Supplementary information # Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts In the format provided by the authors and unedited #### **Supplementary Information to** ## Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts Jin Huang¹, Luca Sementa², Zeyan Liu¹, Giovanni Barcaro², Miao Feng^{1,3}, Ershuai Liu⁴, Li Jiao⁴, Mingjie Xu^{5,6}, Denis Leshchev⁷, Sung-Joon Lee¹, Mufan Li⁸, Chengzhang Wan⁸, Enbo Zhu¹, Yang Liu¹, Bosi Peng⁸, Xiangfeng Duan^{8,9}, William A. Goddard III^{10*}, Alessandro Fortunelli^{2*}, Qingying Jia^{4*}, Yu Huang^{1,9*} ¹Department of Materials Science and Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA. ²CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche; Pisa, I-56124, Italy. ³College of Materials Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, Fujian, 350108, P. R. China. ⁴Department of Chemistry and Chemical Biology, Northeastern University; Boston, MA 02115, USA. ⁵Irvine Materials Research Institute, University of California, Irvine; Irvine, CA 92697, USA. ⁶Department of Materials Science, University of California, Irvine; Irvine, CA 92697, USA. ⁷National Synchrotron Light Source II, Brookhaven National Laboratory; Upton, New York 11973, USA. ⁸Department of Chemistry and Biochemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA. ⁹California NanoSystems Institute, University of California, Los Angeles; Los Angeles, CA 90095, USA. ¹⁰Materials and Process Simulation Center, California Institute of Technology; Pasadena, CA 91125, USA. *Corresponding author. Email: yhuang@seas.ucla.edu (Y.H.); qjia@iit.edu (Q.J.); alessandro.fortunelli@cnr.it (A.F.); wag@wag.caltech.edu (W.A.G.). #### This PDF file includes: Supplementary Notes (pages: 2-5; Supplementary Notes 1-3) Supplementary Figures (pages: 6-39; Supplementary Figs. 1-34) Supplementary Tables (pages: 40-45; Supplementary Tables 1-6) Supplementary Reference (1-12): (page: 46) #### **Supplementary Notes 1** Building a binary experimental descriptor (BED) for strain and Pt-M coupling effects #### Strain descriptor: Since the tight-binding matrix element¹ of a Pt atom in an alloy scales as: $$Vi = 7.62 \times \sum_{j=1}^{CN} \frac{(r_{d,i}r_{d,j})^{1.5}}{(dpt_{ij}^5)}$$ (1) where the given atom "i" with radius $r_{d,i}$ is surrounded by "j" first-neighbors with radius $r_{d,j}$ each at a distance $d_{Pt,ij}$ and the sum over "j" runs over the coordination number (CN) of the given Pt atom. Taking a PtNi alloy as an example, $$Vi(Pt) = 7.62 (r_d^{Pt})^3 \{ \sum_{j=1}^{NN_{Pt}} \frac{1}{\left(d_{ij}^{Pt-Pt}\right)^5} + \left(\frac{r_d^{Ni}}{r_d^{Pt}}\right)^{3/2} \sum_{j=1}^{NN_{Ni}} \frac{1}{\left(d_{ij}^{Pt-Ni}\right)^5} \}$$ (2) where the sums in Eq. (2) run over the NN_{Pt} Pt nearest-neighbors or the NN_{Ni} Ni nearest-neighbors of the Pt atom "i". We now introduce d_0^{Pt-Pt} and d_0^{Pt-Ni} as reference nearest-neighbor inter-atomic distances for Pt-Pt and Pt-Ni interactions, respectively, and transform the d_{ij} distances into the corresponding strain s_{ij} , defined as: $$s_{ij} = \frac{d_{ij} - d_0}{d_0}$$ So doing, we get in Eq. (2) terms of the form: $(1 + s_{ij})^{-5}$. We can expand these terms in a Taylor series or as a continued fraction or a mixture of these. We report below an expansion truncated to the linear term, and in square bracket the corresponding error with respect to the exact value 1.10629161708 for x = -0.02 (a compressive strain of 2%): $$\frac{1}{(1+x)^5} \approx 1 - 5x \left[0.006 \right] \tag{3}$$ This first-order approximation gives a small error [0.006] and is therefore used to reflect strain descriptor [the correct next best estimate reads: 1 - 5x/(1 + 3x)]. We therefore use the first-order linear expansion, and we finally get: $$V_i(Pt) = V_i^0(Pt) - 7.62 \cdot 5 \cdot \frac{(r_d^{Pt})^3}{(d_0^{Pt-Pt})^5} \cdot \{ \sum_{j=1}^{NN_{Pt}} s_{ij}^{Pt-Pt} + (\frac{r_d^{Ni}}{r_d^{Pt}})^3 / 2 \frac{(d_0^{Pt-Pt})^5}{(d_0^{Pt-Ni})^5} \sum_{j=1}^{NN_{Ni}} s_{ij}^{Pt-Ni} \}$$ (4) Note that the d-band center shift correlates with the matrix element difference ¹ compared to pure unstrained Pt: $$\Delta \varepsilon_d = |\varepsilon_d(PtM) - \varepsilon_d(Pt)| \propto \Delta Vi \tag{5}$$ For our experimentally measured strain, we used the Pt-Pt bond length measured in XAS to calculate the strain and kept the same definition as in the simulation: $$Strain = \frac{R_{Pt-Pt}(PtM) - R_{Pt-Pt}(Pt/C)}{R_{Pt-Pt}(Pt/C)} \times 100\%$$ (6) R_{Pt-Pt} (Pt/C) is 2.75 Å according to XAS measurement. The compressive strain is defined as the absolute value of strain if strain is below 0. The issue with formula (4) and (5) is that it is difficult to accurately obtain the Pt-Ni strain experimentally due to the composition difference of catalysts (the reference d_{ij}^{Pt-Ni} is not a constant and changes with composition). Therefore, the pre-factor for the term of the matrix element proportional to the Pt-Ni strain part varies for each catalyst. In addition, it is even more challenging to describe the matrix elements of multi-elemental Pt alloys since strain terms of different origin are involved. Therefore, a descriptor that can reflect the contribution from other metals would be highly desirable. In this study, we propose that the asymmetry factor (AF) of the XANES peak is a good candidate, which comprehensively reflects the Pt-M coupling that includes the contributions from composition and local atomic contribution of Pt-M bonding from the M side. We then introduce another descriptor to describe the contribution from the alloying metals, the AF. #### **Supplementary Notes 2** #### Asymmetry factor (AF) descriptor: The asymmetry factor (AF) of the XANES peaks is calculated with the equation: AF = b/a, #### where: b is the distance from the peak midpoint (perpendicularly from the peak highest point) to the trailing edge of the peak measured at 10% of peak height, a is the distance from the leading edge of the peak to the peak midpoint. The trailing edge is determined by taking the first derivative of the Pt L₃ XANES. For example, in Supplementary Fig. 1, trailing edge of the peak is chosen around 11576 eV for Pt/C and around 11577 eV for Pt-alloy catalysts, respectively. Corresponding intensity was then set as the peak bottom. The difference of the peak intensity and the above determined bottom intensity is the peak height. In the alloy case, we calculate the difference in AF with respect to pure Pt, i.e., Δ (asymmetry factor) of PtM: $\Delta AF = AF(PtM) - AF(Pt/C)$ All the calculated $\triangle AF$ can be found in Supplementary Table 3. #### **Supplementary Notes 3** #### The binary experimental descriptor (BED): To quantitatively determine the relationship between ΔE_0 and the binary experimental descriptor (BED) (i.e., to determine the relative weights in the combination of Strain (%) and ΔAF), we performed the linear fitting: $$BED = A(Strain(\%)) + B(\Delta AF)$$ (7) By fitting $[\Delta E_0^{(111)} - \Delta E_0^{P((111)}]$ with the BED enforcing the intercept (0, 0) and a one-to-one correspondence relationship, the optimal A and B are determined to be -0.13 and 0.1, respectively with a high fidelity ($R^2 = 0.93$) and a low root-mean-square error (RMSE) of 0.03 eV (Fig. 2C), thus achieving a better fit than when using only the strain as a descriptor (fidelity of 0.82 and RMSE of 0.04 eV) (Supplementary Fig. 14). So, our final binary descriptor is determined to be: $$BED = [-0.13(Strain(\%)) + 0.1(\Delta AF)]$$ (8) #### **Supplementary Figures** $Supplementary\ Fig.\ 1\ |\ A\ typical\ asymmetry\ factor\ calculation\ from\ XANES\ of\ Pt/C\ catalysts.$ Supplementary Fig. 2 | TEM analysis of sd-PtNi catalysts at different stages. (a) Size distribution of octahedral p-Pt₄₅Ni₅₅ catalysts. (b-d) Representative HAADF-STEM images for p-Pt₄₅Ni₅₅, sd-Pt₇₆Ni₂₄, and sd-Pt₈₅Ni₁₅, respectively. The inset of the panel (d) is the size distribution of sd-Pt₈₅Ni₁₅, diagonal distance is the longest distance between two diagonal branched tips. Supplementary Fig. 3 | Structural and compositional characterization of sd-PtNi catalysts during the slow dealloying process. (a) XRD patterns of sd-PtNi catalysts at different dealloying time. Orange line and green line represent Pt [PDF #04-0802] and Ni [PDF #04-0850], respectively. (b) High-resolution atomic HAADF-STEM images of sd-Pt₇₆Ni₂₄ catalysts. (c) Corresponding inverse FFT images of sd-Pt₇₆Ni₂₄ catalysts (the red square region in the panel (c)). (d-f) Representative EDX line-scan profile for p-Pt₄₅Ni₅₅, sd-Pt₇₆Ni₂₄, and sd-Pt₈₅Ni₁₅, respectively. The insets of the (d-f) are the corresponding HAADF-STEM images. (g) EDX compositional analysis of sd-PtNi catalysts at different stages. Each stage corresponds to p-Pt₄₅Ni₅₅ (black), sd-Pt₇₆Ni₂₄ (red), sd-Pt₈₅Ni₁₅ (blue), and sd-Pt₉₂Ni₈-ADT (pink), respectively. Supplementary Fig. 4 | Structural and compositional analysis of the fd-Pt₈₆Ni₁₄ catalysts. (a) TEM of the fd-Pt₈₆Ni₁₄ catalysts before activation. (b) EDX composition analysis of the fd-Pt₈₆Ni₁₄ catalysts before and after activation, showing no obvious difference due to sufficient acid dealloying. (c) HAADF-STEM image of the fd-Pt₈₆Ni₁₄ catalysts. (d) Inverse fast Fourier transform (FFT) of the corresponding fd-Pt₈₆Ni₁₄ catalysts in the panel (c), showing similar Pt skin structure after fast acid dealloying. (e) EDX mapping results of the fd-Pt₈₆Ni₁₄ catalysts before activation. **Supplementary Fig. 5** | Electrochemical measurement of p-Pt₄₅Ni₅₅, sd-Pt₈₅Ni₁₅, and fd-Pt₈₆Ni₁₄ versus commercial Pt/C catalysts. (a) CVs of p-Pt₄₅Ni₅₅ (orange), sd-Pt₈₅Ni₁₅ (blue), and fd-Pt₈₆Ni₁₄ (olive) versus commercial Pt/C catalysts (black) recorded at room temperature in N₂-purged 0.1 M HClO₄ solution at a sweep rate of 100 mV/s from 0.05 to 1.1 V vs. RHE. (b) ORR polarization curves of p-Pt₄₅Ni₅₅ (orange), sd-Pt₈₅Ni₁₅ (blue), and fd-Pt₈₆Ni₁₄ catalysts (olive) in comparison to Pt/C catalysts (black). The ORR tests were measured in O₂-purged 0.1 M HClO₄ solution at a sweep rate of 20 mV/s from 0.05 to 1.1 V vs. RHE. **Supplementary Fig. 6** | **Electrochemical stability analysis of sd-Pt**₈₅Ni₁₅ **catalysts.** (a) CV curves of sd-Pt₈₅Ni₁₅ catalysts before (black) and after 20,000 cycles ADT (red). (b) ORR polarization curves of sd-Pt₈₅Ni₁₅ catalysts before stability test (black), after 10,000 cycles ADT (blue), and after 20,000 cycles ADT (red). (c, d) Representative HAADF-STEM and high-resolution HAADF-STEM image of the sd-PtNi after 20,000 cycles ADT, the inset of the panel (c) is the size distribution of sd-PtNi after ADT, diagonal distance is the longest distance of two diagonal branched tips. The diagonal distance slightly increased from 7.2 nm to 7.8 nm without obvious growth for each branch, suggesting good structural and morphology stability. **Supplementary Fig. 7** | Electrochemical stability analysis of fd-Pt₈₆Ni₁₄. (a) CV curves of fd-Pt₈₆Ni₁₄ catalysts before (black) and after 20,000 cycles ADT (red). (b) ORR polarization curves of fd-Pt₈₆Ni₁₄ catalysts before (black) and after 20,000 cycles ADT (red). (c) TEM image of fd-Pt₈₆Ni₁₄ after 20,000 cycles ADT, the inset of panel (c) is the size distribution of fd-Pt₉₅Ni₅-ADT. (d) EDX spectrum of the fd-Pt₈₆Ni₁₄ after 20,000 cycles ADT. (e-g) EDX mapping results of fd-Pt₉₅Ni₅-ADT after 20,000 cycles ADT, the inset of panel (e) is the HRTEM. **Supplementary Fig. 8** | In situ FT-EXAFS spectra at the Pt L₃-edge at the (a) R-space and (b) K-space and Ni K-edge at the (c) R-space and (d) K-space of fd-PtNi collected at 0.54 V in O₂-purged 0.1 M HClO₄ and their fits. Fits were performed at the Pt L₃ and Ni K-edge simultaneously in *R*-space, $k^{1,2,3}$ weighting. 1.2 < R < 3.1 Å and $\Delta k = 2.8 - 12.2$ Å⁻¹ for Pt spectra and 1.3 < R < 3.0 Å and $\Delta k = 2.6 - 11.6$ Å⁻¹ for Ni spectra were used for fitting. S_0^2 was fixed at 0.84 and 0.68 for Pt and Ni, respectively, as obtained by fitting the corresponding reference foils. **Supplementary Fig. 9** | In situ FT-EXAFS spectra at the Pt L₃-edge at the (a) R-space and (b) K-space of fd-PtNi-ADT collected at 0.54 V in O₂-purged 0.1 M HClO₄ and their fits. Fits were performed at the Pt L₃ in *R*-space, $k^{1,2,3}$ weighting. 1.68 < R < 3.14 Å and $\Delta k = 2.77 - 10.92$ Å⁻¹ were used for fitting. S_0^2 was fixed at 0.84 for Pt, as obtained by fitting the corresponding reference foil. Note here we did not fit the Ni K-edge data owing to the mixed metal and oxide phases. **Supplementary Fig. 10** | In situ FT-EXAFS spectra at the Pt L₃-edge at the (a) R-space and (b) K-space and Ni K-edge at the (c) R-space and (d) K-space of sd-PtNi collected at 0.54 V in O₂-purged 0.1 M HClO₄ and their fits. Fits were performed at the Pt L₃ and Ni K-edge simultaneously in R-space, $k^{1,2,3}$ weighting. 1.2 < R < 3.1 Å and $\Delta k = 2.8 - 12.2$ Å⁻¹ for Pt spectra and 1.3 < R < 3.0 Å and $\Delta k = 2.5 - 11.6$ Å⁻¹ for Ni spectra were used for fitting. S_0^2 was fixed at 0.84 and 0.68 for Pt and Ni, respectively, as obtained by fitting the corresponding reference foils. **Supplementary Fig. 11** | In situ FT-EXAFS spectra at the Pt L₃-edge at the (a) R-space and (b) K-space of sd-PtNi-ADT collected at 0.54 V in O₂-purged 0.1 M HClO₄ and their fits. Fits were performed at the Pt L₃ in *R*-space, $k^{1,2,3}$ weighting. 1.22 < R < 3.14 Å and $\Delta k = 2.77 - 11.49$ Å⁻¹ were used for fitting. S_0^2 was fixed at 0.84 for Pt, as obtained by fitting the corresponding reference foil. Supplementary Fig. 12 | XANES spectra of p-PtNi-AN (blue) and Pt/C catalysts (black). The p-PtNi-AN catalyst was activated in N_2 -saturated 0.1 M HClO₄ between 0.05 V to 1.1 V versus RHE at a scan rate of 100 mV/s prior to XAS measurement. Supplementary Fig. 13 | Schematic depiction of the 147-atom cluster models investigated in this work together with the location of O-adsorption sites: (111) sites, edge sites, and vertex sites. The grey frame represents the Pt frame. Grey, green, and red sphere represent Pt, Ni and Co, respectively. Supplementary Fig. 14 | FEFF9-derived Pt L₃-edge XANES spectra for Pt₁₄₇ (black), fd-Pt₁₂₂Ni₂₅ (olive), and fd-Pt₁₃₄Ni₁₃-ADT (olive-dashed) cluster models. The XANES of fd-Pt₁₂₂Ni₂₅ and fd-Pt₁₃₄Ni₁₃-ADT were normalized to the height of the Pt₁₄₇ model for comparison, showing no peak broadening. **Supplementary Fig. 15** | (a) Depiction of specific sites of the mixed sd-Pt₁₂₂Ni₂₅ cluster. (b) Simulated XANES spectra by FEFF9 for the different sites of the sd-Pt₁₂₂Ni₂₅ model shown in (a). (c) The relationship between calculated AF and the number of Ni first-neighbors for different sites of the sd-Pt₁₂₂Ni₂₅ cluster model shown in (a), suggesting that Pt with more Ni neighbors generally showed a larger AF. SS-Corner: subsurface corner, SS-(111): subsurface (100), Core-Pt: Pt atoms located beneath the subsurface layer (the third layer). **Supplementary Fig. 16** | **Schematic depiction of 147-atom cluster models and O-binding on (111) sites.** Note that in some cases there are 2 inequivalent adsorption sites, named as "facet 1" and "facet 2". In such cases, the oxygen binding energies reported in the main text are calculated as the average of oxygen binding energy of different (111) sites. Supplementary Fig. 17 | Correlation between ($\Delta E_o^{(111)}$ - $\Delta E_o^{Pt(111)}$) and (-Strain %), showing a R^2 of only 0.82. RMSE: Root-mean-square error. Supplementary Fig. 18 | CN analysis-based XANES data. (a) The correlation between CN_{Pt-M} and ΔAF for cluster models, showing a good positive linear relationship. (b) The correlation between CN_{Pt-M} and $(\Delta E_{\rm o}$ - $\Delta E_{\rm o}^{Pt(111)})$ for theoretical models, showing a good linear one-to-one relationship. (c) The correlation between ΔAF and $(\Delta E_{\rm o}$ - $\Delta E_{\rm o}^{Pt(111)})$ for theoretical models, showing a good linear one-to-one relationship. (d) Linear regression fitting between the DFT-determined $(\Delta E_{\rm o}$ - $\Delta E_{\rm o}^{Pt(111)})$ and the BED-[-0.13Strain (%) + 0.012CN_{Pt-M}] based on the cluster models, showing good one-to-one correspondence. RMSE: Root-mean-square error. (e) The Sabatier-like relationship between experimentally measured activity (Ln(SA/SA_{Pt})) with BED. (f) The plot of experimental CN_{Pt-M} and experimental ΔAF , which shows no obvious correlation. The error bars were determined from the CN fitting of EXAFS. Supplementary Fig. 19 | Mixing energy of sd-Pt₁₂₂Ni₁₇Co₈ (left), sd-Pt₁₂₂Ni₂₅ (middle), and fd-Pt₁₂₂Ni₂₅ (right) clusters. Supplementary Fig. $20 \mid$ Schematic depiction of 147-atom cluster models and O-binding on their vertex sites. Supplementary Fig. 21 | Vertex site O-binding energy calculation results. The difference between $\Delta E_o^{(Vertex)}$ of Pt-alloy clusters and $\Delta E_o^{Pt(Vertex)}$ of the pure Pt cluster on vertex site for fd-Pt₁₂₂Ni₂₅, sd-Pt₁₂₂Ni₂₅, sd-Pt₁₂₂Ni₁₇Co₈, and L1₀-Pt₁₁₆Ni₃₁ 147-atom cluster models. Supplementary Fig. 22 | TEM analysis of sd-PtNiCo catalysts at different stages. (a) Octahedra size distribution of p-Pt₄₁Ni₅₄Co₅ catalysts. (b-d) Representative HAADF-STEM images for p-Pt₄₁Ni₅₄Co₅, sd-Pt₇₀Ni₂₆Co₄, and sd-Pt₈₄Ni₁₂Co₄ after activation, inset of panel (d) is the size distribution of sd-Pt₈₄Ni₁₂Co₄ after activation. The insets of panel (d) are the percentage of concave shape and the size distribution, respectively. Supplementary Fig. 23 | EDX composition analysis of sd-PtNiCo at different stages. Each stage corresponds to p-Pt₄₁Ni₅₄Co₅ (black), sd-Pt₇₀Ni₂₆Co₄ (red), and sd-Pt₈₄Ni₁₂Co₄ (blue), and sd-Pt₈₇Ni₁₀Co₃-ADT (pink), respectively. Supplementary Fig. 24 | Representative HAADF-STEM images and EDX line-scan and mapping analysis for (a, b) p-Pt₄₁Ni₅₄Co₅ catalyst, (c, d) sd-Pt₇₀Ni₂₆Co₄ catalyst (after slow-dealloying in DMF), and (e, f) sd-Pt₈₄Ni₁₂Co₄ catalysts (after activation). The insets in (b, d, f) are the corresponding HAADF-STEM images. (g) EDX mapping results of sd-Pt₈₄Ni₁₂Co₄ catalyst. Supplementary Fig. 25 | Electrochemical performance of sd-Pt₈₄Ni₁₂Co₄ catalysts in comparison with sd-Pt₈₅Ni₁₅ and commercial Pt/C catalysts. (a) CVs of sd-Pt₈₅Ni₁₅ (blue) and sd-Pt₈₄Ni₁₂Co₄ (red) versus commercial Pt/C (black) catalysts recorded at room temperature in N₂-purged 0.1 M HClO₄ solution at a sweep rate of 100 mV/s. (b) ORR polarization curves of sd-Pt₈₅Ni₁₅ (blue) and sd-Pt₈₄Ni₁₂Co₄ (red) in comparison to Pt/C (black) catalysts. The ORR tests were measured in O₂-purged 0.1 M HClO₄ solution at a sweep rate of 20 mV/s. Supplementary Fig. 26 | Electrochemical stability analysis of sd-Pt₈₄Ni₁₂Co₄ catalysts. (a) CV comparison before (black) and after 20,000 cycles ADT (red). (b) ORR polarization curves of sd-Pt₈₄Ni₁₂Co₄ catalysts before ADT (black), after 10,000 cycles ADT (blue), and after 20,000 cycles ADT (red). (c, d) Representative HAADF-STEM and high-resolution HAADF-STEM image of the sd-Pt₈₇Ni₁₀Co₃-ADT after 20,000 cycles ADT. The insets of panel (c) are the percentage of concave shape and the size distribution, respectively. **Supplementary Fig. 27** | In situ FT-EXAFS spectra at the Pt L₃-edge at the (a) R-space and (b) K-space and Ni K-edge at the (c) R-space and (d) K-space of sd-PtNiCo collected at 0.54 V in O₂-purged 0.1 M HClO₄ and their fits. Fits were performed at the Pt L₃ and Ni K-edge simultaneously in R-space, $k^{1,2,3}$ weighting. 1.2 < R < 3.1 Å and $\Delta k = 2.8 - 12.2$ Å⁻¹ for Pt spectra and 1.3 < R < 3.0 Å and $\Delta k = 2.5 - 12.2$ Å⁻¹ for Ni spectra were used for fitting. S_0^2 was fixed at 0.84 and 0.68 for Pt and Ni, respectively, as obtained by fitting the corresponding reference foils. **Supplementary Fig. 28** | In situ FT-EXAFS spectra at the Pt L₃-edge at the (a) R-space and (b) K-space of sd-PtNiCo-ADT collected at 0.54 V in O₂-purged 0.1 M HClO₄ and their fits. Fits were performed at the Pt L₃ in *R*-space, $k^{1,2,3}$ weighting. 1.22 < R < 3.14 Å and $\Delta k = 2.77 - 11.29$ Å⁻¹ were used for fitting. S_0^2 was fixed at 0.84 for Pt, as obtained by fitting the corresponding reference foil. **Supplementary Fig. 29** | Comparison of ex situ and in situ Pt L_3 -edge XANES spectra of sd- $Pt_{85}Ni_{15}$, fd- $Pt_{86}Ni_{14}$, and sd- $Pt_{84}Ni_{12}Co_4$ catalysts. For each sample, the ex-situ spectrum was collected prior to in situ measurements. The in-situ spectrum was conducted at 0.54 V in O_2 -saturated 0.1 M HClO₄ solution. Supplementary Fig. 30 | *Ex-situ* experimental XANES spectra at the Pt L₃-edge of examined catalysts. All samples were electrochemically activated in N_2 -purged 0.1 M HClO₄ solution at a sweep rate of 100 mV/s from 0.05 to 1.1 V vs. RHE prior to XAS measurement. Supplementary Fig. 31 | Representative CVs and ORR polarization curves before (black) and after 20,000 cycles of ADT (red) for (a, b) Oct-Pt₇₉Ni₁₅Co₆ catalyst (Pt loading: $7 \mu g/cm^2$). (c, d) fd-Pt₈₄Ni₁₂Co₄ catalyst (Pt loading: $7.5 \mu g/cm^2$), (e, f) tetra-Pt₇₇Cu₁₅Ni₈ catalyst (Pt loading: $7.5 \mu g/cm^2$). (g, h) tetra-Pt₆₅Cu₂₇Ni₈ catalyst (Pt loading: $7.5 \mu g/cm^2$), (i, j) p-Pt₄₀Ni₆₀-AN catalyst (Pt loading: $7.5 \mu g/cm^2$), (k, l) p-Pt₄₁Ni₅₇Co₂-AN catalyst (Pt loading: $7.5 \mu g/cm^2$). The ADT was performed between 0.6 to 1.0 V versus RHE at a sweep rate of 100 mV/s in 0.1 M O₂-saturated HClO₄. Supplementary Fig. 32 | Representative EDX elemental analysis for (a) Oct-Pt₇₉Ni₁₅Co₆ catalyst. (b) fd-Pt₈₄Ni₁₂Co₄ catalyst. (c) tetra-Pt₇₇Cu₁₅Ni₈ catalyst. (d) tetra-Pt₆₅Cu₂₈Ni₇ catalyst. (e) p-Pt₄₀Ni₆₀-AN catalyst. (f) p-Pt₄₁Ni₅₇Co₂-AN catalyst. All samples were electrochemically activated prior to EDX measurement. **Supplementary Fig. 33** | **MEA performance of the sd-PtNiCo catalysts.** (a) MAs of sd-PtNiCo (red lines) and Pt/C (black lines) tested by measuring the current at 0.9 V (iR-free) under 150 kPa_{abs} H₂/O₂ (80 °C, 100% RH) with correction for H₂ crossover. (b) Comparison of MAs of sd-PtNiCo, Pt/C, and L1₀-CoPt². BOL: beginning of life. EOL: end of life. Cathode Pt loading is 0.083 mg_{Pt}/cm² for both Pt/C and sd-PtNiCo, and 0.105 mg_{Pt}/cm² for L1₀-CoPt, respectively. The error bars in MEA were determined from the standard deviation of 5 individual measurements. **Supplementary Fig. 34** | MEA H₂-Air test comparison of sd-PtNiCo and Pt/C at 94 °C, 250 kPa_{abs} with a stoi of $H_2/Air = 1.5/1.8$. #### **Supplementary Tables** # Supplementary Table 1 \mid Summaries of EXAFS fitting results of sd-Pt-alloys at the Pt L₃-edge. *: a fixed value. | Pt side | | | Pt-Pt scattering | | | Pt-M (M = Ni and/or Co) scattering | | | | |----------------------------------------------------------|--------|---------------------------------------------------|------------------------|--------------------|-----------------------------------------------|------------------------------------|-------------------|------------------------------------------------------|----------| | | Stages | Composition | R _{Pt-Pt} (Å) | N _{Pt-Pt} | σ^2 (Å ²)×10 ⁻³ | R _{Pt-M} (Å) | N _{Pt-M} | σ ²
(Å ²)×10 ⁻³ | R factor | | sd-Pt ₈₅ Ni ₁₅ | BOL | Pt85Ni15 | 2.71 ± 0.01 | 8.6 ± 1.4 | 9 ± 1 | 2.65 ± 0.01 | 1.5 ± 0.5 | 5 ± 2 | 0.005 | | | ADT | Pt ₉₂ Ni ₈ | 2.73 ± 0.01 | 10 ± 2 | 9 ± 2 | 2.62 ± 0.06 | 0.7 ± 0.4 | 6 ± 3 | 0.002 | | sd-
Pt ₈₄ Ni ₁₂ Co ₄ | BOL | Pt ₈₄ Ni ₁₂ Co ₄ | 2.714 ± 0.007 | 8 ± 1 | 7.4 ± 0.9 | 2.65 ± 0.01 | 2.1 ± 0.6 | 9 ± 2 | 0.01 | | | ADT | Pt ₈₇ Ni ₁₀ Co ₃ | 2.72 ± 0.03 | 9.6 ± 2.4 | 9 ± 3 | 2.67 ± 0.02 | 1 ± 1 | 2 ± 6 | 0.005 | | fd-Pt ₈₆ Ni ₁₄ | BOL | Pt ₈₆ Ni ₁₄ | 2.733 ± 0.004 | 8.2 ± 0.7 | 6.6 ± 0.6 | 2.659 ± 0.007 | 1.2 ± 0.3 | 5 ± 1 | 0.007 | | | ADT | Pt ₉₅ Ni ₅ | 2.746 ± 0.009 | 7.5 ± 1.4 | 5 ± 2 | 2.60 ± 0.02 | 1 ± 3 | 2* | 0.013 | ^{*}Fits were performed at the Pt L₃ and Ni K-edge simultaneously in R-space, $k^{1,2,3}$ weighting. Detailed fitting parameters and models used for fitting are given in the caption of the EXAFS fitting figure of each sample. BOL: beginning of life. # Supplementary Table 2 \mid Summaries of EXAFS fitting results of the Pt L₃-edge spectra of examined samples. | | Pt- | -Pt scattering | | Pt-M (M = Ni and/or Co) scattering | | | | |---|------------------------|--------------------|--|------------------------------------|-------------------|--|--| | Sample | R _{Pt-Pt} (Å) | N _{Pt-Pt} | $\sigma 2 (\mathring{A}^2) \times 10^{-3}$ | R _{Pt-M} (Å) | N _{Pt-M} | $\sigma^{2}(\mathring{A}^{2})\times 10^{-3}$ | | | fd-Pt ₈₄ Ni ₁₂ Co ₄ | 2.717 ± 0.005 | 7.6 ± 1.3 | 5.6 ± 0.9 | 2.65 ± 0.02 | 2.7 ± 1.4 | 1.2 ± 0.4 | | | fd-Pt ₉₃ Ni ₅ Co ₂ | 2.727 ± 0.002 | 8.4 ± 0.5 | 6.1 ± 0.4 | 2.65 ± 0.01 | 1.7 ± 0.4 | 8 ± 2 | | | p-Pt ₄₀ Ni ₆₀ -AN | 2.68 ± 0.01 | 2 ± 1 | 5 ± 3 | 2.569 ± 0.004 | 7 ± 1 | 5 ± 7 | | | p-Pt ₄₁ Ni ₅₇ Co ₂ -
AN | 2.68 ± 0.01 | 1.8 ± 0.7 | 3 ± 1 | 2.565 ± 0.002 | 7.3 ± 0.6 | 5.1 ± 0.5 | | | tetra-Pt ₆₅ Cu ₂₈ Ni ₇ | 2.696 ± 0.006 | 4.4 ± 1.0 | 5 ± 1 | 2.623 ± 0.008 | 3.8 ± 0.8 | 7 ± 2 | | | tetra-Pt $_{77}$ Cu $_{15}$ N $_{8}$ | 2.700 ± 0.007 | 5.6 ± 1.0 | 5.8 ± 0.8 | 2.637 ± 0.009 | 3.3 ± 0.8 | 7 ± 2 | | | Oct-Pt ₇₂ Ni ₁₃ Cu ₁₅ | 2.713 ± 0.004 | 7.6 ± 7 | NA | 2.66 ± 0.01 | 1.9 ± 0.5 | NA | | | Oct-Pt79Ni15Co6 | 2.715 ± 0.009 | 6 ± 2 | NA | 2.63 ± 0.03 | 4 ± 2 | NA | | | Oct-Pt ₆₁ Ni ₃₃ Co ₆ | 2.722 ± 0.009 | 6.3 ± 1.9 | 6 ± 1 | 2.64 ± 0.02 | 1.4 ± 1.2 | 7 ± 6 | | #### Supplementary Table 3 | Summary of compressive strain, ΔAF , and activity. | Sample | Compressive strain (%) | ΔAF | Descriptor | Ln(SA _{PtM} /SA _{Pt/C}) | | |---|------------------------|-----------------|------------|--|--| | sd-Pt ₈₅ Ni ₁₅ | 1.45 | 0.43 ± 0.07 | 0.23 | 2.82 | | | sd-Pt ₉₂ Ni ₈ -ADT | 0.73 | 0.45 ± 0.02 | 0.14 | 2.74 | | | sd-Pt ₈₄ Ni ₁₂ Co ₄ | 1.31 | 0.49 ± 0.05 | 0.22 | 3.37 | | | sd-Pt ₈₇ Ni ₁₀ Co ₃ -ADT | 1.09 | 0.37 ± 0.07 | 0.18 | 3.33 | | | fd-Pt ₈₆ Ni ₁₄ | 0.62 | 0.27 ± 0.03 | 0.11 | 2.46 | | | fd-Pt ₉₅ Ni ₅ -ADT | 0.36 | 0 ± 0.03 | 0.04 | 1.76 | | | fd-Pt ₈₄ Ni ₁₂ Co ₄ | 1.20 | 0 ± 0.06 | 0.15 | 2.42 | | | fd-Pt ₉₃ Ni ₅ Co ₂ -ADT | 0.84 | 0 ± 0.06 | 0.11 | 1.80 | | | Oct-Pt72Ni13Cu15 | 1.27 | 0 ± 0.01 | 0.17 | 2.82 | | | Oct-Pt ₆₁ Ni ₃₃ C ₀₆ | 1.20 | 0.08 ± 0.01 | 0.14 | 2.78 | | | Oct-Pt79Ni15C06 | 1.09 | 0 ± 0.03 | 0.17 | 2.54 | | | J-PtNWs | 1.45 | 0 | 0.19 | 3.49 | | | p-Pt ₄₀ Ni ₆₀ AN | 2.54 | 0.50 ± 0.05 | 0.38 | 1.68 | | | p-Pt ₄₁ Ni ₅₇ Co ₂ AN | 2.54 | 0.45 ± 0.06 | 0.37 | 1.72 | | | tetra-Pt ₆₅ Cu ₂₈ Ni ₇ | 1.82 | 0.36 ± 0.08 | 0.27 | 2.74 | | | tetra-Pt ₇₇ Cu ₁₅ N ₈ | 1.82 | 0.41 ± 0.02 | 0.28 | 2.93 | | | L10-Pt50Ni40Co10 | 1.82 | 0.67 | 0.30 | 2.47 | | | Cluster Model | Compressive strain (%) | ΔΑΓ | Descriptor | R _{Pt-Pt} (Å) | | | Pt ₁₄₇ | 0 | 0 | 0 | 2.774 | | | sd-Pt ₁₂₂ Ni ₂₅ | 2.06 | 0.3 | 0.3 | 2.717 | | | fd-Pt ₁₂₂ Ni ₂₅ | 1.58 | 0 | 0.20 | 2.730 | | | $sd\text{-}Pt_{122}Ni_{17}Co_8$ | 2.1 | 0.31 | 0.3 | 2.716 | | | sd-Pt ₁₃₁ Ni ₁₆ -ADT | 1.15 | 0.25 | 0.18 | 2.742 | | | fd-Pt ₁₃₄ Ni ₁₃ -ADT | 0.76 | 0 | 0.10 | 2.753 | | #### Supplementary Table 4 | Calculated O binding energy on (111) sites and vertex sites. | Cluster model | ΔE_o^{111} (eV) | $\Delta E_o^{(Vertex)}$ (eV) | |---|-------------------------------|------------------------------| | Pt ₁₄₇ | -3.62 | -3.87 | | fd-Pt ₁₂₂ Ni ₂₅ | -3.48 | -3.72 | | fd-Pt ₁₃₄ Ni ₁₃ -AST | -3.54 | 3.79 | | sd-Pt ₁₂₂ Ni ₂₅ | -3.31 | -3.66 | | sd-Pt ₁₃₁ Ni ₁₆ -AST | -3.47 [-3.46 x 2; -3.50 x 1] | 3.73 [-3.75 x 2; -3.69 x 1] | | sd-Pt ₁₂₂ Ni ₁₇ Co ₈ | -3.316 [-3.32 x 2; -3.31 x 1] | -3.64 [-3.64 x 2; -3.64 x 1] | | L1 ₀ -Pt ₁₁₆ Ni ₃₁ | -3.37 [-3.38 x 2; -3.36 x 1] | -3.58 [-3.59 x 2; -3.57 x 1] | #### Supplementary Table $5 \mid$ Raw values of the energy of the calculated systems. | System | E(M) (Rydberg) | $E(M)-O_0^{111}(Rydberg)$ | E(M)–O _o ^(Vertex) (Rydberg) | |---|-------------------|--|---| | О | -31.5474657724 | | | | Pt ₁₄₇ | -12726.6522899304 | -12758.4657118812 | -12758.4841899013 | | fd-Pt ₁₂₂ Ni ₂₅ | -12709.2775256586 | -12741.0807069197 | -12741.0985388631 | | fd-Pt ₁₃₄ Ni ₁₃ -AST | -12717.4686235119 | -12749.2763139104 | -12749.2946718591 | | sd-Pt ₁₂₂ Ni ₂₅ | -12709.3537344255 | -12741.1703392610 | -12741.1443475557 | | sd-Pt ₁₃₁ Ni ₁₆ -AST | -12715.6410466914 | -12747.4424207072 /
-12747.4458790896 | -12747.4637476077 / -
12747.4594632346 | | sd-Pt ₁₂₂ Ni ₁₇ Co ₈ | -12617.6171547700 | -12649.4087536697 /
-12649.4078834565 | -12649.4324942300 / -
12649.4325123459 | | L1 ₀ -Pt ₁₁₆ Ni ₃₁ | -12705.3514657628 | -12737.1473333587 /
-12737.1460702829 | -12737.1628160048 / -
12737.1613163246 | **Supplementary Table 6** | **Summary of representative state-of-the-art ORR catalysts.** *: Extracted from the literature; NA: not available. | Catalyst | SA (mA/cm²) | | ADT | SA | ECSA | MA | |--|-------------|------|--------|-----------|---------------------|--------| | Jan | BOL | ADT | Cycles | Retention | (m ² /g) | (A/mg) | | sd-Pt ₈₄ Ni ₁₂ Co ₄ (this work) | 10.7 | 10.1 | 20,000 | 95% | 68 | 7.1 | | sd-Pt ₈₅ Ni ₁₅ (this work) | 6.2 | 5.6 | 20,000 | 91% | 65 | 4.0 | | fd-Pt ₈₆ Ni ₁₄ (this work) | 4.0 | 2.1 | 20,000 | 53% | 65 | 2.6 | | PtNi-BNCs/C ³ | 5.16 | 5.17 | 50,000 | 100.2% | 68.2 | 3.52 | | PtPb nanoplate/C ⁴ | 7.8 | 7 | 50,000 | 89% | 55 | 4.3 | | Pt ₃ Ni/C nanoframes ⁵ | 8.4 | NA | 10,000 | NA | 67.2 | 5.7 | | PtNiCu ⁶ | 6.2 | 3.86 | 30,000 | 62.4% | 59 | 3.7 | | Pt ₆₁ Ni ₃₃ Co ₆ ⁷ | 6.01 | 2.52 | 6,000 | 42% | 46.5 | 2.8 | | Pt nanocage ⁸ | 1.98 | 1.64 | 10,000 | 83.1% | 38.2 | 0.75 | | L1 ₀ -CoPt/Pt ² | 8.26 | 6.77 | 30,000 | 82% | 27.3 | 2.26 | | C-L1 ₀ -PtNi _{0.8} Co _{0.2} 9 | 4.38 | NA | 10,000 | NA | 52 | 2.28 | | Mo-Pt ₃ Ni/C ¹⁰ | 10.3 | 9.7 | 8,000 | 94% | 67.7 | 6.98 | | J-PtNWs/C ¹¹ | 11.5 | 10.8 | 6,000 | 94.5% | 118 | 13.6 | | PtNi c-Oct/C ¹² | 6.41 | 6.9 | 10,000 | 108% | 34.6* | 2.22 | #### **Supplementary References** - 1. Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. *Phys. Rev. Lett.* **93**, 156801 (2004). - 2. Li, J. *et al.* Hard-magnet L1₀-CoPt nanoparticles advance fuel cell catalysis. *Joule* **3**, 124-135 (2019). - 3. Tian, X. *et al.* Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. *Science* **366**, 850 (2019). - 4. Bu, L. *et al.* Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. *Science* **354**, 1410 (2016). - 5. Chen, C. *et al.* Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. *Science* **343**, 1339-1343 (2014). - 6. Cao, L. *et al.* Differential surface elemental distribution leads to significantly enhanced stability of PtNi-based ORR catalysts. *Matter* **1**, 1567-1580 (2019). - 7. Zhao, Z. *et al.* Composition tunable ternary Pt-Ni-Co octahedra for optimized oxygen reduction activity. *ChemComm* **52**, 11215-11218 (2016). - 8. Zhang, L. *et al.* Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. *Science* **349**, 412-416 (2015). - 9. Wang, T. *et al.* Sub-6 nm fully ordered L1₀-Pt–Ni–Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain. *Adv. Energy Mater.* **9**, 1803771 (2019). - 10. Huang, X. *et al.* High-performance transition metal–doped Pt₃Ni octahedra for oxygen reduction reaction. *Science* **348**, 1230 (2015). - 11. Li, M. *et al.* Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. *Science* **354**, 1414 (2016). - 12. Zhu, E. *et al. In situ* development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. *Nano Res.* **9**, 149-157 (2016).