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P A L E O N T O L O G Y

The largest freshwater odontocete: A South Asian river 
dolphin relative from the proto- Amazonia
Aldo Benites- Palomino1,2, Gabriel Aguirre- Fernández1*, Patrice Baby3, Diana Ochoa4,5,  
Ali Altamirano2, John J. Flynn6,7,8, Marcelo R. Sánchez- Villagra1, Julia V. Tejada2,6,9,  
Christian de Muizon10, Rodolfo Salas- Gismondi2,4,6

Several dolphin lineages have independently invaded freshwater systems. Among these, the evolution of the South 
Asian river dolphin Platanista and its relatives (Platanistidae) remains virtually unknown as fossils are scarce. Here, we 
describe Pebanista yacuruna gen. et sp. nov., a dolphin from the Miocene proto- Amazonia of Peru, recovered in phylog-
enies as the closest relative of Platanista. Morphological characters such as an elongated rostrum and large supraorbital 
crests, along with ecological interpretations, indicate that this odontocete was fully adapted to fresh waters. Pebanista 
constitutes the largest freshwater odontocete known, with an estimated body length of 3 meters, highlighting the ample 
resource availability and biotic diversity in the region, during the Early to Middle Miocene. The finding of Pebanista in 
proto- Amazonian layers attests that platanistids ventured into freshwater ecosystems not only in South Asia but also in 
South America, before the modern Amazon River dolphin, during a crucial moment for the Amazonian evolution.

INTRODUCTION
Cetacean freshwater transitions occurred in several areas asynchro-
nously during the Neogene. Modern “river dolphins” arose from such 
events, as the similar morphology of these only distantly related taxa 
is the result of a clear convergent evolution (1, 2). Among odontocetes 
(toothed cetaceans), four clades of river dolphins are recognized 
(Fig. 1A): Iniidae, Lipotidae, Platanistidae, and Pontoporiidae (2, 3). 
The Yangtze river dolphin Lipotes vexillifer (Lipotidae) had fully river-
ine habits but was declared extinct a couple decades ago (4, 5). Among 
the extant taxa, only Platanista (Platanistidae) and Inia (Iniidae) are 
strictly freshwater inhabitants (6), as the La Plata dolphin Pontoporia 
blainvillei (Pontoporiidae) roams shallow coastal waters.

Platanista from the South Asian river systems (Fig. 1) is one of the 
most enigmatic toothed cetaceans and unique by bearing enlarged, thin 
and pneumatic supraorbital crests that enclose the melon, a fatty struc-
ture integral to the echolocation system, which the animal uses to locate 
and capture prey in muddy waters. Echolocation in Platanista is so 
dominant that the animal is almost blind (7). The evolutionary history 
of Platanista (8) and kin remains elusive because fossil data of close 
relatives are restricted to marine forms such as Araeodelphis, Pomato-
delphis, Prepomatodelphis, and Zarhachis (2, 3). Contrarily, distant 
Platanistoidea relatives are one of the most diverse and frequently 

fossilized cetaceans, with records ranging from the Late Oligocene until 
the Middle Miocene. A similar situation pertains to the South Ameri-
can river dolphin Inia (Iniidae), whose fossil relatives have mostly been 
found in marine environments (9–11), with the exception of Ischyro-
rhynchus from the Late Miocene of Argentina (12). The overall fossil 
record of river dolphins is of limited value because the factors that led to 
repeated freshwater lifestyles from marine ancestors in Cetacea would 
preferably require fossils of freshwater forms (13, 14).

Here, we describe a previously unknown platanistid dolphin found 
in Early to Middle Miocene layers of Peruvian Amazonia. Its holotype 
skull is characterized by a robust and long rostrum with enlarged 
teeth, well- developed supraorbital crests, a large temporal fossa, and a 
deep circumnarial basin. A series of phylogenetic analyses place the 
new taxon as a sister group to extant Platanista, thus demonstrating 
that at least two clades of odontocetes (Platanistidae and Iniidae) 
transitioned into freshwater environments in South America. Size es-
timations based on cranial measurements of the holotype of the new 
species and specimens referred to the same genus indicate that the 
new dolphin likely is the largest known freshwater odontocete, at 2.8 
to 3.5 m at a minimum, surpassing the 2.5- m maximum size of mod-
ern “river” dolphins. Such a large body size, also recorded in other 
proto- Amazonia inhabitants (i.e. fishes and crocodilians), might be 
attributed to the large resource availability in proto- Amazonian eco-
systems (15–18). Additional factors that may have contributed to the 
great body size of this new taxon include the lack of direct predators 
and competitors in the Pebas mega- wetland system. This finding con-
firms not only an independent marine- freshwater transition of ceta-
ceans in South America but also that this diversity in the vast Pebas 
mega- wetland system might have greatly benefited from the warmer 
Middle Miocene climatic conditions in the area.

RESULTS
Systematic paleontology
Odontoceti

Platanistidae
Pebanista yacuruna sp. nov.
(Fig. 2).
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Etymology
The generic name Pebanista stresses the relationship between this 
taxon from the Pebas Fm. (section S1) and the extant Ganges and In-
dus river dolphins Platanista (Platanista gangetica and Platanista mi-
nor). The specific Kichua (northern Quechua) name honors the 
“yacuruna,” a mythical water creature in the Peruvian Amazonia.

Holotype
MUSM 4017, an isolated skull from an adult individual that preserves 
the posterior part of the rostrum, facial region including part of 
the right supraorbital crest, the temporal and occipital regions (Fig. 2, 

section S2, and figs. S3 to S5). The specimen is permanently stored at 
the vertebrate palaeontology collection of the Museo de Historia Nat-
ural de la Universidad Nacional Mayor de San Marcos (MUSM).

Locality, age and horizon
MUSM 4017 was collected in 2018 in stratigraphic levels that corre-
spond to the upper Pebas Fm. exposed along the Rio Napo, Loreto, Peru 
(latitude, −3.012468°; longitude, −73.404855°). The palynological as-
semblage indicates freshwater environments, assignable to palynologi-
cal Zones T- 13 to Zone T- 15 of Jaramillo et al. (19), ranging from the 
late Early Miocene to the Middle Miocene [circa 17 to 14 million years 

Fig. 1. Biogeographical and paleobiogeographic distribution of Iniidae and Platanistidae through the Neogene. Schematic representation of the region highlighting the 
presence of epicontinental waters in South America (pale blue). extant geographical ranges of the Amazon river dolphin Inia and the South Asian river dolphins Platanista (A). dis-
tribution of fossil iniidae/Platanistidae records in the early to Middle Miocene Pebas System (B) and late Miocene Acre System (C). Modified from Benites- Palomino et al. (14).
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(Ma)]. Maximum likelihood analysis further constrains the age to the 
latest Early Miocene (circa 16.5 Ma.; section S1 and figs. S1 and S2).

Diagnosis and remarks
The holotype skull of Pebanista yacuruna, MUSM 4017, has a pre-
served condylobasal length of 698 mm and an estimated bizygo-
matic width of 281 mm. The sutures between the cranial bones 
(e.g., maxilla- premaxilla suture along the rostrum) are well closed 
or fused, indicating an adult stage. Pebanista is recognized as a 
member of Platanistidae by having the vertex of the skull deviated 
leftwards (Fig. 2, A and B); asymmetry of the premaxillae in the 
rostrum and facial areas of the skull; braincase anteroposteriorly 
shorter than wide; and lack of contact of the palatines, with both 
projecting dorsolaterally (figs. S3 and S4). The rostrum of the ho-
lotype specimen is dorsoventrally flattened and elongated, a con-
dition shared with the extinct Pomatodelphis, Prepomatodelphis, 
and Zarhachis, in contrast to the transversely compressed rostrum 
of extant Platanista. On the preserved portion, the rostrum is 
formed by the premaxillae, maxillae, and vomer, being much 
more transversely robust than in other platanistids. The rostrum 

exhibits several well- preserved dental alveoli; these are propor-
tionally larger than those of other platanistids (fig. S4). The facial 
region of the skull exhibits a well- developed circumnarial basin, 
delimited laterally by the supraorbital crests and posteriorly by the 
nuchal crest. The external bony nares are displaced to the left, cre-
ating an asymmetric array of the surrounding bones. Pebanista 
displays greatly developed lateral supraorbital crests, projecting 
dorsomedially over the level of the facial region of the skull. These 
crests are formed by the frontal bone, unlike in Pomatodelphis and 
Zarhachis in which they are formed by the frontal laterally and the 
maxilla medially, and unlike in Platanista in which the crests are 
only formed by the maxillae. The supraorbital crests in Pebanista 
are robust but transversely flattened as in Platanista. The dorsome-
dial edge of the crests presents several large vacuities, which could 
foreshadow the full excavation of the crest in Platanista, which 
receives the dorsal extension of the pterygoid sinus (20). Only 
the left orbit is preserved, which in lateral view is proportionally 
shorter than other platanistids, a condition solely shared with extant 
Platanista. The pterygoids in Pebanista cover most of the palatines 
ventrally, except for a narrow lateral stripe. Pebanista differs from 

Fig. 2. Pebanista yacuruna gen. et sp. nov., MUSM 4017. holotype skull in dorsal (A and B), ventral (C and D), left lateral (E and F), and anterodorsal views (F and G).
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Pomatodelphis and Zarhachis by having transversely compressed 
walls of the supraorbital crests, partly resembling those of Platani-
sta. The temporal fossa is anteroposteriorly longer than high and 
extends posteriorly into the occipital region (fig. S5). Posteriorly, 
the nuchal crest joins the supraorbital crest, giving the skull a 
squared posterior outline in dorsal view. The occipital shield proj-
ects slightly toward the anterior region of the skull, but it is not 
possible to assess whether this is its true shape, or a condition re-
sulting from taphonomic compression.

Additional materials
cf. Pebanista MUSM 3593 an isolated rostral fragment and Platanistidae 
indet. MUSM 4759 an isolated tympanic bulla (section S2 and fig. S6).

Phylogenetic analyses
In all of our parsimony phylogenetic analyses, Pebanista was recov-
ered within Platanistidae (Fig. 3 and fig. S7), with many of the other 

phylogenetic relationships being consistent with those of a prior work 
(21). All characters were equally weighted in a first analysis yielding 
phylogenies with poor intraclade resolution (low node support and 
high number of polytomies; section S2). Subsequent analyses were con-
ducted with implied weighting of homoplasious characters (22, 23), 
which resulted in improved support values for the two main Platanis-
toidea clades Platanistidae and Squalodelphinidae. Within Platanisti-
dae, the two clades were supported with high bootstrap values (>70), 
one containing the fossil taxa Zarhachis and Pomatodelphis and the sec-
ond uniting Pebanista and the extant Platanista (bootstrap value = 70). 
Following prior studies (21), and due to better resolution within Squa-
lodephinidae, we opted for calculating the Adams consensus.

Body size reconstruction
The estimated body size of the holotype specimen of Pebanista yacu-
runa is 280 cm, based solely on the bizygomatic width. The bizygo-
matic width of cf. Pebanista MUSM 3593 (estimated from the 

Fig. 3. Phylogenetic relationships of Pebanista yacuruna gen. et sp. nov. and the evolutionary context of Platanistoidea within proto- Amazonia. Adams consen-
sus from three most parsimonious trees (A); eustatic sea level evolution (63) across the mid- late neogene (B); diversity of Platanistoidea (28) versus other Odontoceti 
clades (C); geographical evolution (49, 50) of the neotropical region (D).
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holotype specimen proportions) resulted in an estimated body length 
of 347 cm. However, prior works have shown that regression equa-
tions using the bizygomatic width might underestimate body lengths, 
especially for hyperlongirostrine taxa such as Zarhachis (21), instead 
suggesting the use of the condylobasal length of the skull, a feature 
not preserved in the holotype skull of Pebanista. Thus, the estimated 
body sizes for Pebanista (range, 281 to 347 cm) should be considered 
minima for this fossil platanistid dolphin.

DISCUSSION
The South Asian river dolphins Platanista gangetica (Ganger river dol-
phin) and P. minor (Indus river dolphin) are the sole extant platanis-
tids. Their fossil relatives, the marine Platanistoidea, were highly 
diverse between the Oligocene and the Early Miocene, reaching a cos-
mopolitan distribution. Their wide array of body sizes and skull mor-
phologies indicates that they occupied different trophic levels and 
developed diverse predatory strategies (21, 24, 25). The fossil record 
indicates that the peak diversity of platanistoids was reached during 
the Early Miocene, a time of global cooling and increased subsidence 
in the Andean- Amazonian foreland basin system (26), including many 
records of squalodelphinids and allodelphinids (27), but began declin-
ing toward the Middle Miocene (28). Changes in sea level and other 
oceanic conditions related to the Middle Miocene Climatic Optimum, 
as well as the emergence of other toothed cetacean groups such as del-
phinoids (29, 30), beaked whales (31), and physeteroids (32–34), may 
be related to the decline of platanistoids in marine environments (35). 
Such ecological displacement might have resulted in the surviving 
Platanistidae being restricted to freshwater environments.

The fossil record of Platanistidae is sparse. Some platanistoids from 
North America, such as Araeodelphis and Dilophodelphis, have been 
phylogenetically placed either within Platanistidae or Squalodelphini-
dae (20, 21, 24, 25). Our phylogenetic analyses recovered Araeodelphis, 
a small taxon from the Early Miocene Calvert Fm. in Maryland (36), as 
the most basal stem member of the Platanistidae, in agreement with 
prior studies (20, 21, 24). Within Platanistidae, two clades are recog-
nized: the first includes Pomatodelphis and Zarhachis (Fig.  3), both 
found in coastal marine environments from North America. These taxa 
are characterized by a long slender rostrum with small teeth, a minor 
development of the supraorbital crests, and a vertex mostly symmetri-
cal when compared to Platanista. In addition, vertebrae found in Mid-
dle Miocene layers of Venezuela have been tentatively referred to 
Zarhachis, but the material is poorly diagnostic (27, 37). Our phyloge-
netic analyses unambiguously recovered Pebanista as the sister taxon of 
Platanista, thus constituting the closest known relative of the extant 
South Asian river dolphins. Pebanista displays characters previously 
used to nest together Pomatodelphis and Zarhachis, such as the flattened 
rostrum and transverse expansion of the premaxilla (38, 39). However, 
Pebanista also has numerous characters found in Platanista, including 
reduction of the orbit and strong asymmetry of the facial region, medi-
ally concave supraorbital crests, enlargement of the temporal fossae, 
and thickening of the zygomatic process of the squamosal (40). In addi-
tion, Pebanista also has enlarged teeth, which along with the robust ros-
trum and well- developed skeletal muscle insertions on the skull, it 
suggests an active raptorial feeding behavior (41). The supraorbital 
crests in Pebanista also are distinctive: These are more transversely ro-
bust than the thin plate- like crests of Platanista but not as robust as in 
Zarhachis or Pomatodelphis. Nevertheless, the inner structure of the 
crests indicates the presence of areas with higher bone density in the 

outer surface of the supraorbital crests and slightly lower densities me-
dially. This might have facilitated focusing the sound waves of the bio-
sonar system (20), also evidenced by the dorsomedial orientation of the 
supraorbital crests and their medially concave inner surface. Further-
more, the medial surface of the crests of Pebanista has a series of cavities 
or vacuities, resembling the condition observed in Platanista, which 
receives the dorsal extension of the pterygoid sinus (38, 39).

Odontocetes invaded fresh waters several times independently 
during the Neogene (Fig. 1). Among the four extant clades of river dol-
phins, only Inia, Platanista, and the recently extinct Lipotes are restrict-
ed to freshwater environments, as Pontoporia also inhabits coastal 
environments of Brazil and Argentina. The marine- freshwater transi-
tion of Iniidae is better understood than that of Platanistidae because 
of new findings of the past decade. Two close relatives of Inia have been 
recovered in Late Miocene marine layers of Panama and Peru: Bruj-
adelphis and Isthminia, respectively (9, 10), indicating that iniids still 
inhabited coastal marine environments during those times. More re-
cently a third iniid, Kwanzacetus, was recovered from rocks of the 
same age in Angola (11), further denoting the high diversity and broad 
geographic distribution of these cetaceans in marine environments. 
Marine iniids appear to have survived into the Pliocene, as evidenced 
by an isolated earbone from the Codore Fm. of Venezuela, which de-
spite resembling that of extant Inia, still retained a cochlear morphol-
ogy better suited for marine environments (42). There is little evidence 
of freshwater iniids in South America, but fossils from the Ituzaingo 
Fm. in Argentina, as the ones referred to the genus Ischyrorhynchus, 
already indicate the presence of iniids in fluvio- deltaic environments 
as early as the Late Miocene (43). The invasion of freshwater habitats 
thus must have occurred much earlier and independently in proto- 
Amazonia by Pebanista and in South Asia by Platanista. Previously 
described material from La Venta in Colombia and the Fitzcarrald 
Arch in Peru already provide evidence that platanistids invaded fresh-
water systems in South America during the Middle Miocene. Such 
findings comprise two isolated earbones respectively found in each 
locality. Both the La Venta and Fitzcarrald periotics display characters 
solely found in Platanista earbones, such as a great reduction of the 
posterior process and the reduced aperture for the cochlear aqueduct 
(13, 14, 44). Thus, the two morphotypes are much closer to Platanista 
than to Zarhachis or Pomatodelphis and as such might represent taxa 
closely related to the clade of Pebanista and Platanista.

The occurrence of Pebanista in Early to Middle Miocene layers of 
the Pebas Fm. in Peru (45, 46) not only confirms the presence of 
platanistids in the South American continent but also indicates that 
these animals reached body lengths similar to those of their marine 
relatives (i.e., larger than extant freshwater dolphins). During the 
Early to Middle Miocene (23 to 10 Ma), most of the modern west 
Amazon rainforest area (i.e., in Colombia, Peru, and Brazil) was 
covered by continental- scale fresh water to brackish water foreland 
system (the Pebas System) parallel to the Andes (47, 48), with at least 
two large- scale events of marine influx from the Caribbean (49–53). 
This basin formed by by flexural subsidence in response to the An-
dean tectonic loading since the earliest Miocene (48, 54). The massive 
proto- Amazonian Pebas wetland system was established during the 
Early Miocene and reached its maximum extent during the Middle 
Miocene Climatic Optimum (46, 49, 51), creating a complex ar-
rangement of terrestrial and aquatic environments rich in nutrients 
and prey types (55). Extraordinary faunal diversity inhabited this re-
gion, including a wide array of fishes, turtles, crocodylians (caimans 
and gharials), and small to large mammals (e.g., marsupials, sloths, 
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rodents, primates, and ungulates), among others (15, 56–58). The di-
verse aquatic environment of the Pebas System, with widely varied 
and abundant food resources, might have greatly benefited the evolu-
tion of large predators, such as Pebanista and gharials, the latter a 
group of longirostrine crocodylians with extant representatives in 
southeast Asia. Pebanista and South American gharials, such as Gry-
posuchus, display an analogous evolutionary pattern, in which marine 

ancestors invaded and diversified in freshwater environments during 
the Neogene (58). Furthermore, abundance of similar prey items suit-
able for longirostrine forms and favourable environmental conditions 
might have prompted the evolution of gigantism among platanistids 
and Gryposuchus (58, 59), markedly exceeding the size of their mod-
ern relatives (Fig. 4). The evolution of such large sizes in Pebanista and 
coeval crocodilians (60) could be related to a red- queen pattern of size 

Fig. 4. Size comparison between “river dolphins” and marine platanistoids and river dolphins. White silhouettes indicate the minimum body length calculated or re-
corded; gray body outlines indicate the largest size recorded or estimated in: Macrosqualodephis ukupachai† (A), Zarhachis flagellator† (B), P. blainvillei (C), Pebanista yacuruna† 
gen. et sp. nov. (D), Inia geoffrensis (E), Platanista gangetica (F), and Lipotex vexillifer (G). Artistic reconstruction of Pebanista yacuruna gen. et sp. nov. by Jaime Bran (H).
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increase, as a result of competitive interactions with other aquatic 
predators.

Pebanista is a new fossil taxon of platanistid dolphin from the 
Early to Middle Miocene (c. 16.5 Ma) Pebas Fm. in the Amazon 
Basin of Peru, the first freshwater representative of this clade in 
South America, characterized by an asymmetrical skull, large and 
robust rostrum, greatly developed supraorbital crests, and a cir-
cumnarial basin extending onto the whole facial region. Pebanista 
is recovered in our phylogenetic analyses as the closest known 
relative of extant Platanista from South Asia, sharing several syn-
apomorphies with the latter, but also a combination of morpho-
logical characters that indicate a transitional stage between marine 
and freshwater habitats. The presence of this Early to Middle Mio-
cene platanistid dolphin confirms the existence of this group in 
freshwater habitats of the Andean foreland basin system of the 
South American continent, long before the independent invasion 
of South American freshwater environments by the Amazon river 
dolphin lineage (Iniidae, Inia). After reaching the continental inte-
rior, Pebanista would have encountered the extraordinarily rich 
Pebas mega- wetland communities and vast freshwater environ-
ments of proto- Amazonia, thousands of kilometers, and oceans 
away from the range of extant Platanista, during a time in which 
the unusually broad diversity and great abundance of food re-
sources also would have promoted its evolution toward a greater 
body size (Fig. 4).

MATERIALS AND METHODS
Phylogenetic analysis
To investigate the phylogenetic relationships of Pebanista within 
Platanistoidea, MUSM 4017 was coded in the morphological matrix 
of Bianucci et al. (21) using Mesquite 3.70 (61), resulting in a total of 
24 operational taxonomic units and 48 morphological characters. 
Cladistic parsimony analyses were performed in PAUP 4.0a169 (62) 
via heuristic searches using the tree bisection- reconnection algo-
rithm and treating all characters as unordered. Because of the high 
number of poorly supported nodes (less than 50% bootstrap sup-
port) and polytomies resulting from the first parsimony analysis, a 
series of analyses were performed by down- weighting of homoplastic 
characters with k values of 2, 3, 10, 20, and 40 (22, 23). Because the 
topology remained unmodified, the lowest value was kept (K = 2). 
Both strict and Adams consensus trees were determined for each 
analysis, as was the statistical support for each, on the basis of 1000 
bootstrap replicates.

Body size
The body length of Pebanista was estimated on the basis of its bi-
zygomatic width (BZW), using regression equations that recon-
struct body size on the basis of this specific cranial measurement. 
However, prior studies (21) have suggested that body size recon-
structions using the BZW underestimates the true body size in 
crown platanistoids. Therefore, the body size calculations pre-
sented in this study likely represent the minimum body sizes for 
this taxon. The BZW width of the specimen referred to cf. Pe-
banista MUSM 3593 was obtained using the proportion between 
the rostrum width at the base and the total BZW of the holotype 
specimen of Pebanista yacuruna MUSM 4017. Using this recon-
structed BZW, the estimated body size of the referred specimen 
was calculated.
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