friction*, figure 3, Reynolds
stresses*, figures 4–10.
BADRI NARAYANAN, M.A. and NARAYANA, T. 1967 Some stud-
ies on transition from laminar to turbulent flow in a two-dimensional chan-
nel. ZaMP
18
, 642–650.
Celerity*, figure 4. Intermittency*, figure 8.
BEAVERS, G.S., SPARROW, E.M., and MAGNUSON, R.A. 1970
Experiments on hydrodynamically developing flow in rectangular ducts of
118
arbitrary aaspect ratio. Int’l. J. Heat Mass Transf.
13
, 689–702.
Closely
spaced measurements of
p
(
x
)
, with
m
correction. Pressure development*,
figure 4.
BECH, K.H., TILLMARK, N., ALFREDSSON, P.H. and ANDERS-
SON, H.I. 1995 An investigation of turbulent plane Couette flow at low
Reynolds numbers. J. Fluid Mech.
286
, 291–325.
Jimenez collection
No. 71.
Simulations*, table 1. Geometry*, figures 3a, 3b. Velocity*, fig-
ure 4. Reynolds stresses*, figure 5.
BETTS, C. and HATTON, A.P. 1971 The enhancement of turbulent
diffusion in a parallel-wall duct. Proc. Instn. Mech. Engrs.
185
, 825–835.
Profiles of mean velocity. Otherwise flame holders or grids. Friction*, figure
4. Mean velocity*, figure 5.
BIRINGEN, S. 1987 Three-dimensional vortical structures of transi-
tion in plane channel flow. Phys. Fluids
30
, 3359–3368.
BRESLIN, J.A. and EMRICH, R.J. 1967 Precision measurement of
parabolic profile for laminar flow of air between parallel plates. Phys. Fluids
10
, 2289–2292. (See also Ph. D. thesis by BRESLIN, An experimental inves-
tigation of laminar-turbulent transition in flow through a rectangular pipe.
Dept. Physics, Lehigh Univ., Tech. Rep. No. 22, 1970.)
Tracer particles at
Re
= 15
. Transition*, figures 11–16. Intermittency*, figure 22. Velocity*,
figure 28.
CARLSON, D.R., WIDNALL, S.E., and PEETERS, M.F. 1982 A
flow-visualization study of transition in plane Poiseuille flow. J. Fluid Mech.
121
, 487–505.
Good flow viz. Celerity*, figure 11.
CHAMBERS, A.J., ANTONIA, R.A., and SOKOLOV, M. 1985 Evo-
lution of a turbulent spot in the entrance region of a duct. PCH Physico-
chemical Hydrodynamics
6
, 751-758.
CHEUNG, A.C. and THORPE, J.F. 1978 An experimental and nu-
merical study of the combined Couette and Poiseuille flow. In
Developments
in Theoretical and Applied Mechanics
(Proc. Ninth Southeastern Confer-
ence), Nashville, 103-112 (see also Ph. D. thesis by CHEUNG, A study of
plane turbulent Couette flow coupled with pressure gradient, Dept. Mech.
Eng., Univ. Cincinnati, 1976).
Mean velocity, figures 3, 4, 6-8. No tables.
DAUCHOT, O. and DAVIAUD, F. 1995 Finite amplitude perturba-
tion and spots growth mechanism in plane Couette flow. Phys. Fluids
7
,
335–343.
Geometry*, figure 1.
DAVIS, D.O. and GESSNER, F.B. 1992 Experimental investigation
of turbulent flow through a circular-to-rectangular transition duct. AIAA
J.
30
, 367–375.
Jimenez collection No. 07.
Geometry*, figures 1, 2. Ve-
locity*, figures 3, 16. Isotachs*, figure 6. Friction*, figure 15.
119
D
̈
ONCH, F. 1926 Divergente und konvergente turbulente Str ̈omungen
mit kleinen
̈
Offnungswinkeln. Forschungsarbeiten auf dem Gebiete des In-
genieurwesens, Verein deutscher Ingenieure, Heft 282.
Mean velocity, figures
9, 28, table 20
.
DONOHUE, G.L.C. 1972 The effect of a dilute, drag-reducing macro-
molecular solution on the turbulent bursting process. Ph. D. thesis, Okla-
homa State University.
Student of Tiederman.
DONOHUE, G.L., TIEDERMAN, W.G., and REISCHMAN, M.M. 1972
Flow visualization of the near-wall region in a drag-reducing channel flow.
J. Fluid Mech.
56
, 559–575.
Effect of polymer on streak spacing, burst fre-
quency (see Table 2, Figs. 5–8). Dye injection; movies. Stress at wall by
du/dy
using laser anemometer. Donohue thesis is Oklahoma State Univer-
sity, 1972 “The effect of a dilute, drag-reducing macromolecular solution
on the turbulent bursting process”. Friction*, figure 3. Streak spacing*,
figures 6, 7.
DURST, F. and KELLER, R.J. 1974 Structural changes in turbulent
conduit flows by polymer additives. In
Proc. Fifth Australasian Conference
on Hydraulics and Fluid Mechanics
, Vol. I, Christchurch, 385–395.
Confused
melange of data; includes mean velocity profiles in channel flow. Friction
coefficient*, figure 4. Mean velocity*, figures 7-10.
DURST, F., PEREIRA, J.C.F., and TROPEA, C. 1993 The plane
symmetric sudden-expansion flow at low Reynolds numbers. J. Fluid Mech.
248
, 567–581.
Flow viz*, figures 4, 5. Attachment*, figure 6. Velocity*,
figure 9.
ECKERT, E.R.G., DIAGUILA, A.J., and DONOUGHE, P.L. 1955
Experiments on turbulent flow through channels having porous rough sur-
faces with or without air injection. NACA TN 3339.
Mean velocity*, figures
6–13. Friction*, figures 14, 15.
ELLIS, L.B. and JOUBERT, P.N. 1974 Turbulent shear flow in a
curved duct. J. Fluid Mech.
62
, 65–84.
Geometry*, figure 2. Pressure*,
figure 4. Velocity*, figures 6, 14.
ELRICK, R.M. II 1963 Study of the wall boundary condition and
microscopic fluctuations in laminar pipe flow by tracer photography. Dept.
Physics, Lehigh Univ., Tech. Rep. No. 17.
This is thesis. Velocity*, figures
12–16.
FEARN, R.M., MULLIN, T., and CLIFFE, K.A. 1990 Nonlinear flow
phenomena in a symmetric sudden expansion. J. Fluid Mech.
211
, 595–608.
Laminar flow in channel. Upstream asymmetry observed. Mean velocity*,
figures 2, 4, 7, 10.
FELISS, N.A., POTTER, M.C., and SMITH, M.C. 1977 An experi-
120
mental investigation of incompressible channel flow near transition. Trans.
ASME (J. Fluids Eng.)
99I
, 693–698 (discussion, 698).
Strictly local insta-
bility as flow rate changes. Signature*, figures 9, 10.
GAMPERT, B. and YONG, C.K. 1989 The influence of polymer ad-
ditives on the coherent structure of turbulent channel flow. In
Structure
of Turbulence and Drag Reduction
(A. Gyr, ed.), Springer-Verlag, 223–232.
Velocity*, figure 1. Reynolds stress*, figure 2.
GESSNER, F.B., PO, J.K., and EMERY, A.F. 1979 Measurements
of developing turbulent flow in a square duct. In
Turbulent Shear Flows 1
(F. Durst et al., eds.), Springer-Verlag, 119–136.
Geometry*, figures 1, 2.
Velocity*, figures 3–5.
GOLDSTEIN, R.J. and KREID, D.K. 1966 Measurement of laminar
flow development in a square duct using a laser-Doppler flowmeter. Dept.
Mech. Eng., Univ. Minnesota, Rep. HTL-TR No. 69.
Velocity*, figures 6,
7. Centerline velocity*, figure 8.
GOLDSTEIN, R.J. and KREID, D.K. 1967 Measurement of laminar
flow development in a square duct using a laser-Doppler flowmeter. Trans.
ASME (J. Appl. Mech.
34E
), 813–818.
Square duct. Velocity*, figures 5, 6,
7.
HANJALIC, K. and LAUNDER, B.E. 1972 Fully developed asym-
metric flow in a plane channel. J. Fluid Mech.
51
, 301-355.
Friction coeffi-
cient*, figure 2. Mean velocity*, figures 3, 4, 5. Reynolds stresses*, figures
7, 8, 9, 31.
HARDER, K.J. and TIEDERMAN, W.G. 1991 Drag reduction and
turbulent structure in two-dimensional channel flows. Phil. Trans. Royal
Soc. London
A336
, 19–34.
Velocity*, figure 6. Reynolds stress*, figures 4,
6, 8.
HUEY, L.J. and WILLIAMSON, J.W. 1974 Plane turbulent Couette
flow with zero net flow. Trans. ASME (J. Appl. Mech.
41E
), 885–890.
Geometry*, figure 4. Velocity*, figures 7, 8. Friction*, figure 9.
HUNT, I.A. and JOUBERT, P.N. 1979 Effects of small streamline
curvature on turbulent duct flow. J. Fluid Mech.
91
, 633–659.
End effects*,
figure 3b. Velocity*, figures 4, 10. Reynolds stresses*, figures 11, 12, 13,
14, 16. Spectra.
IRVINE, T.F. Jr. and ECKERT, E.R.G. 1958 Comparison of experi-
mental information and analytical prediction for laminar entrance pressure
drop in ducts with rectangular and triangular cross sections. Trans. ASME
80
(J. Appl. Mech.
25
), 288–290.
Geometry*, figure 1. Pressure correction*,
figure 2b.
KAO, T.W. and PARK, C. 1970 Experimental investigations of the
121
stability of channel flows. Part 1. Flow of a single liquid in a rectangular
channel. J. Fluid Mech.
43
, 145–164.
Aspect ratio 8:1. Neutral stability
boundary. Waves followed to breakdown, but no data. Conclusion is that
finite aspect ratio decreases stability. Velocity*, figure 3. Banana curve*,
figures 15, 17.
KARNITZ, M.A., POTTER, M.C., and SMITH, M.C. 1974 An ex-
perimental investigation of transition of a plane Poiseuille flow. Trans.
ASME (J. Fluids Eng.)
96I
, 384–388.
Puff signature*, figure 5.
KASTRINAKIS, E.G. 1977 Experimentelle Untersuchungen der L ̈angs-
schwankungen des Geschwindigkeitsvektors und der Rotation des Geschwin-
digkeitsvektors in einer ausgebildeten turbulenten Kanalstr ̈omung. Diss.,
Georg-August-Universit ̈at zu G ̈ottingen, or Max-Planck-Institut f ̈ur Stro ̈m-
ungsforschung, Ber. 5/1977.
This is thesis. Mean velocity*, figures 2.4, 4.3,
4.4. Reynolds stresses*, figure 4.5, 4.6. Probe error*, figure C1.
KLINGMANN, B. and ALFREDSSON, P.H. 1990 On the develop-
ment of turbulent spots in plane Poiseuille flow. In
Laminar-Turbulent
Transition
(D. Arnal and R. Michel, eds.), Springer, 43–52.
Signature*,
figure 3.
KLINGMANN, B.G.B. and ALFREDSSON, P.H. 1991 Experiments
on the evolution of a point-like disturbance in plane Poiseuille flow into a
turbulent spot. In
Advances in Turbulence 3
(A.V. Johansson and P.H.
Alfredsson, eds.), Springer-Verlag, 182–188.
KOSASIH, P.B., TIEU, A.K., and MACKENZIE, M.R. 1992 Rey-
nolds stress expression in a superlaminar lubrication film. In
Proc. 11th
Australasian Fluid Mechanics Conference, Vol. 2
, Univ. Tasmania, 909–912.
Velocity*, figures 1, 9.
KOZLOV, V.V. and RAMAZANOV, M.P. 1984 Development of finite-
amplitude disturbances in Poiseuille flow. J. Fluid Mech.
147
, 149–157.
Channel flow, mostly flow viz of breakdown of small two-dimensional distur-
bances. Results like those of Saric.
LOGAN 1973
LUCHIK, T.S. and TIEDERMAN, W.G. 1988 Turbulent structure in
low-concentration drag-reducting channel flows. J. Fluid Mech.
190
, 241–
263.
Mean velocity*, figure 1. Reynolds stresses*, figures 2–6.
LUCHIK, T.S., WALKER, D.T., and TIEDERMAN, W.G. 1985 In-
jection of drag reducing additives into turbulent water flows: two-component
velocity measurements and mixing length model predictions. School of
Mech. Eng., Purdue Univ., Rep. PME-FM-85-1.
Channel flow. Velocity*,
figures 3.1, 3.3–3.5. Reynolds stresses*, figures 3.2, 3.12, others. No tables.
MILLIAT, J.-P. 1957
́
Etude exp ́erimentale de l’ ́ecoulement turbulent
122
dans un divergent bidimensionnel parcouru par de l’air. Pub. Sci. et Techn.
du Min. de l’Air, No. 335.
Friction coefficient, figure 24. Mean velocity,
figures 25, 9-23. Reynolds stresses, figures 27-42.
MIYAKE, Y. and NAKASHIMA, M. 1993 Measurement of a turbu-
lent flow in a wavy channel. In
Near-Wall Turbulent Flows
(R.M.C. So, C.G.
Speziale, and B.E. Launder, eds.), Elsevier, 447–456.
Geometry*, figure 1.
Pressure*, figure 2. Velocity*, figure 4.
NAKABAYASHI, K. and KITOH, O. 1996 Low Reynolds number
fully developed two-dimensional turbulent channel flow with system rota-
tion. J. Fluid Mech.
315
, 1–29.
Experimental and numerical. Geometry*,
figure 4. Velocity*, figures 5, 13, 16, 18. Reynolds stress*, figure 6. Condi-
tions*, table 1. Friction*, figure 12.
NIKURADSE, J. 1929 Untersuchungen ̈uber die Str ̈omungen des Was-
sers in Konvergenten und divergenten Kan ̈alen. Forschungsarbeiten auf dem
Gebiete des Ingenieurwesens, Verein deutscher Ingenieure, Heft 289.
Mean
velocity, figure 9, tables 4, 5, 6
.
NISHIOKA, M. 1985 Laminar-turbulent transition in plane Poiseuille
flow. In
Recent Studies on Turbulent Phenomena
(T. Tatsumi, H. Maruo,
and H. Takami, eds.), Association for Science Documents Information, 193–
203.
NISHIOKA, M. and ASAI, M. 1985 Some observations of the sub-
critical transition in plane Poiseuille flow. J. Fluid Mech.
150
, 441–450.
Velocity*, figure 5.
NISHIOKA, M., IIDA, S., and ICHIKAWA, y. 1975 An experimental
investigation of the stability of plane Poiseuille flow. J. Fluid Mech.
72
,
731–751, 4 plates.
Puffs in channel flow. Stability*, figure 11.
NISHIOKA, M., ASAI, M., and IIDA, S. 1980 An experimental in-
vestigation of the secondary instability. In
Proc. IUTAM Symposium on
Laminar-turbulent Transition
(R. Eppler and H. Fasel, eds.), Springer-Verlag,
37–46.
NISHIOKA, M., ASAI, M., and IIDA, S. 1981 Wall phenomena in the
final stage of transition to turbulence. In
Proc. Symposium on Transition
and Turbulence
(R.E. Meyer, ed.), Academic Press, 113–126.
OLDAKER, D.K. and TIEDERMAN, W.G. 1977 Spatial structure
of the viscous sublayer in drag-reducing channel flows. Phys. Fluids
20
,
No. 10, Part II, S133–S144.
Friction*, figure 2. Streak spacing*, figures 4,
5, 7.
PRABHU, A., VASUDEVAN, B., KAILASNATH, P., KULKARNI, R.S.,
and NARASIMHA, R. 1988 Blade manipulators in channel flow. In
Tur-
bulence Management and Relaminarisation
(H.W. Liepmann and R. Nara-
123
simha, eds.), Springer-Verlag, 97–107.
Mean velocity*, figures 4, 8.
RAMJEE, V., BADRI NARAYANAN, M.A., and NARASIMHA, R.
1972 Effect of contraction on turbulent channel flow. Z. angew. Math.
Phys.
23
, 105-114.
Mean velocity*, figures 3, 4. Reynolds stresses, figures
6-8.
REICHARDT, H. 1956
̈
Uber die Geschwindigkeitsverteilung in einer
geradlinigen turbulenten Couettestr ̈omung. Z. angew. Math. Mech., Son-
derheft, S26-S29.
See also Mitt. No. 9, M-P-I, 1954. Mean velocity*, figure
1.
REYNOLDS, A.J. and WIEGHARDT, K. 1995 Another look at uni-
directional turbulent flow. J. Fluid Mech.
287
, 75–92.
Velocity*, figures 1,
3, 4, 8. Extremum*, figure 9.
RICHARDSON, E.G. and TYLER, E. 1929 The transverse velocity
gradient near the mouths of pipes in which an alternating or continuous flow
of air is established. Proc. Phys. Soc. London
42
, 1–15.
Early hot wire work
in short square pipe.
ROBERTSON, J.M. 1959 A study of turbulent plane Couette flow.
Dept. Theor. Appl. Mech., Univ. Illinois, T&AM Rep. No. 141.
Friction,
figure 10 (floating element).
ROBERTSON, J.M. and JOHNSON, H.F. 1970 Turbulence structure
in plane Couette flow. Proc. ASCE (J. Eng. Mech. Div., No. EM6)
96
, 1171-
1182.
See MS thesis by Johnson, U. Ullinois, Dept. Theo. Appl. Mech., 1965.
Friction*, figure 1. Mean velocity, Reynolds stresses*, figures 3, 4.
RUDD, M.J. 1972 Velocity measurements made with a laser doppler-
meter on the turbulent pipe flow of a dilute polymer solution. J. Fluid Mech.
51
, 673-685.
Square pipe. Friction coefficient*, figure 4. Mean velocity*,
figure 9. Reynolds stresses, figures 6, 7, 10.
RUETENIK, J.R. and CORRSIN, S. 1955 Equilibrium turbulent flow
in a slightly divergent channel. In
50 Jahre Grenzschichtforschung
(H. G ̈ortler
and W. Tollmien, eds.), Vieweg, 446–459.
Half-angle is
1
◦
; no free stream.
Mean velocity, figures 1, 9. Reynolds stresses*, figures 2, 4. Energy balance.
See thesis by RUETENIK.
SANDBORN, V.A. 1976 Effect of velocity gradients on measurements
of turbulent shear stress. AIAA J.
14
, 400-402.
Reynolds stresses, figures
1, 3.
SOKOLOV, M., ANTONIA, R.A., and CHAMBERS, A.J. 1986 A
turbulent spot in a two-dimensional duct. J. Fluid Mech.
166
, 211–225.
Celerity*, figure 8.
STANISLAS, J.-C.M., CORENFLOS, K., and DUPONT, P. 1992
́
Etude
experimentale d’un ́ecoulement turbulent de Couette avec gradient de pres-
124
sion. Comparaison avec une simulation num’erique directe de la turbulence.
C.R. Acad. Sci. Paris
315
, 1171–1173.
Jimenez collection No. 36
.
Ge-
ometry*, figure 1. Reynolds stresses*, figures 3, 4.
SUZULI, Y. and KASAGI, N. 1992 Evaluation of hot-wire measure-
ments in wall shear turbulence using a direct numerical simulation database.
Experimental Thermal and Fluid Science
5
, 69–77.
Velocity*, figure 18.
Reynolds stresses*, figures 19–20.
SZERI, A.Z., YATES, C.C., and HAI, S.M. 1976 Flow development
in a parallel plate channel. Trans. ASME (J. Lubrication Technology)
98
,
145–154.
Plane Couette flow. Flow development*, figures 6, 7. This is
thesis by Hai, U. Pittsburgh, 1974.
TABATABAI, M. and POLLARD, A. 1987 Turbulence in radial flow
between parallel disks at medium and low Reynolds numbers. J. Fluid
Mech.
185
, 483-502 (see also Ph. D. thesis by TABATABAI, Transport
processes in two dimensional radial flow between parallel disks, Dept. Mech.
Eng., Queen’s University, Kingston, Ontario, Canada, 1985).
Mean velocity,
figures 3, 7. Surface friction, figure 6. Reynolds stresses*, figures 8, 11, 12.
See thesis.
TARDU, S.F., BINDER, G., and BLACKWELDER, R.F. 1994 Tur-
bulent channel flow with large-amplitude velocity oscillations. J. Fluid
Mech.
267
, 109–151.
Jimenez collection No. 37.
TARDU, S.F., FENG, M.Q., and BINDER, G. 1994 Quantitative
analysis of flow visualizations in an unsteady channel flow. Exp. in Flu-
ids
17
, 158–170.
Jimenez collection No. 37
.
TILLMARK, N. and ALFREDSSON, P.H. 1991 An experimental study
of transition in plane Couette flow. In
Advances in Turbulence 3
(A.V. Jo-
hansson and P.H. Alfredsson, eds.), Springer-Verlag, 235–242.
Flow viz.
TILLMARK, N. and ALFREDSSON, P.H. 1993 Turbulence in plane
Couette flow. Appl. Sci. Res.
51
(
Advances in Turbulence IV,
F.T.M. Nieuw-
stadt, ed.), 237–241.
Geometry*, figure 2. Reynolds stresses*, figures 3, 5.
VASUDEVAN, B., PRABHU, A., and NARASIMHA, R. 1991 Blade
manipulators do not reduce duct losses. In
Recent Advances in Experimental
Fluid Mechanics
(F.G. Zhuang, ed.), International Academic Publishers,
718-724.
WATTENDORF, F.L. 1935 A study of the effect of curvature on fully
developed turbulent flow. Proc. Roy. Soc.
A148
, 565–598.
Geometry*,
figure 1. Static pressure*, figures 2, 3. Velocity*, figures 6, 17, 23.
WHAN, G.A. and ROTHFUS, R.R. 1959 Characteristics of transi-
tion flow between parallel plates. A.I.Ch.E.J.
5
, 204-208.
Friction coeffi-
cient, figure 1. Max/mean velocity, figure 2. Mean velocity*, figure 4. See
125