of 5
Chapter 7 on Plane wake (not completed in actual
book)
Classical plane wake
Major surveys and theory
NEWMAN 1967
1987 Seif, AIAA 87-0499
19xx Subaschandar and Prabhu, RAEFM, 117
Experimental data
ANDREOPOULOS, J. 1978 Symmetric and asymmetric near wake
of a flat plate. Ph. D. thesis, Dept. Aeronautics, Imperial College, Univ.
London.
ANDREOPOULOS, J. and BRADSHAW, P. 1980 Measurements of
interacting turbulent shear layers in the near wake of a flat plate. J. Fluid
Mech.
100
, 639–668.
Geometry*, figure 1. Velocity*, figures 3, 13. Temper-
ature*, figure 4. Reynolds stresses*, figures 6–12. Intermittency*, figure 15.
Energy balance.
ARONSON, D. and LOFDAHL, L. 1993 The plane wake of a cylin-
der: measurements and inferences on turbulence modeling. Phys. Fluids
A5
, 1433–1437.
Reynolds stresses*, figure 2.
CASTRO, I.P. 1971 Wake characteristics of two-dimensional perfo-
rated plates normal to an air stream. J. Fluid Mech.
46
, 599–609.
Fi-
nite height, infinite span. Effect of porosity on drag, shedding frequency,
wake bubble formation. Geometry*, figures 1, 9. Drag*, figure 2. Reynolds
stress*, figures 6, 8.
CHUA, L.P., LIM, S.H., YU, S.C.M., and CHU, H.H. 1992 Measure-
ment of a cylindrical far wake. In
Proc. Eleventh Australasian Fluid Me-
chanics Conference
, Vol. I, Univ. Tasmania, 19–22.
Velocity*, figure 2.
Growth, decay*, figure 3.
COOK, T.A. 1973 Measurements of the boundary layer and wake of
two aerofoil sections at high Reynolds numbers and high-subsonic Mach
numbers. Aeron. Res. Council, Gt. Britain, R & M 3722.
Geometry*, figure
3. Velocity*, figure 12. Momentum balance*, figure 14. Some data are
tabulated
.
307
HAJI-HAIDARI, A. and SMITH, C.R. 1988 Development of the tur-
bulent near wake of a tapered thick flat plate. J. Fluid Mech.
189
, 135–163.
Velocity*, figures 2, 3, 4. Reynolds stresses*, figures 5, 7. Growth*, fig-
ure 19.
HAYAKAWA, M. and IIDA, S. 1992 Behavior of turbulence in the
near wake of a thin flat plate at low Reynolds numbers. Phys. Fluids
A4
,
2282–2291.
Reynolds stresses*, figures 4, 5. Velocity*, figure 14.
LARUE, J.C. and LIBBY, P.A. 1974 Temperature fluctuations in the
plane turbulent wake. Phys. Fluids
17
, 1956–1967.
Temperature*, figure 2.
Reynolds stresses*, figure 4.
LOUCHEZ, P.R., KAWALL, J.G., and KEFFER, J.F. 1987 Investi-
gation of the detailed spread characteristics of plane turbulent wakes. In
Turbulent Shear Flows 5
(F. Durst et al., eds.), Springer-Verlag, 98–109.
Wake growth is unique. Velocity*, figure 1. Reynolds stresses*, figures 2–5.
This is thesis by Louchez, Toronto, 1985.
MAEKAWA, H., NOZAKI, T., TAO, M., and YAMASAKI, S. 1986
Visualized large-scale motions in the turbulent wake behind a thin symmet-
rical airfoil. In
Preprints, Tenth Symposium on Turbulence
, Dept. Chem.
Eng., Univ. Missouri (Rolla), Paper 5.
Geometry*, figure 1. Velocity*,
Reynolds stresses, figures 3, 4, 5.
NAKAYAMA, A. and LIU, B. 1990 The turbulent near wake of a flat
plate at low Reynolds number. J. Fluid Mech.
217
, 93–114.
Geometry*,
figure 2. Decay*, figure 4. Velocity*, figures 7, 8. Reynolds stresses*,
figures 9, 10, 11.
POT, P.J. 1979 Measurements in a 2-D wake and in a 2-D wake merg-
ing into a boundary layer. Data report. National Aerospace Laboratory,
Netherlands, NLR TR 79063 U.
Velocity*, figure 7. Reynolds stresses*,
figures 8–12. Data are tabulated
.
RAMAPRIAN, B.R., PATEL, V.C., and SASTRY, M.S. 1982 The
symmetric turbulent wake of a flat plate. AIAA J.
20
, 1228–1235.
Ge-
ometry*, figure 2. Growth*, figure 1. Velocity decay*, figure 4. Velocity*,
figure 5. Reynolds stresses, figures 8–10.
SCHLICHTING, H. 1930
̈
Uber das ebene Windschattenproblem. Ing.-
Arch.
1
, 533–571.
Schlichting’s thesis at G ̈ottingen. Geometry*, figures 1,
9. Velocity*, figures 11, 12. Pressure*, figures 13, 14, 18.
SREENIVASAN, K.R. and NARASIMHA, R. 1982 Equilibrium pa-
rameters for two-dimensional turbulent wakes. Trans. ASME (J. Fluids
Eng.)
104
, 167–170.
Twin-plate configuration. Profiles must exist; may be
in thesis by Prabhu (1971). Growth*, figure 1.
TOWNSEND, A.A. 1947 Measurements in the turbulent wake of a
308
cylinder. Proc. Royal Society
190A
, 551–561.
Velocity and Reynolds stresses*,
figures 1–3. Growth*, figure 6.
TOWNSEND, A.A. 1948 Local isotropy in the turbulent wake of a
cylinder. Australian J. Sci. Research
1A
, 161–174.
Intermittency*, fig-
ures 5–7, 9–11.
TOWNSEND, A.A. 1949 Momentum and energy diffusion in the tur-
bulent wake of a cylinder. Proc. Roy. Soc.
197A
, 124–140.
Intermittency*,
figures 1, 2. Energy balance.
TOWNSEND, A.A. 1949 The fully developed turbulent wake of a cir-
cular cylinder. Australian J. Sci. Research
2A
, 451–468.
Velocity, Reynolds
stresses*, figures 2–4. Intermittency*, figure 6. Energy balance.
TOY, N. and WISBY, C. 1986 A preliminary investigation into the
real-time image analysis of a visualized turbulent wake. In
Preprints, Tenth
Symposium on Turbulence
, Dept. Chem. Eng., Univ. Missouri (Rolla), Pa-
per 3.
Intermittency*, figure 5.
1988 Eisenlohr and Eckelmann, FWC, 264
1988 Tabatabai et al, TPTF, 405
Momentumless plane wake
Major surveys and theory
Experimental data
CIMBALA, J.M. and PARK, W.-J. 1989 An experimental investiga-
tion of the turbulent structure in a two-dimensional momentumless wake. In
Preprints, Seventh Symposium on Turbulent Shear Flows
, Stanford Univ.,
Paper 6–1.
CIMBALA, J.M. and PARK, W.J. 1990 An experimental investiga-
tion of the turbulent structure in a two-dimensional momentumless wake.
J. Fluid Mech.
213
, 479–509.
Geometry*, figures 1, 2. Velocity*, figure 7.
Growth, decay*, figures 8, 20. Reynolds stresses*, figures 11-13.
PARK, W.J. and CIMBALA, J.M. 1991 The effect of jet injection
geometry on two-dimensional momentumless wakes. J. Fluid Mech.
224
,
29–47.
Geometry*, figure 1. Velocity*, figures 5, 6. Decay*, figure 10.
Reynolds stresses*, figure 13.
309
Miscellaneous plane wake
Major surveys or theory
BOGUCZ, A.E. Jr. 1984 Analysis of the turbulent near wake at a
sharp trailing edge. Ph. D. thesis, Mech. Eng., Lehigh Univ.
Singular
perturbation analysis; may be useful.
GRINSTEIN, F.F., HUSSAIN, F., and BORIS, J.P. 1991 Dynamics
and topology of coherent structures in a plane wake. In
Advances in Tur-
bulence 3
(A. V. Johansson and P. H. Alfredsson, eds.), Springer-Verlag,
34–41.
Numerical.
MATTINGLY, G.E. and CRIMINALE, W.O. 1972 The stability of
an incompressible two-dimensional wake. J. Fluid Mech.
51
, 233–272.
MELLOR, G.L. 1965 Linear jet and wake solutions with pressure gra-
dients. AIAA J.
3
, 975–977.
1991 Monkewitz et al, Eur J Mech
B10
, 295
Experimental data
AHMAD, Q.A., LUXTON, R.E., and ANTONIA, R.A. 1975 The be-
haviour of a two-dimensional wake in a uniformly sheared turbulent flow.
Trans. ASME (J. Appl. Mech.
42
), 283–288.
Profiles of Reynolds stresses.
Base flow*, figure 4. Velocity*, figure 5.
CIMBALA, J.M. 1985 An experimental study of large structure in
the far wakes of two-dimensional bluff bodies. In
Preprints, Fifth Symposium
on Turbulent Shear Flows
, Cornell Univ., 4.1–4.6.
Geometry*, figures 1–5,
11.
COUSTEIX, J. and PAILHAS, G. 1983 Three-dimensional wake of a
swept wing. In
Structure of Complex Turbulent Shear Flow
(R. Dumas and
L. Fulachier, eds.), Springer-Verlag, 108–218.
Geometry*, figure 1. Veloc-
ity*, figure 2. Reynolds stress*, figures 5–8.
FERR
́
E, J.A., GIRALT, F., and ANTONIA, R.A. 1989 Evidence for
double-roller eddies in a turbulent wake from two-component velocity mea-
surements. In
Preprints, Seventh Symposium on Turbulent Shear Flows
,
Stanford Univ., Paper 24-2.
Model*, figure 2.
HAYAKAWA, M. and HUSSAIN, A.K.M.F. 1987 Turbulence struc-
ture in a cylinder wake. In
Advances in Turbulence
(G. Comte-Bellot and
J. Mathieu, eds.), Springer-Verlag, 416–423.
Structure*, figure 4.
HAYAKAWA, M. and HUSSAIN, F. 1989 Three-dimensionality of or-
ganized structures in a plane turbulent wake. J. Fluid Mech.
206
, 375–404.
310
MARASLI, B., CHAMPAGNE, F.H., and WYGNANSKI, I.J. 1989
Modal decomposition of velocity signals in a plane, turbulent wake. J. Fluid
Mech.
198
, 255–273.
Instability modes. Reynolds stresses*, figures 2, 3.
Fluctuations*, figures 9, 11.
MARASLI, B., CHAMPAGNE, F.H., and WYGNANSKI, I.J. 1991
On linear evolution of unstable disturbances in a plane turbulent wake.
Phys. Fluids
A3
, 665–674.
Velocity*, figure 6. Reynolds stresses, figure 9.
MARASLI, B., CHAMPAGNE, F.H., and WYGNANSKI, I.J. 1992
Effect of travelling waves on the growth of a plane turbulent wake. J. Fluid
Mech.
235
, 511–528.
Response*, figure 3.
NARASIMHA, R. and PRABHU, A. 1972 Equilibrium and relax-
ation in turbulent wakes. J. Fluid Mech.
54
, 1–17.
Long relaxation time to
equilibrium far wake. Velocity*, figure 4. Growth*, figures 5, 6. Evolution*,
figure 13.
PALMER, M.D. and KEFFER, J.F. 1972 An experimental investi-
gation of an asymmetrical turbulent wake. J. Fluid Mech.
53
, 593–610.
Geometry*, figure 1. Reynolds stress, figure 7.
PRABHU, A. and NARASIMHA, R. 1971 Non-equilibrium wake flows.
Dept. Aeron. Eng., Indian Institute of Science, Rep. 71 FM 4.
PRABHU, A. and NARASIMHA, R. 1972 Turbulent non-equilibrium
wakes. J. Fluid Mech.
54
, 19–38.
Moving equilibrium. Base flow*, figure 2.
Growth, decay*, figure 4.
SHARMA, S.D. 1987 Development of pseudo-two-dimensional turbu-
lent wakes. Phys. Fluids
30
, 357–363.
Periodic cellular structures induced
by serrated trailing edge. Approach to equilbrium. Geometry*, figure 1.
Growth*, figure 4.
THOMPSON, B.E. and WHITELAW, J.H. 1988 Flow around airfoils
with blunt, round, and sharp trailing edges. J. Aircraft
25
, 334–342.
Ge-
ometry*, figure 1. Velocity*, figures 6, 10. Reynolds stress, figures 7, 11.
WYGNANSKI, I. and CHAMPAGNE, F. 1984 On large coherent struc-
tures in two-dimensional turbulent wakes. In
Turbulence and Chaotic Phe-
nomena in Fluids
(T. Tatsumi, ed.), Elsevier, 403–409.
Velocity*, figure 2.
Reynolds stress*, figure 3.
1989 Jovic and Ramaprian, PF
A1
, 331
1992 Norberg, 11th Austral
1
, 507
311