Supporting Information

Three-Component Cross-Electrophile Coupling: Regioselective Electrochemical Dialkylation of Alkenes

Lingxiang Lu,[†] Yi Wang,[†] Wendy Zhang,[‡] Wen Zhang,[†] Kimberly A. See,[‡] Song Lin^{*,†}

[†]Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States [‡]Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

*Email: songlin@cornell.edu

Contents:

S1. General Information	S2
S2. General Procedure for Electrochemical Dialkylation of Alkenes	S3
S3. Optimization of Reaction Conditions	S4
S4. Cyclic Voltammetry Studies	S5
S5. Voltage Profile Measurements	S8
S6. Substrate Scope	
S7. Characterization of Products	S12
S8. Mechanistic Studies	S33
S9. Copies of NMR Spectra	
S10. Reaction Reproduction Report	S150
S11. References	S151

S1. General Information

All reactions were carried out in oven-dried glassware with magnetic stirring under nitrogen. 1,2-Dimethoxyethane (DME) and tetrahydrofuran (THF) were dried over molecular sieves before use. Mg anode and graphite cathode were polished before use. Since alkyl bromides decompose over time during storage, the use of freshly prepared/distilled substrates is recommended. All other chemicals were used as received. Flash column chromatography was performed using silica gel (230–400 mesh) from SiliCycle. Nuclear magnetic resonance (NMR) spectra were measured on Bruker NMR instruments (¹H at 500 MHz, ¹³C(¹H) at 126 MHz, ¹⁹F at 470 MHz, ¹⁹F(¹H) at 376 MHz, ³¹P at 202 MHz). Data for ¹H NMR spectra are reported as follows: chemical shift δ (ppm) referenced to CHCl₃ (7.26 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, brs = broad singlet, dd = doublet of doublets, td = triplet of doublets, m = multiplet), coupling constant *J* (Hz), and integration. Data for ¹³C(¹H) NMR spectra are reported as follows: chemical shift δ (ppm) referenced to CDCl₃ (77.16 ppm), multiplicity (null = singlet, d = doublet, q = quartet), and coupling constant *J* (Hz). Data for ¹⁹F and ³¹P NMR spectra are reported in terms of chemical shift δ (ppm) and multiplicity (s = singlet, t = triplet, m = multiplet). Data for ¹⁹F(¹H) NMR spectra are reported in terms of chemical shift δ (ppm). High-resolution mass spectra (HRMS) were recorded on Thermo Scientific Exactive Orbitrap mass spectrometers with direct analysis in real time (DART) or electron impact ionization (EI).

S2. General Procedure for Electrochemical Dialkylation of Alkenes

In a nitrogen-regulated glovebox, an oven-dried 5-mL ElectraSyn vial was charged with tetrabutylammonium perchlorate (TBAClO₄, 2.0 mmol, 2.0 equiv) and a stir bar. Then, a solution of alkene (1.0 mmol, 1.0 equiv), tertiary alkyl bromide (2.0 mmol, 2.0 equiv), and primary alkyl bromide (1.0 mmol, 1.0 equiv) in 4.0 mL of anhydrous DME was added and the reaction mixture was stirred to dissolve the electrolyte. After that, the ElectraSyn vial and cap equipped with anode (Mg plate) and cathode (graphite plate) were screwed tight, transferred out of the glovebox, and mounted onto the ElectraSyn 2.0 device. A nitrogen balloon was attached to the cap and the reaction mixture was electrolyzed with magnetic stirring (stirring rate: 1200 rpm) at a constant current of 2.5 mA until passing 3.0 F/mol of charge at room temperature (22 °C). Upon completion of electrolysis, the reaction mixture was passed through a plug of silica gel (ca. 8 cm thick) and eluted with 125 mL of 20% Et₂O in hexanes (the volume includes that of the solvent used to rinse the reaction vial and electrodes). The filtrate was concentrated under reduced pressure and the crude product was purified by flash column chromatography (silica gel) to afford the desired product.

Figure S1. Electrochemical setup for alkene dialkylation. (A) Rubber septum, ElectraSyn cap, and electrodes. (B) ElectraSyn cap equipped with electrodes. (C) ElectraSyn vial with electrolyte and stir bar. The screw thread was covered with polytetrafluoroethylene (PTFE) tape. (D) Reaction mixture before electrolysis. (E) Reaction mixture after electrolysis. (F) Filtration to remove electrolyte and magnesium salts.

S3. Optimization of Reaction Conditions

The reaction optimization was shown in Table S1. The main identifiable side product **61** arose from hydroalkylation of **1** with tertiary alkyl bromide **2**, presumably from interception of carbanion intermediate **F** (see Scheme 2A in the main text for the structure) by the tetrabutylammonium electrolyte (via Hofmann elimination), **2** (via E2 elimination), or residual water (via protonation). For electron-rich alkenes, conditions in entry 5 were used for increasing the conversion of alkenes. For other alkenes, conditions in entry 1 were applied unless otherwise specified.

0 1 (1 mmol)	+ ^t BuBr + Cl Br 2 (2 equiv) 3 (1 equiv)	Mg (+) C (-) TBACIO ₄ (2 equiv) DME (4.0 mL) 22 °C, <i>i</i> = 2.5 mA 3.0 F/mol		61
entry	variation from above conditions	conversion of 1 (%)	yield of 4 (%)	yield of 61 (%)
1	none	>95	71	8
2	2.5 F/mol	>95	54	9
3	1 equiv of 2	>95	49	7
4	2 equiv of 3	>95	76	6
5	2 equiv of 3 , 3.5 F/mol	>95	80	6
6	entry 5, THF instead of DME	>95	8	<5
7	THF/ ^t BuCN instead of DME	>95/82	25/18	15/26
8	BDD/glassy carbon cathode	71/76	12/10	<5/<5
9	Ni foam/Pt cathode	94/>95	13/11	<5/<5
10	Zn/Al anode	>95/10	<5/<5	<5/<5
11	TBABF ₄ /TBAOTf	>95/>95	25/<5	9/<5
12	LiCIO ₄ /LiOTf	80/>95	16/<5	6/<5
13	Mg powder without electrolysis	90	<5	<5
14	Mg electrode without electrolysis	46	<5	<5
15	divided cell, Zn anode	90	35	<5
16	0.5 mmol of 1 ^b	92	60	9

Table S1. Reaction Optimization^a

^aYields determined by ¹H NMR analysis using dibromomethane as the internal standard. ^bWith **1** (0.5 mmol), **2** (2 equiv), **3** (1 equiv). BDD, boron-doped diamond. Tf, trifluoromethanesulfonyl.

S4. Cyclic Voltammetry Studies

All cyclic voltammetry studies were conducted in a nitrogen-regulated glovebox on EC Epsilon (BASi). Measurements were performed in 0.5 M TBAClO₄ in DME using a divided three-compartment cell. Mg(OTf)₂, which bears a redox-innocent anion, was used as the Mg²⁺ source instead of MgCl₂ due to its higher solubility in DME. Control experiments revealed no difference of Mg(OTf)₂ and MgCl₂ in the scan range of -3.0 to 0.5 V versus Zn^{2+/0}. Scan rate is 100 mV/s. Concentration of alkyl halides and alkenes is 0.5 mg/mL.

Supporting electrolyte: TBACIO₄ was recrystallized from EtOAc for three times and dried under vacuum at 65 °C overnight.

Solvent: DME was first dried overnight with KOH, and then refluxed with sodium and benzophenone under nitrogen for 5 h. The water content was determined by a Karl Fischer titrator to be <5 ppm.

Working electrode: The working electrode is a glassy carbon electrode (3 mm in diameter). It was polished with 1.0, 0.3, and 0.05 μ m aluminum oxide, and then sonicated in distilled water and acetone before air drying and transferring into the glovebox.

Reference electrode: The reference electrode consisted of a zinc wire submerged in a saturated solution of $Zn(OTf)_2$ in THF. The Zn wire was polished with sandpaper and washed with acetone before transferring into the glovebox. After each set of scan, ferrocene was added to reference the final potential to ferrocenium/ferrocene redox couple (Fc^{+/0}).

Counter electrode: The counter electrode is a platinum wire that was burned for 30 s with a butane torch before transferring into the glovebox.

Figure S2. Cyclic voltammetry of alkene 1, *tert*-butyl bromide (2), and 1-bromo-3-chloropropane (3). The onset potential is –2.8, –2.4, and –2.6 V for 1, 2, and 3, respectively, indicating *tert*-butyl bromide underwent reduction preferentially over the others.

Figure S3. Cyclic voltammetry of tertiary and primary alkyl bromides with and without Mg²⁺. Mg²⁺ does not affect the redox potential or peak current.

Figure S4. Cyclic voltammetry of *tert*-butyl bromide with and without alkenes. Current enhancement was observed in both cases, indicating that the intermediates from alkyl halide reduction can interact with alkenes.

S5. Voltage Profile Measurements

All experiments were conducted in a nitrogen-regulated glovebox on a VMP3 potentiostat (BioLogic). Electrochemical dialkylation of alkenes were conducted in a three-electrode configuration with Mg counter electrode (CE), graphite working electrode (WE), and Ag wire pseudo-reference electrode. The pseudo-reference electrode is used to isolate the CE potential changes from those at the WE. The Mg electrode was mechanically ablated within the glovebox, prior to use, to remove any oxide layer on the surface. The CE and WE were connected to the potentiostat via copper wire. The experiments were carried out in a 10-mL round-bottom vial equipped with a stir bar and a screw cap with pierceable PTFE septum. The reaction (1.5 mmol scale) was electrolyzed at a constant current of -2.5 mA (j = -0.5 mA/cm²) until passing 3.5 F/mol of charge (57 h) at room temperature.

Figure S5. Electrochemical setup for voltage profile measurements. (A) Reaction mixture before electrolysis. (B) Mg counter electrode after electrolysis in THF. (C) Mg counter electrode after electrolysis in DME.

S6. Substrate Scope

Figure S6. Scope of alkenes.

Figure S7. Scope of electrophiles. Boc, tert-butyloxycarbonyl. Ts, 4-toluenesulfonyl.

Figure S8. Unsuccessful substrates. The yields were determined by ¹H NMR analysis using dibromomethane as the internal standard.

S7. Characterization of Products

5-(1-Chloro-6,6-dimethylheptan-4-yl)benzo[d][1,3]dioxole (4)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel) afforded the title compound **4** (224 mg, 0.792 mg, 79%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, δ): 6.70 (d, *J* = 7.9 Hz, 1H), 6.65 (d, *J* = 1.6 Hz, 1H), 6.60 (dd, *J* = 7.9, 1.6 Hz, 1H), 5.92 (s, 2H), 3.48–3.40 (m, 2H), 2.59–2.51 (m, 1H), 1.75–1.46 (m, 6H), 0.78 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 147.8, 145.7, 141.0, 121.0, 108.2, 107.8, 100.9, 51.1, 45.3, 42.0, 37.1, 31.4, 30.9, 30.2.

HRMS (DART–Orbitrap, *m/z*): [M – H]⁺ calculated for C₁₆H₂₂ClO₂⁺: 281.1303; found: 281.1280.

4,4,5,5-Tetramethyl-2-(4,6,6-trimethyl-1-(phenylthio)heptan-4-yl)-1,3,2-dioxaborolane (7)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1–2% Et_2O in hexanes) afforded the title compound **7** (278 mg, 0.739 mmol, 74%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.31 (d, *J* = 7.6 Hz, 2H), 7.28–7.23 (m, 2H), 7.14 (t, *J* = 7.3 Hz, 1H), 2.92–2.81 (m, 2H), 1.75–1.64 (m, 1H), 1.63–1.46 (m, 3H), 1.30 (apparent td, *J* = 12.7, 4.4 Hz, 1H), 1.22–1.15 (m, 13H), 0.95 (s, 3H), 0.93 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 137.2, 128.93, 128.90, 125.7, 83.2, 52.7, 41.1, 34.5, 31.8, 31.7, 25.3, 25.12, 25.08, 22.9. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₂H₃₈BO₂S⁺: 377.2680; found: 377.2670.

(5-Methoxy-1-(1-methylcyclohexyl)pentan-2-yl)benzene (8)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel) afforded the title compound **8** (184

mg, 0.671 mmol, 67%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.26–7.22 (m, 2H), 7.18–7.11 (m, 3H), 3.32–3.23 (m, 2H), 3.27 (s, 3H), 2.67–2.58 (m, 1H), 1.75 (dd, *J* = 14.1, 8.6 Hz, 1H), 1.69–1.60 (m, 1H), 1.57–1.48 (m, 2H), 1.48–1.33 (m, 4H), 1.33–1.17 (m, 6H), 1.06–1.00 (m, 2H), 0.73 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 148.0, 128.3, 128.0, 125.7, 73.0, 58.6, 49.4, 41.6, 38.7, 38.5, 36.6, 33.8, 28.0, 26.6, 25.4, 22.2, 22.1.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₁₉H₃₁O⁺: 275.2369; found: 275.2356.

tert-Butyl 4-(4,4-dimethyl-2-(4-phenoxyphenyl)pentyl)piperidine-1-carboxylate (9)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel) afforded the title compound **9** (315 mg, 0.697 mmol, 70%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.32 (apparent t, *J* = 7.7 Hz, 2H), 7.11 (d, *J* = 8.2 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.2 Hz, 2H), 4.02 (brs, 2H), 2.79–2.70 (m, 1H), 2.66–2.45 (m, 2H), 1.76 (d, *J* = 12.0 Hz, 1H), 1.63 (dd, *J* = 13.9, 8.6 Hz, 1H), 1.55–1.38 (m, 4H), 1.44 (s, 9H), 1.17–0.98 (m, 3H), 0.78 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 157.8, 155.02, 155.01, 142.7, 129.8, 129.0, 123.0, 119.1, 118.6, 79.3, 51.4, 46.9, 38.6, 33.4, 33.0, 31.7, 31.5, 30.3, 28.6.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₉H₄₂NO₃⁺: 452.3159; found: 452.3135.

2-(4-(1-(1,3-Dioxolan-2-yl)-5,5-dimethylhexan-3-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel) afforded the title compound **10** (198 mg, 0.510 mmol, 51%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.70 (d, *J* = 7.8 Hz, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 4.74 (apparent t, *J* = 4.7 Hz, 1H), 3.95–3.85 (m, 2H), 3.84–3.73 (m, 2H), 2.68–2.59 (m, 1H), 1.78–1.66 (m, 2H), 1.65–1.57 (m, 1H), 1.56–1.45 (m, 2H), 1.38–1.32 (m, 1H), 1.33 (s, 12H), 0.75 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 150.9, 135.0, 127.5, 104.7, 83.7, 65.0, 64.9, 50.6, 42.9, 33.9, 32.2, 31.5, 30.3, 25.04, 25.02. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, *m*/*z*): [M – H]⁺ calculated for C₂₃H₃₆BO₄⁺: 387.2701; found: 387.2680.

1-(8-Fluoro-2,2-dimethyloctan-4-yl)-4-(trifluoromethoxy)benzene (11)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel) afforded the title compound **11** (193 mg, 0.602 mmol, 60%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.17 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 4.45–4.37 (m, 1H), 4.35–4.27 (m, 1H), 2.67–2.59 (m, 1H), 1.73–1.46 (m, 6H), 1.30–1.20 (m, 1H), 1.18–1.05 (m, 1H), 0.77 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 147.4 (q, *J* = 2 Hz), 146.4, 129.0, 120.9, 120.7 (q, *J* = 256 Hz), 84.2 (d, *J* = 164 Hz), 50.8, 42.2, 39.6, 31.5, 30.5 (d, *J* = 19 Hz), 30.2, 23.4 (d, *J* = 5 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, δ): -57.9 (s), -217.8 - -218.2 (m).

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₁₇H₂₅F₄O⁺: 321.1836; found: 321.1817.

1-(9,9,9-Trifluoro-2,2-dimethylnonan-4-yl)-3-(trifluoromethyl)benzene (12)

The reaction was performed on 1.00 mmol scale following the general procedure (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel) afforded the title compound **12** (139 mg, 0.392 mmol, 39%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.43 (d, *J* = 7.7 Hz, 1H), 7.41–7.36 (m, 2H), 7.34 (d, *J* = 7.6 Hz, 1H), 2.72–2.63 (m, 1H), 2.05–1.90 (m, 2H), 1.70 (dd, *J* = 14.1, 8.8 Hz, 1H), 1.66–1.37 (m, 5H), 1.28–1.16 (m, 1H), 1.12–0.99 (m, 1H), 0.77 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 148.6, 131.4, 130.8 (q, *J* = 32 Hz), 128.9, 127.3 (q, *J* = 276 Hz), 124.5 (q, *J* = 4 Hz), 124.4 (q, *J* = 272 Hz), 122.9 (q, *J* = 4 Hz), 50.7, 42.6, 39.4, 33.7 (q, *J* = 28 Hz), 31.5, 30.2, 26.8, 21.9 (q, *J* = 3 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, δ): -62.5 (s), -66.5 (apparent t, J = 10.9 Hz).

HRMS (EI–Orbitrap, *m/z*): M^{+•} calculated for C₁₈H₂₄F₆⁺: 354.1777; found: 354.1779.

(4-(3-Fluorophenyl)-6,6-dimethylheptyl)(phenyl)sulfane (13)

The reaction was performed on 1.00 mmol scale following the general procedure (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel) afforded the title compound **13** (248 mg, 0.750 mmol, 75%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.26–7.23 (m, 4H), 7.23–7.12 (m, 2H), 6.91 (d, J = 7.7 Hz, 1H), 6.88–6.81 (m, 2H), 2.89–2.76 (m, 2H), 2.65–2.56 (m, 1H), 1.77–1.56 (m, 3H), 1.53–1.43 (m, 2H), 1.43–1.32 (m, 1H), 0.77 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 163.1 (d, J = 245 Hz), 150.2 (d, J = 7 Hz), 136.8, 129.8 (d, J = 8 Hz), 129.2, 128.9, 125.9, 123.7 (d, J = 3 Hz), 114.5 (d, J = 21 Hz), 112.8 (d, J = 21 Hz), 50.8, 42.3 (d, J = 2 Hz), 38.7, 33.8, 31.4, 30.2, 27.1. HRMS (DART–Orbitrap, m/z): [M + H]⁺ calculated for C₂₁H₂₈FS⁺: 331.1890; found: 331.1865.

1-(1-Chloro-6,6-dimethylheptan-4-yl)-3-fluorobenzene (14)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel) afforded the title compound **14** (205 mg, 0.798 mmol, 80%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.25–7.19 (m, 1H), 6.94 (d, J = 7.7 Hz, 1H), 6.90–6.83 (m, 2H), 3.50–3.38 (m, 2H), 2.67–2.60 (m, 1H), 1.80–1.66 (m, 2H), 1.65–1.56 (m, 2H), 1.56–1.46 (m, 2H), 0.78 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 163.2 (d, *J* = 245 Hz), 150.0 (d, *J* = 7 Hz), 129.9 (d, *J* = 8 Hz), 123.7 (d, *J* = 3 Hz), 114.5 (d, *J* = 21 Hz), 112.9 (d, *J* = 21 Hz), 50.8, 45.2, 42.1 (d, *J* = 2 Hz), 36.9, 31.4, 30.8, 30.2.

¹⁹**F NMR** (470 MHz, CDCl₃, δ): -113.5 - -113.6 (m).

HRMS (DART–Orbitrap, *m*/*z*): [M + H]⁺ calculated for C₁₅H₂₃ClF⁺: 257.1467; found: 257.1455.

1-Chloro-4-(1-methoxy-4,6-dimethylheptan-4-yl)benzene (15)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel) afforded the title compound **15** (171 mg, 0.636 mmol, 64%) as a light yellow oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.26–7.20 (m, 4H), 3.28–3.23 (m, 2H), 3.26 (s, 3H), 1.73–1.61 (m, 2H), 1.56–1.37 (m, 4H), 1.30 (s, 3H), 1.19–1.08 (m, 1H), 0.80 (d, *J* = 6.3 Hz, 3H), 0.56 (d, *J* = 6.4 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 146.6, 131.2, 128.2, 128.1, 73.4, 58.6, 52.7, 40.9, 40.8, 25.4, 24.8, 24.7, 24.5, 23.7. HRMS (DART–Orbitrap, m/z): [M + H]⁺ calculated for C₁₆H₂₆ClO⁺: 269.1667; found: 269.1653.

1-Chloro-4-(8-fluoro-2,2,4-trimethyloctan-4-yl)benzene (16)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel) afforded the title compound **16** (213 mg, 0.748 mmol, 75%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.23 (s, 4H), 4.43–4.35 (m, 1H), 4.33–4.25 (m, 1H), 1.86 (d, *J* = 14.6 Hz, 1H), 1.68–1.47 (m, 5H), 1.41 (s, 3H), 1.31–1.20 (m, 1H), 0.90–0.79 (m, 1H), 0.71 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 146.8, 131.1, 128.3, 128.0, 84.2 (d, *J* = 164 Hz), 56.6, 46.4, 41.6, 32.5, 32.2, 31.1 (d, *J* = 19 Hz), 24.0, 19.6 (d, *J* = 5 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, *δ*): -217.7 - -218.1 (m).

HRMS (DART–Orbitrap, m/z): [M + H]⁺ calculated for C₁₇H₂₇ClF⁺: 285.1780; found: 285.1765.

(4-(4-Isobutylphenyl)-4,6,6-trimethylheptyl)(phenyl)sulfane (17)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel) afforded the title compound **17** (242 mg, 0.632 mmol, 63%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.23–7.20 (m, 4H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.14–7.09 (m, 1H), 7.01 (d, *J* = 8.0 Hz, 2H), 2.79 (apparent t, *J* = 7.2 Hz, 2H), 2.42 (d, *J* = 7.2 Hz, 2H), 1.88–1.77 (m, 3H), 1.64 (apparent td, *J* = 12.7, 4.6 Hz, 1H), 1.55 (d, *J* = 14.7 Hz, 1H), 1.53–1.44 (m, 1H), 1.38 (s, 3H), 1.25–1.14 (m, 1H), 0.87 (apparent d, *J* = 6.5 Hz, 6H), 0.69 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 145.0, 138.6, 137.1, 128.9, 128.6, 126.5, 125.7, 56.9, 45.5, 45.1, 41.4, 34.5, 32.5, 32.1, 30.3, 24.3, 23.6, 22.52, 22.49.

HRMS (DART–Orbitrap, *m*/*z*): [M + H]⁺ calculated for C₂₆H₃₉S⁺: 383.2767; found: 383.2747.

1-Methoxy-3-(4,6,6-trimethyl-1-phenoxyheptan-4-yl)benzene (18)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel) afforded the title compound **18** (269 mg, 0.790 mmol, 79%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.26–7.22 (m, 2H), 7.20 (t, J = 8.0 Hz, 1H), 6.96–6.87 (m, 3H), 6.85–6.80 (m, 2H), 6.70

(dd, *J* = 8.1, 2.3 Hz, 1H), 3.84–3.78 (m, 2H), 3.81 (s, 3H), 1.91 (d, *J* = 14.6 Hz, 1H), 1.84–1.75 (m, 1H), 1.70–1.62 (m, 2H), 1.60 (d, *J* = 14.6 Hz, 1H), 1.44 (s, 3H), 1.35–1.25 (m, 1H), 0.74 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 159.4, 159.2, 149.9, 129.5, 128.8, 120.6, 119.7, 114.5, 113.8, 109.8, 68.5, 56.8, 55.3, 42.7, 41.6, 32.5, 32.1, 24.2, 24.0.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₃H₃₃O₂⁺: 341.2475; found: 341.2458.

Ethyl 2,2-dimethyl-5-(1-neopentyl-1,2,3,4-tetrahydronaphthalen-1-yl)pentanoate (19)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel) afforded the title compound **19** (245 mg, 0.683 mmol, 68%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.22 (d, *J* = 7.8 Hz, 1H), 7.09–7.04 (m, 1H), 7.04–6.97 (m, 2H), 4.05 (q, *J* = 7.1 Hz, 2H), 2.81–2.66 (m, 2H), 2.07–1.98 (m, 1H), 1.88 (d, *J* = 14.9 Hz, 1H), 1.85–1.77 (m, 1H), 1.75–1.60 (m, 3H), 1.56–1.48 (m, 2H), 1.46–1.36 (m, 2H), 1.20–1.12 (m, 1H), 1.18 (t, *J* = 7.1 Hz, 3H), 1.10 (s, 3H), 1.09 (s, 3H), 1.02–0.91 (m, 1H), 0.85 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, *δ*): 178.2, 145.0, 137.0, 129.2, 127.2, 125.4, 125.0, 60.3, 53.1, 45.3, 42.4, 41.8, 41.5, 32.5, 32.3, 31.8, 31.0, 25.5, 25.2, 20.1, 20.0, 14.4.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₄H₃₉O₂⁺: 359.2945; found: 359.2925.

Ethyl 2,2,8,8-tetramethyl-6,6-diphenylnonanoate (20)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel) afforded the title compound **20** (356 mg, 0.902 mmol, 90%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.23–7.14 (m, 8H), 7.13–7.08 (m, 2H), 3.96 (q, *J* = 7.1 Hz, 2H), 2.23–2.16 (m, 2H), 2.22 (s, 2H), 1.47–1.40 (m, 2H), 1.09 (t, *J* = 7.1 Hz, 3H), 1.04 (s, 6H), 0.95–0.86 (m, 2H), 0.68 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 178.0, 150.3, 128.3, 127.7, 125.5, 60.3, 49.6, 48.8, 42.3, 41.5, 39.1, 32.3, 31.9, 25.3, 20.1, 14.3.

HRMS (DART–Orbitrap, *m/z*): [M + H]⁺ calculated for C₂₇H₃₉O₂⁺: 395.2945; found: 395.2926.

2-Methoxy-5-(1-methoxy-6,6-dimethylheptan-4-yl)pyridine (21)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel) afforded the title compound **21** (154 mg, 0.580 mmol, 58%) as a light yellow oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.93 (d, *J* = 2.4 Hz, 1H), 7.39 (dd, *J* = 8.5, 2.4 Hz, 1H), 6.68 (d, *J* = 8.5 Hz, 1H), 3.91 (s, 3H), 3.32–3.24 (m, 2H), 3.27 (s, 3H), 2.62–2.53 (m, 1H), 1.69–1.58 (m, 2H), 1.54 (dd, *J* = 14.1, 3.3 Hz, 1H), 1.51–1.36 (m, 2H), 1.36–1.23 (m, 1H), 0.77 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 162.8, 146.1, 137.8, 135.3, 110.8, 72.8, 58.7, 53.4, 50.5, 39.0, 36.2, 31.4, 30.3, 27.8.
 HRMS (DART–Orbitrap, *m/z*): [M + H]⁺ calculated for C₁₆H₂₈NO₂⁺: 266.2115; found: 266.2093.

3-(1-Chloro-6,6-dimethylheptan-4-yl)thiophene (22)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide. Purification by flash column chromatography (silica gel) afforded the title compound **22** (127 mg, 0.519 mmol, 52%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.25–7.22 (m, 1H), 6.92 (d, J = 4.9 Hz, 1H), 6.90–6.87 (m, 1H), 3.50–3.39 (m, 2H), 2.84–2.77 (m, 1H), 1.76–1.47 (m, 6H), 0.79 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 147.8, 126.8, 125.6, 119.9, 50.7, 45.3, 37.3, 36.5, 31.3, 30.8, 30.1.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₁₃H₂₂ClS⁺: 245.1125; found: 245.1114.

2-(4-(Benzo[b]thiophen-3-yl)-6,6-dimethylheptyl)-5-methylfuran (23)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel) afforded the title compound **23** (181 mg, 0.532 mmol, 53%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.88–7.81 (m, 2H), 7.39–7.30 (m, 2H), 7.07 (s, 1H), 5.81–5.77 (m, 1H), 5.74 (d, *J* = 2.3 Hz, 1H), 3.19–3.10 (m, 1H), 2.49 (apparent t, *J* = 7.5 Hz, 2H), 2.22 (s, 3H), 1.91 (dd, *J* = 14.0, 8.5 Hz, 1H), 1.81–1.68 (m, 2H), 1.66 (dd, *J* = 14.0, 3.4 Hz, 1H), 1.60–1.51 (m, 1H), 1.48–1.39 (m, 1H), 0.81 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 154.4, 150.2, 142.4, 141.0, 138.9, 124.1, 123.7, 123.1, 122.3, 120.8, 105.8, 105.4, 49.7, 38.3, 35.6, 31.4, 30.1, 28.2, 26.4, 13.6.

HRMS (DART–Orbitrap, *m*/*z*): [M + H]⁺ calculated for C₂₂H₂₉OS⁺: 341.1934; found: 341.1917.

(6,6-Dimethyl-1-phenoxyheptan-4-yl)ferrocene (24)

The reaction was performed on 1.00 mmol scale following the general procedure (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel) afforded the title compound **24** (187 mg, 0.462 mmol, 46%) as an orange oil.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.30–7.23 (m, 2H), 6.92 (t, J = 7.2 Hz, 1H), 6.88 (d, J = 8.0 Hz, 2H), 4.16 (s, 5H), 4.12–4.02 (m, 4H), 3.94–3.86 (m, 2H), 2.38 (brs, 1H), 1.84–1.67 (m, 5H), 1.53–1.47 (m, 1H), 0.97 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 159.2, 129.5, 120.6, 114.6, 97.8, 68.6, 68.1, 67.5, 67.2, 66.8, 66.7, 49.2, 34.7, 34.0, 31.2, 30.6, 27.1.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₅H₃₃FeO⁺: 405.1875; found: 405.1855.

2-(6,6-Dimethyl-1-phenoxyheptan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (25)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1–2% Et₂O in hexanes) afforded the title compound **25** (197 mg, 0.569 mmol, 57%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.30–7.23 (m, 2H), 6.95–6.86 (m, 3H) 3.94 (apparent t, *J* = 6.6 Hz, 2H), 1.90–1.71 (m, 2H), 1.62–1.51 (m, 2H), 1.50–1.39 (m, 1H), 1.243 (s, 6H), 1.235 (s, 6H), 1.17 (dd, *J* = 13.4, 1.8 Hz, 1H), 1.04–0.96 (m, 1H), 0.88 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 159.2, 129.5, 120.5, 114.7, 83.1, 68.2, 45.9, 31.1, 29.9, 29.8, 28.8, 25.1, 25.0. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₁H₃₆BO₃⁺: 347.2752; found: 347.2743.

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1–2% Et₂O in hexanes) afforded the title compound **26** (247 mg, 0.686 mmol, 69%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.29–7.24 (m, 2H), 6.94–6.86 (m, 3H), 3.95–3.87 (m, 2H), 1.90–1.79 (m, 1H), 1.77–1.67 (m, 1H), 1.58 (d, *J* = 14.1 Hz, 1H), 1.53 (apparent td, *J* = 12.8, 4.4 Hz, 1H), 1.34 (apparent td, *J* = 12.8, 4.5 Hz, 1H), 1.26–1.20 (m, 13H), 1.01 (s, 3H), 0.96 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 159.3, 129.5, 120.5, 114.6, 83.2, 68.8, 52.5, 37.5, 31.8, 31.7, 25.3, 25.1, 24.9, 22.9. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): [M + H]⁺ calculated for C₂₂H₃₈BO₃⁺: 361.2909; found: 361.2899.

2-(6,6-Dimethyl-4-phenethyl-1-phenoxyheptan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (27)

The reaction was performed on 1.00 mmol scale following the general procedure with 1.2 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel, 1–2% Et₂O in hexanes) afforded the title compound **27** (304 mg, 0.675 mmol, 68%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.31–7.23 (m, 4H), 7.20–7.13 (m, 3H), 6.96–6.88 (m, 3H), 4.01–3.92 (m, 2H), 2.61 (apparent td, J = 13.0, 4.9 Hz, 1H), 2.50 (apparent td, J = 13.0, 4.5 Hz, 1H), 1.93–1.82 (m, 1H), 1.82–1.60 (m, 5H), 1.49 (ABq, J = 14.5 Hz, 2H), 1.28 (s, 6H), 1.27 (s, 6H), 1.01 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 159.2, 143.7, 129.5, 128.5, 128.4, 125.6, 120.5, 114.6, 83.3, 68.6, 49.0, 37.7, 32.0, 31.8, 30.6, 30.4, 25.6, 25.5, 23.6. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₉H₄₄BO₃⁺: 451.3378; found: 451.3364.

2-(6,6-Dimethyl-1-phenoxy-4-phenylheptan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (28)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1% Et_2O in hexanes) afforded the title compound **28** (367 mg, 0.869 mmol, 87%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.51 (d, *J* = 8.0 Hz, 2H), 7.28–7.20 (m, 4H), 7.12 (t, *J* = 7.3 Hz, 1H), 6.90 (t, *J* = 7.3 Hz, 1H), 6.82 (d, *J* = 8.3 Hz, 2H), 3.90–3.80 (m, 2H), 2.14–2.06 (m, 1H), 2.06–1.98 (m, 2H), 1.80 (d, *J* = 14.2 Hz, 1H), 1.64–1.50 (m, 2H), 1.25 (s, 6H), 1.21 (s, 6H), 0.77 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 159.2, 145.6, 129.5, 128.3, 128.0, 125.3, 120.4, 114.5, 83.4, 68.4, 49.8, 34.5, 32.2,

31.6, 25.3, 25.2, 24.9. The signal of the carbon atom attached to boron was not observed. **HRMS** (DART–Orbitrap, m/z): [M + H]⁺ calculated for C₂₇H₄₀BO₃⁺: 423.3065; found: 423.3048.

2-(1-Methoxy-6,6-dimethyl-4-phenylheptan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (29)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1–5% Et₂O in hexanes) afforded the title compound **29** (315 mg, 0.874 mmol, 87%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.49 (d, *J* = 8.0 Hz, 2H), 7.23 (apparent t, *J* = 7.7 Hz, 2H), 7.10 (t, *J* = 7.2 Hz, 1H), 3.28 (apparent t, *J* = 6.9 Hz, 2H), 3.25 (s, 3H), 2.01–1.86 (m, 3H), 1.78 (d, *J* = 14.3 Hz, 1H), 1.43–1.30 (m, 2H), 1.23 (s, 6H), 1.20 (s, 6H), 0.75 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 145.8, 128.3, 127.9, 125.2, 83.4, 73.6, 58.5, 49.6, 34.4, 32.2, 31.6, 25.5, 25.2, 24.9. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₂H₃₈BO₃⁺: 361.2909; found: 361.2898.

2-(1-Chloro-6,6-dimethyl-4-phenylheptan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1% Et_2O in hexanes) afforded the title compound **30** (331 mg, 0.907 mmol, 91%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.49 (d, *J* = 7.8 Hz, 2H), 7.25 (apparent t, *J* = 7.7 Hz, 2H), 7.12 (t, *J* = 7.3 Hz, 1H), 3.49–3.38 (m, 2H), 2.10–2.02 (m, 1H), 2.02–1.94 (m, 2H), 1.77 (d, *J* = 14.2 Hz, 1H), 1.60–1.51 (m, 2H), 1.25 (s, 6H), 1.21 (s, 6H), 0.75 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 145.3, 128.3, 128.1, 125.4, 83.5, 50.0, 46.0, 35.9, 32.2, 31.5, 28.8, 25.3, 24.9. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₁H₃₅BClO₂+: 365.2413; found: 365.2402.

2-(8-Fluoro-2,2-dimethyl-4-phenyloctan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (31)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1% Et_2O in hexanes) afforded the title compound **31** (331 mg, 0.914 mmol, 91%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.49 (d, *J* = 8.0 Hz, 2H), 7.27–7.21 (m, 2H), 7.11 (t, *J* = 7.3 Hz, 1H), 4.40 (apparent td, *J* = 6.2, 2.3 Hz, 1H), 4.30 (apparent td, *J* = 6.2, 2.3 Hz, 1H), 2.02–1.86 (m, 3H), 1.76 (d, *J* = 14.2 Hz, 1H), 1.68–1.56 (m, 2H), 1.27–1.08 (m, 14H), 0.73 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 145.7, 128.3, 128.0, 125.2, 84.1 (d, J = 164 Hz), 83.4, 49.9, 38.1, 32.2, 31.5, 31.2 (d, J = 19 Hz), 25.2, 24.9, 21.1 (d, J = 6 Hz). The signal of the carbon atom attached to boron was not observed.

¹⁹F{¹H} NMR (376 MHz, CDCl₃, δ): -217.4.

HRMS (DART–Orbitrap, *m/z*): [M + H]⁺ calculated for C₂₂H₃₇BFO₂⁺: 363.2865; found: 363.2855.

tert-Butyl 4-(2,4,4-trimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)piperidine-1-carboxylate (32) The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 3–10% Et₂O in hexanes) afforded the title compound **32** (240 mg, 0.567 mmol, 57%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 3.97 (s, 2H), 2.78–2.59 (m, 2H), 1.66 (d, *J* = 12.4 Hz, 2H), 1.56 (d, *J* = 14.0 Hz, 1H), 1.48–1.40 (m, 10H), 1.36 (dd, *J* = 13.9, 4.4 Hz, 1H), 1.25 (s, 6H), 1.23 (s, 6H), 1.17–1.05 (m, 4H), 1.01 (s, 3H), 0.94 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 155.1, 83.3, 79.2, 53.6, 48.8, 34.9, 34.5, 33.3, 31.9, 31.8, 28.6, 25.5, 25.4, 22.9. The signal of the carbon atom attached to boron was not observed.

HRMS (DART-Orbitrap, *m*/*z*): [M + H]⁺ calculated for C₂₄H₄₇BNO₄⁺: 424.3593; found: 424.3580.

2-((4,6,6-Trimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl)thio)benzo[d]thiazole (33)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 2–4% Et_2O in hexanes) afforded the title compound **33** (196 mg, 0.452 mmol, 45%) as an off-white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.85 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 7.9 Hz, 1H), 7.43–7.36 (m, 1H), 7.30–7.26 (m, 1H), 3.35–3.23 (m, 2H), 1.94–1.83 (m, 1H), 1.82–1.71 (m, 1H), 1.63–1.52 (m, 2H), 1.37 (apparent td, *J* = 12.8, 4.5 Hz, 1H), 1.24–1.18 (m, 7H), 1.17 (s, 6H), 0.98 (s, 3H), 0.94 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 167.7, 153.5, 135.3, 126.1, 124.2, 121.6, 121.0, 83.2, 52.5, 40.8, 34.7, 31.8, 31.7, 25.3, 25.10, 25.07, 23.0. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₃H₃₇BNO₂S₂⁺: 434.2353; found: 434.2341.

1-(4,6,6-Trimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl)-1H-pyrrole (34)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1–3% Et_2O in hexanes) afforded the title compound **34** (203 mg, 0.609 mmol, 61%) as an off-white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 6.66–6.61 (m, 2H), 6.14–6.10 (m, 2H), 3.88–3.74 (m, 2H), 1.88–1.76 (m, 1H), 1.76–1.65 (m, 1H), 1.52 (d, *J* = 14.1 Hz, 1H), 1.42 (apparent td, *J* = 12.8, 4.3 Hz, 1H), 1.25–1.14 (m, 14H), 0.95 (s, 3H), 0.93 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 120.6, 107.9, 83.2, 52.6, 50.7, 38.5, 31.8, 31.6, 27.4, 25.3, 25.1, 22.9. The signal of the carbon atom attached to boron was not observed.

HRMS (DART-Orbitrap, *m*/*z*): [M + H]⁺ calculated for C₂₀H₃₇BNO₂⁺: 334.2912; found: 334.2903.

1-(4,6,6-Trimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl)-1H-indole (35)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1-2% Et₂O in hexanes) afforded the title compound **35** (196 mg, 0.511 mmol, 51%) as an off-white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.63 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.19 (apparent t, J = 7.6 Hz, 1H), 7.12–7.06

(m, 2H), 6.48 (d, *J* = 2.3 Hz, 1H), 4.13–4.01 (m, 2H), 1.95–1.85 (m, 1H), 1.84–1.74 (m, 1H), 1.55–1.45 (m, 2H), 1.26 (apparent td, *J* = 12.8, 4.4 Hz, 1H), 1.22–1.15 (m, 13H), 0.95 (s, 3H), 0.94 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 136.1, 128.7, 127.9, 121.3, 121.0, 119.2, 109.5, 100.9, 83.2, 52.6, 47.5, 38.7, 31.8, 31.6, 26.1, 25.2, 25.1, 23.0. The signal of the carbon atom attached to boron was not observed.

HRMS (DART-Orbitrap, *m*/*z*): [M + H]⁺ calculated for C₂₄H₃₉BNO₂⁺: 384.3068; found: 384.3059.

9-(4,6,6-Trimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl)-9H-carbazole (36)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1–2% Et₂O in hexanes) afforded the title compound **36** (296 mg, 0.683 mmol, 68%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 8.10 (d, J = 7.7 Hz, 2H), 7.45 (apparent t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.1 Hz, 2H), 7.22 (apparent t, J = 7.3 Hz, 2H), 4.25 (apparent t, J = 7.5 Hz, 2H), 1.98 – 1.87 (m, 1H), 1.87 – 1.76 (m, 1H), 1.58 (apparent td, J = 12.9, 4.2 Hz, 1H), 1.49 (d, J = 14.1 Hz, 1H), 1.35 (apparent td, J = 12.9, 4.5 Hz, 1H), 1.20 (d, J = 14.1 Hz, 1H), 1.154 (s, 6H), 1.150 (s, 6H), 0.93 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 140.5, 125.6, 122.9, 120.4, 118.8, 108.8, 83.2, 52.6, 44.0, 38.8, 31.8, 31.6, 25.2, 25.0, 24.8, 23.0. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₈H₄₁BNO₂⁺: 434.3225; found: 434.3213.

4,4,5,5-Tetramethyl-2-(2-methyl-1-(1-methylcyclohexyl)-5-phenoxypentan-2-yl)-1,3,2-dioxaborolane (37)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1–2% Et₂O in hexanes) afforded the title compound **37** (276 mg, 0.689 mmol, 69%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.30–7.23 (m, 2H), 6.95–6.86 (m, 3H), 3.96–3.86 (m, 2H), 1.90–1.79 (m, 1H), 1.76–1.67 (m, 1H), 1.56–1.18 (m, 26H), 1.01 (s, 3H), 0.96 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 159.3, 129.5, 120.5, 114.6, 83.2, 68.9, 53.1, 40.0, 39.7, 37.8, 34.1, 26.6, 25.3, 25.1, 24.9, 24.6, 23.3, 22.3, 22.2. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): [M + H]⁺ calculated for C₂₅H₄₂BO₃⁺: 401.3222; found: 401.3210.

4,4,5,5-Tetramethyl-2-(2-methyl-1-(4-methyltetrahydro-2*H*-pyran-4-yl)-5-phenoxypentan-2-yl)-1,3,2-

dioxaborolane (38)

The reaction was performed on 1.01 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 10–20% Et₂O in hexanes) afforded the title compound **38** (265 mg, 0.659 mmol, 65%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.30–7.23 (m, 2H), 6.94–6.90 (m, 1H), 6.90–6.86 (m, 2H), 3.97–3.86 (m, 2H), 3.75–3.67 (m, 2H), 3.62–3.53 (m, 2H), 1.90–1.79 (m, 1H), 1.77–1.66 (m, 1H), 1.62–1.51 (m, 4H), 1.43–1.25 (m, 4H), 1.24 (s, 6H), 1.23 (s, 6H), 1.08 (s, 3H), 1.02 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 159.2, 129.5 (2C), 120.5, 114.6 (2C), 83.3 (2C), 68.7, 64.1, 64.0, 53.3, 39.8 (2C), 37.8, 32.0, 25.3 (2C), 25.1 (2C), 24.9, 23.24, 23.20. The signal of the carbon atom attached to boron was not observed.
HRMS (DART–Orbitrap, *m/z*): [M + H]⁺ calculated for C₂₄H₄₀BO₄⁺: 403.3014; found: 403.3004.

4,4,5,5-Tetramethyl-2-(2-methyl-1-(4-methyltetrahydro-2*H*-thiopyran-4-yl)-5-phenoxypentan-2-yl)-1,3,2dioxaborolane (39)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 2–5% Et_2O in hexanes) afforded the title compound **39** (322 mg, 0.770 mmol, 77%) as an off-white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.29–7.24 (m, 2H), 6.94–6.90 (m, 1H), 6.90–6.86 (m, 2H), 3.96–3.87 (m, 2H), 2.69 (s, 2H), 2.56–2.43 (m, 2H), 1.89–1.79 (m, 1H), 1.77–1.64 (m, 4H), 1.64–1.59 (m, 1H), 1.55 (apparent td, *J* = 12.8, 4.4 Hz, 1H), 1.52 (d, *J* = 14.3 Hz, 1H), 1.35 (apparent td, *J* = 12.7, 4.6 Hz, 1H), 1.30 (d, *J* = 14.3 Hz, 1H), 1.24 (s, 6H), 1.23 (s, 6H), 1.02 (s, 3H), 0.98 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 159.2, 129.5, 120.5, 114.6, 83.3, 68.7, 52.0, 40.3, 39.8, 37.9, 33.1, 25.3, 25.1, 24.9, 24.4, 24.0, 23.9, 23.3. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₄H₄₀BO₃S⁺: 419.2786; found: 419.2773.

4,4,5,5-Tetramethyl-2-(2-methyl-1-(4-methyltetrahydro-2*H***-thiopyran-4-yl)hex-5-en-2-yl)-1,3,2-dioxaborolane (40)** The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography afforded the title compound **40** (212 mg, 0.626 mmol, 63%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 5.79 (apparent ddt, *J* = 16.9, 10.1, 6.6 Hz, 1H), 5.01–4.94 (m, 1H), 4.93–4.87 (m, 1H), 2.74–2.64 (m, 2H), 2.53–2.46 (m, 2H), 2.13–2.04 (m, 1H), 2.01–1.92 (m, 1H), 1.75–1.62 (m, 3H), 1.62–1.55 (m, 1H), 1.54–1.45 (m, 2H), 1.30–1.25 (m, 2H), 1.24 (s, 6H), 1.23 (s, 6H), 0.99 (s, 3H), 0.96 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 139.8, 114.0, 83.3, 52.0, 41.4, 40.3, 39.8, 33.1, 29.5, 25.4, 25.1, 24.4, 24.0, 23.9, 23.1. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, *m/z*): [M + H]⁺ calculated for C₁₉H₃₆BO₂S⁺: 339.2524; found: 339.2507.

2-(1-Adamantan-1-yl-5-phenoxypentan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (41)

The reaction was performed on 1.00 mmol scale following the general procedure (Q = 2.2 F/mol). Purification by flash column chromatography (silica gel, 1–2% Et₂O in hexanes) afforded the title compound **41** (56 mg, 0.13 mmol, 13%) as an off-white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.29–7.23 (m, 2H), 6.94–6.86 (m, 3H), 3.93 (apparent t, *J* = 6.6 Hz, 2H), 1.94–1.89 (m, 3H), 1.88–1.71 (m, 2H), 1.64 (ABq, *J* = 12.0 Hz, 6H), 1.55–1.47 (m, 4H), 1.46–1.38 (m, 5H), 1.25 (s, 6H), 1.24 (s, 6H), 1.07–1.00 (m, 2H).

¹³C{¹H} NMR (126 MHz, CDCl₃, *δ*): 159.3, 129.5, 120.5, 114.7, 83.1, 68.2, 46.6, 42.8, 37.3, 33.0, 29.9, 28.89, 28.86, 25.1, 25.0. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₇H₄₂BO₃⁺: 425.3222; found: 425.3210.

PhO Me Me

2-(4,6-Dimethyl-1-phenoxyheptan-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (42)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel, 1–2% Et_2O in hexanes) afforded the title compound **42** (186 mg, 0.537 mmol, 54%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.29–7.23 (m, 2H), 6.94–6.86 (m, 3H), 3.96–3.87 (m, 2H), 1.85–1.69 (m, 2H), 1.68–1.59 (m, 1H), 1.52 (apparent td, *J* = 12.8, 4.5 Hz, 1H), 1.39 (dd, *J* = 13.6, 6.9 Hz, 1H), 1.32 (apparent td, *J* = 12.8, 4.8 Hz, 1H), 1.23 (s, 12H), 1.18 (dd, *J* = 13.6, 6.2 Hz, 1H), 0.94 (s, 3H), 0.89 (apparent t, J = 6.4 Hz, 6H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 159.2, 129.5, 120.5, 114.6, 83.2, 68.8, 48.1, 35.8, 25.8, 25.2, 25.1, 25.0, 24.6, 24.2, 21.7. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₂₁H₃₆BO₃⁺: 347.2752; found: 347.2742.

2-(5-Methoxy-2-methyl-1-(tetrahydro-2H-pyran-4-yl)pentan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (43) The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography afforded the title compound **43** (195 mg, 0.598 mmol, 60%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃, δ): 3.93–3.86 (m, 2H), 3.38–3.30 (m, 4H), 3.31 (s, 3H), 1.62–1.46 (m, 5H), 1.45–1.36 (m, 2H), 1.35–1.25 (m, 2H), 1.22 (s, 12H), 1.22–1.15 (m, 2H), 0.91 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 83.2, 73.9, 68.29, 68.25, 58.6, 46.2, 35.9, 34.8, 34.5, 32.8, 25.5, 25.1, 25.0, 21.8. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₁₈H₃₆BO₄⁺: 327.2701; found: 327.2685.

4,4,5,5-Tetramethyl-2-(2-methyl-1-(4-methyltetrahydro-2H-thiopyran-4-yl)propan-2-yl)-1,3,2-dioxaborolane (44) The reaction was performed on 1.00 mmol scale following the general procedure with 3.0 equiv of MeOTs. Purification by flash column chromatography (silica gel, 1–2% Et₂O in hexanes) afforded the title compound **44** (148 mg, 0.496 mmol, 50%) as an off-white solid.

¹**H NMR** (500 MHz, CDCl₃, δ): 2.72–2.63 (m, 2H), 2.56–2.46 (m, 2H), 1.74–1.66 (m, 2H), 1.64–1.59 (m, 2H), 1.36 (s, 2H), 1.22 (s, 12H), 0.96 (s, 6H), 0.95 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 83.1, 53.6, 39.9, 33.0, 27.9, 24.9, 24.4, 24.0. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, m/z): [M + H]⁺ calculated for C₁₆H₃₂BO₂S⁺: 299.2211; found: 299.2187.

2-(4,4-Dimethyl-2-phenylpentan-2-yl-1,1,1-d₃)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (45)

The reaction was performed on 1.00 mmol scale following the general procedure with 1.0 equiv of CD₃OTs. Purification by flash column chromatography (silica gel, 1% Et₂O in hexanes) afforded the title compound **45** (229 mg, 0.750 mmol, 75%) as an off-white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.48–7.42 (m, 2H), 7.29–7.23 (m, 2H), 7.15–7.08 (m, 1H), 1.95 (d, *J* = 14.2 Hz, 1H), 1.70 (d, *J* = 14.2 Hz, 1H), 1.18 (s, 6H), 1.16 (s, 6H), 0.87 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 148.1, 127.9, 127.3, 125.1, 83.4, 52.5, 32.4, 31.7, 24.9, 24.6. The signals of the carbon atoms attached to boron or deuterium were not observed.

HRMS (DART–Orbitrap, *m*/*z*): [M + H]⁺ calculated for C₁₉H₂₉D₃BO₂⁺: 306.2678; found: 306.2653.

1-(6,6-Dimethyl-4-phenyl-4-(trimethylsilyl)heptyl)-1H-pyrrole (46)

The reaction was performed on 1.00 mmol scale following the general procedure. Purification by flash column chromatography (silica gel) afforded the title compound **46** (228 mg, 0.667 mmol, 67%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.23–7.18 (m, 2H), 7.18–7.13 (m, 2H), 7.06 (t, *J* = 6.9 Hz, 1H), 6.73–6.69 (m, 2H), 6.20–6.15 (m, 2H), 4.04–3.89 (m, 2H), 2.36–2.26 (m, 1H), 2.13 (d, *J* = 15.0 Hz, 1H), 2.07–1.92 (m, 2H), 1.84–1.74 (m, 1H), 1.69 (d, *J* = 15.0 Hz, 1H), 0.74 (s, 9H), –0.06 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 146.0, 127.6, 127.5, 124.2, 120.8, 108.2, 50.7, 46.7, 36.4, 34.2, 32.7, 32.2, 29.2, −1.1.

HRMS (DART–Orbitrap, *m*/*z*): [M + H]⁺ calculated for C₂₂H₃₆NSi⁺: 342.2612; found: 342.2595.

Triethoxy(1-methoxy-6,6-dimethylheptan-4-yl)silane (47)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel, 3–5% Et₂O in hexanes) afforded the title compound **47** (65 mg, 0.20 mmol, 20%) as a light yellow oil.

¹**H NMR** (500 MHz, CDCl₃, δ): 3.82 (q, *J* = 6.9 Hz, 6H), 3.34 (apparent t, *J* = 6.7 Hz, 2H), 3.32 (s, 3H), 1.78–1.68 (m, 1H), 1.68–1.57 (m, 2H), 1.56–1.48 (m, 1H), 1.47–1.38 (m, 1H), 1.22 (t, *J* = 6.9 Hz, 9H), 1.07 (dd, *J* = 14.2, 6.4 Hz, 1H), 0.88

(s, 9H), 0.81-0.74 (m, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 73.5, 58.6, 58.5, 42.4, 32.1, 29.8, 29.0, 28.8, 18.5, 18.2.
 HRMS (DART–Orbitrap, *m/z*): [M + H]⁺ calculated for C₁₆H₃₇O₄Si⁺: 321.2456; found: 321.2428.

(1-Methoxy-6,6-dimethylheptan-4-yl)diphenylphosphane (48)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel) afforded the title compound **48** (107 mg, 0.312 mmol, 31%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.55–7.46 (m, 4H), 7.35–7.29 (m, 6H), 3.27–3.22 (m, 2H), 3.25 (s, 3H), 2.32–2.22 (m, 1H), 1.80–1.58 (m, 3H), 1.48–1.29 (m, 3H), 0.82 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 137.4 (d, *J* = 16 Hz), 137.1 (d, *J* = 17 Hz), 134.3 (d, *J* = 19 Hz), 134.0 (d, *J* = 19 Hz), 128.8, 128.5, 128.33 (d, *J* = 2 Hz), 128.27 (d, *J* = 1 Hz), 73.0, 58.5, 43.7 (d, *J* = 15 Hz), 31.8 (d, *J* = 4 Hz), 31.7 (d, *J* = 4 Hz), 30.2, 29.1 (d, *J* = 9 Hz), 27.4 (d, *J* = 9 Hz).

³¹**P NMR** (202 MHz, CDCl₃, δ): 0.3 (s).

HRMS (DART–Orbitrap, *m*/*z*): [M + H]⁺ calculated for C₂₂H₃₂OP⁺: 343.2185; found: 343.2175.

(1-Chloro-6,6-dimethylheptan-4-yl)(4-chlorophenyl)sulfane (49)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Flash column chromatography failed to afford the title compound **49** of sufficient purity. The yield (43%) was determined by ¹H NMR analysis using dibromomethane as the internal standard.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.35–7.31 (m, 2H), 7.28–7.25 (m, 2H), 3.51 (apparent t, *J* = 6.5 Hz, 2H), 3.09 (apparent pentet, *J* = 5.7 Hz, 1H), 2.02–1.85 (m, 2H), 1.79–1.70 (m, 1H), 1.70–1.61 (m, 1H), 1.55 (dd, *J* = 14.8, 5.8 Hz, 1H), 1.47 (dd, *J* = 14.8, 4.9 Hz, 1H), 0.94 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 134.2, 133.6, 133.2, 129.2, 48.3, 45.09, 45.05, 34.0, 31.3, 30.0, 29.6.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for $C_{15}H_{23}Cl_2S^+$: 305.0892; found: 305.0867.

(1-Methoxy-4,6,6-trimethylheptan-4-yl)(phenyl)sulfane (50)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel, 1–2% Et₂O in hexanes) afforded the

title compound 50 (78 mg, 0.28 mmol, 28%) as a light yellow oil.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.53–7.47 (m, 2H), 7.37–7.28 (m, 3H), 3.39–3.30 (m, 2H), 3.33 (s, 3H), 1.96–1.87 (m, 1H), 1.86–1.76 (m, 1H), 1.65 (ABq, *J* = 15.0 Hz, 2H), 1.59–1.47 (m, 2H), 1.33 (s, 3H), 1.04 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 137.8, 132.6, 128.7, 128.5, 73.2, 58.7, 54.5, 51.8, 38.0, 32.8, 32.1, 28.2, 25.3. HRMS (DART–Orbitrap, m/z): [M + H]⁺ calculated for C₁₇H₂₉OS⁺: 281.1934; found: 281.1906.

(E)-(1-Methoxy-8,8-dimethylnon-5-en-4-yl)benzene (52)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel) afforded the title compound **52** (165 mg, 0.634 mmol, 63%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.32–7.26 (m, 2H), 7.21–7.15 (m, 3H), 5.57–5.45 (m, 2H), 3.36 (apparent t, *J* = 6.5 Hz, 2H), 3.31 (s, 3H), 3.22 (apparent q, *J* = 7.3 Hz, 1H), 1.93–1.82 (m, 2H), 1.79–1.69 (m, 2H), 1.66–1.56 (m, 1H), 1.52–1.43 (m, 1H), 0.86 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 145.4, 136.1, 128.5, 127.62, 127.56, 126.1, 72.9, 58.7, 49.0, 47.2, 32.7, 31.1, 29.5, 28.0.

HRMS (DART–Orbitrap, *m/z*): [M + H]⁺ calculated for C₁₈H₂₉O⁺: 261.2213; found: 261.2200.

1-(1-Chloro-6,8,8-trimethylnona-4,5-dien-4-yl)-4-fluorobenzene (54)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Flash column chromatography failed to afford the title compound **54** of sufficient purity. The yield (71%) was determined by ¹H NMR analysis on the crude reaction mixture using dibromomethane as the internal standard.

¹**H NMR** (500 MHz, CDCl₃, δ): 7.34–7.29 (m, 2H), 7.02–6.96 (m, 2H), 3.62 (apparent t, J = 6.5 Hz, 2H), 2.59–2.50 (m, 2H), 2.04–1.94 (m, 4H), 1.85 (s, 3H), 0.94 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 203.2 (d, *J* = 2 Hz), 161.6 (d, *J* = 245 Hz), 133.8 (d, *J* = 3 Hz), 127.5 (d, *J* = 8 Hz), 115.3 (d, *J* = 21 Hz), 101.2, 101.1, 48.6, 44.9, 31.9, 31.1, 30.0, 27.9, 21.8.

HRMS (DART–Orbitrap, m/z): $[M + H]^+$ calculated for C₁₈H₂₅ClF⁺: 295.1623; found: 295.1600.

(1-(3-Fluorophenyl)-2-(4-methyltetrahydro-2H-thiopyran-4-yl)ethyl)trimethylsilane (55)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of SiMe₃Cl. Flash column chromatography failed to afford the title compound **55** of sufficient purity. The yield (90%) was determined by ¹H NMR analysis on the crude reaction mixture using dibromomethane as the internal standard.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.22–7.11 (m, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.78–6.71 (m, 2H), 2.68–2.60 (m, 1H), 2.55–2.43 (m, 2H), 2.35–2.28 (m, 1H), 2.15 (d, *J* = 10.7 Hz, 1H), 1.92–1.83 (m, 1H), 1.59–1.52 (m, 3H), 1.50–1.43 (m, 1H), 1.43–1.35 (m, 1H), 0.75 (s, 3H), –0.08 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 163.0 (d, *J* = 244 Hz), 148.7 (d, *J* = 7 Hz), 129.5 (d, *J* = 9 Hz), 123.4, 114.2 (d, *J* = 22 Hz), 111.1 (d, *J* = 21 Hz), 42.3, 38.8, 38.5, 34.3, 31.8 (d, *J* = 1 Hz), 24.4, 24.04, 23.98, -3.0.

(3,3-Dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)dimethylsilane (56)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of SiHMe₂Cl (i = 5 mA). Purification by flash column chromatography afforded the title compound **56** (158 mg, 0.585 mmol, 59%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, δ): 3.90–3.85 (m, 1H), 1.60 (dd, *J* = 13.1, 11.5 Hz, 1H), 1.25–1.23 (m, 1H), 1.23 (s, 12H), 0.84 (s, 9H), 0.43 (d, *J* = 11.1 Hz, 1H), 0.13–0.09 (m, 6H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 82.9, 40.1, 32.1, 29.1, 25.10, 25.05, -4.3, -4.5. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, *m/z*): [M – H]⁺ calculated for C₁₄H₃₀BO₂Si⁺: 269.2103; found: 269.2082.

Dimethyl(1-(4-methyltetrahydro-2*H*-thiopyran-4-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl)(phenyl)silane (57)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of SiPhMe₂Cl. Purification by flash column chromatography afforded the title compound **57** (297 mg, 0.710 mmol, 71%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.57–7.51 (m, 2H), 7.38–7.31 (m, 3H), 2.69–2.55 (m, 2H), 2.52–2.44 (m, 1H), 2.36–2.28 (m, 1H), 1.72–1.54 (m, 4H), 1.54–1.47 (m, 1H), 1.42 (d, *J* = 14.0 Hz, 1H), 1.21 (s, 6H), 1.20 (s, 6H), 1.12 (s, 3H), 0.90 (s, 3H), 0.35 (s, 3H), 0.34 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 137.4, 135.2, 129.0, 127.5, 83.1, 44.2, 40.5, 39.7, 38.4, 34.6, 25.9, 25.2, 24.8, 24.2, 24.1, 23.8, 17.7. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, *m*/*z*): [M + H]⁺ calculated for C₂₃H₄₀BO₂SSi⁺: 419.2606; found: 419.2584.

Trimethyl(1-(1-methylcyclohexyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl)germane (58)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of GeMe₃Cl. Purification by flash column chromatography afforded the title compound **58** (252 mg, 0.658 mmol, 66%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃, *δ*): 1.64 (d, *J* = 13.9 Hz, 1H), 1.54–1.17 (m, 11H), 1.23 (s, 6H), 1.20 (s, 6H), 1.15 (s, 3H), 0.93 (s, 3H), 0.14 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 82.8, 46.0, 39.9, 39.5, 35.7, 26.7, 25.9, 25.1, 24.2, 22.6, 22.3, 18.0, -3.8. The signal of the carbon atom attached to boron was not observed.

HRMS (DART–Orbitrap, *m*/*z*): [M – Me]⁺ calculated for C₁₈H₃₆BGeO₂⁺: 369.2015; found: 369.1998.

S8. Mechanistic Studies

S8.1. Radical Probe Experiment

(1-Chloro-9,9-dimethyldec-6-en-4-yl)benzene (60)

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). Purification by flash column chromatography (silica gel, hexanes) afforded the title compound **60** (49 mg, 0.18 mmol, 18%) as a light yellow oil. The *E/Z* ratio (7:1) was determined by ¹H NMR analysis according to the signals of the *tert*-butyl group of the two isomers.

Data for NMR spectra of the *E* isomer are reported as follows:

¹**H NMR** (500 MHz, CDCl₃, *δ*): 7.31–7.26 (m, 2H), 7.21–7.16 (m, 1H), 7.16–7.12 (m, 2H), 5.39 (apparent dt, *J* = 15.0, 7.4 Hz, 1H), 5.24 (apparent dt, *J* = 15.0, 7.0 Hz, 1H), 3.49–3.43 (m, 2H), 2.63–2.54 (m, 1H), 2.33 (apparent t, *J* = 7.1 Hz, 2H), 1.93–1.83 (m, 1H), 1.83–1.77 (m, 2H), 1.71–1.56 (m, 3H), 0.79 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃, δ): 144.9, 130.2, 129.5, 128.5, 127.8, 126.3, 47.2, 45.9, 45.3, 40.5, 33.2, 30.9, 30.8, 29.3.

HRMS (DART–Orbitrap, *m/z*): [M + H]⁺ calculated for C₁₈H₂₈Cl⁺: 279.1874; found: 279.1866.

S8.2. Evidence for Carbanion Intermediates

The reaction was performed on 1.00 mmol scale following the general procedure with 2.0 equiv of primary alkyl bromide (Q = 3.5 F/mol). 5.0 equiv of D₂O was added prior to electrolysis. The yield (8%) was determined by ¹H NMR analysis using dibromomethane as the internal standard. The deuterium incorporation rate (82%) was determined by measuring the shift of isotope distribution between deuterated and non-deuterated samples using mass spectrometry (EI). ¹H NMR analysis failed to provide accurate deuterium incorporation rate due to the low reaction yield.

Figure S9. Isotope distribution of deuterated and non-deuterated samples. (A) Deuterated sample. 207.1/206.1 = 4.84:1. (B) Non-deuterated sample. 207.1/206.1 = 0.14:1.

S8.3. DFT Calculations

All DFT calculations were performed with Gaussian $16.^{25}$ Geometry optimizations were carried out in the gas phase using the M06-2X functional²⁶ and the 6-311+G(d,p) basis set.²⁷ Unscaled harmonic frequency calculations at the same level were performed to validate each structure as either a minimum or a transition state and to evaluate its zero-point energy and thermal corrections at 298 K. Quasiharmonic corrections were applied during the entropy calculations by setting all positive frequencies that are less than 100 cm⁻¹ to 100 cm⁻¹.^{28,29} On the basis of the gasphase optimized structures, the Gibbs energies of solvation were computed at the SMD(DME)/M06-2X/6-311+G(d,p) level (Eps = 7.55; EpsInf = 1.90288; HbondAcidity = 0; HbondBasicity = 0.68; SurfaceTensionAtInterface = 35.42; CarbonAromaticity = 0; ElectronegativeHalogenicity = 0; standard state concentration = 1.0 M).^{30,31} All discussed energy differences are based on Gibbs energies in DME at 298 K, except that bond dissociation energies are computed according to enthalpies in the gas phase at 298 K. The computed standard reduction potentials were all referenced to Fc^{+/0} in DME. 3D structures were prepared with CYLview.³²

We commenced our DFT calculations with the first C–C bond formation via radical addition (Table S2). To simplify the computations, we chose *tert*-butyl radical addition to monosubstituted alkenes as the model reaction. In all cases, the radical addition is predicted to be exergonic and mostly irreversible. For conjugated π -systems (e.g., styrene, diene, and enyne) and vinyl boronate, the radical addition is facile with Gibbs energy of activation of 10.4–12.6 kcal/mol; whereas other types of alkenes such as vinyl silane, phosphine, and sulfide are less reactive. A similar trend was observed for the reduction step, indicating that the nature of the radical/anion-stabilizing group Z is important for the success of the dialkylation. The mechanism for the second C–C bond formation is more straightforward—the substitution of primary alkyl bromides should follow an S_N2 mechanism (Scheme 6D).

Table S2. DFT Calculations on the Radical Addition and the Followed Reduction^a

ontru 7		radical addition		reduction
entry Z	ΔG^{\ddagger} (kcal/mol)	ΔG (kcal/mol)	<i>E</i> ° versus Fc ^{+/0} (V)	
1	Ph	12.6	-16.4	-2.80
2	vinyl	11.7	-19.1	-2.92
3	ethynyl	10.4	-18.3	-2.44
4	Bpin	12.1	-13.0	-2.63
5	SiMe₃	14.2	-10.5	-3.03
6	PMe ₂	13.6	-11.7	-2.92
7	SMe	14.2	-12.5	-3.11

^{*a*}Computed at the SMD(DME)/M06-2X/6-311+G(d,p)//M06-2X/6-311+G(d,p) level. The computed standard reduction potential of *tert*-butyl radical is -3.54 V versus Fc^{+/0}. Bpin, boronic acid pinacol ester.

stationary point	SPE (a.u.) ^a	TCG (a.u.) ^{a,b}	SPE (a.u.) ^c
ferrocene	-1650.623799	0.137044	-1650.636870
ferrocenium	-1650.353632	0.136949	-1650.434209
^t Bu•	-157.744707	0.087914	-157.748078
^t Bu [−]	-157.735676	0.087686	-157.820299
EtBr	-2653.372346	0.039226	-2653.379205
D1 (Z = Ph)	-309.581851	0.103417	-309.591202
radical addition TS (Z = Ph)	-467.327797	0.214790	-467.339696
E1 (Z = Ph)	-467.379842	0.220258	-467.391329
F1 (Z = Ph)	-467.414414	0.218002	-467.488738
S _N 2 TS (Z = Ph)	-3120.800123	0.278958	-3120.863515
D1 (Z = vinyl)	-155.951019	0.059205	-155.955041
radical addition TS (Z = vinyl)	-313.696575	0.168956	-313.703352
E1 (Z = vinyl)	-313.751111	0.173981	-313.757365
F1 (Z = vinyl)	-313.773784	0.172924	-313.851698
D1 (Z = ethynyl)	-154.703598	0.035706	-154.708133
radical addition TS (Z = ethynyl)	-312.450600	0.145518	-312.458529
E1 (Z = ethynyl)	-312.502399	0.150586	-312.509392
F1 (Z = ethynyl)	-312.536997	0.149430	-312.620989
D1 (Z = Bpin)	-489.201815	0.190073	-489.210574
radical addition TS (Z = Bpin)	-646.948619	0.302102	-646.960447

Table S3. Computed Energies of Stationary Points

E1 (Z = Bpin)	-646.994734	0.307485	-647.005827
F1 (Z = Bpin)	-647.035083	0.304936	-647.109178
S _N 2 TS (Z = Bpin)	-3300.422370	0.366283	-3300.484905
D1 (Z = SiMe ₃)	-487.197970	0.120434	-487.200277
radical addition TS (Z = SiMe ₃)	-644.941426	0.232120	-644.946556
E1 (Z = SiMe ₃)	-644.986211	0.237040	-644.990689
F1 (Z = SiMe ₃)	-645.013134	0.234077	-645.079036
D1 (Z = PMe ₂)	-499.119157	0.088505	-499.122896
radical addition TS (Z = PMe_2)	-656.863101	0.199748	-656.869553
E1 (Z = PMe ₂)	-656.908687	0.204483	-656.914626
F1 (Z = PMe ₂)	-656.937285	0.202278	-657.007683
D1 (Z = SMe)	-516.055860	0.053873	-516.061342
radical addition TS (Z = SMe)	-673.798599	0.164387	-673.806346
E1 (Z = SMe)	-673.845015	0.168006	-673.852570
F1 (Z = SMe)	-673.866070	0.166257	-673.939206

^{*a*}Computed at the M06-2X/6-311+G(d,p) level. ^{*b*}Computed at 1 atm and 298 K with quasiharmonic corrections. ^{*c*}Computed at the SMD(DME)/M06-2X/6-311+G(d,p)//M06-2X/6-311+G(d,p) level. Cartesian coordinates of the stationary points are available upon request from the corresponding author (Song Lin: songlin@cornell.edu). SPE, single-point energy. TCG, thermal correction to Gibbs energy. TS, transition state.

Table S4. Energetic Data for Bon	Dissociation Energy Calculations ^a
----------------------------------	---

stationary point	SPE (a.u.)	TCH (a.u.)
D*	-0.498134	0.002360
D ₂ O	-76.420833	0.019534
DO•	-75.726528	0.009591
1-deuterio-1-phenylethane	-310.808706	0.162650
α-methylbenzyl radical	-310.159889	0.151839

^{*a*}Computed at the M06-2X/6-311+G(d,p) level. Cartesian coordinates of the stationary points are available upon request from the corresponding author (Song Lin: songlin@cornell.edu). TCH, thermal correction to enthalpy.
S9. Copies of NMR Spectra

Table S5. Summary of NMR Spectra

compound	NMR	page
4	¹ H NMR, 500 MHz, CDCl ₃	S40
4	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S41
7	¹ H NMR, 500 MHz, CDCl₃	S42
7	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S43
8	¹ H NMR, 500 MHz, CDCl ₃	S44
8	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S45
9	¹ H NMR, 500 MHz, CDCl₃	S46
9	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S47
10	¹ H NMR, 500 MHz, CDCl ₃	S48
10	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S49
11	¹ H NMR, 500 MHz, CDCl ₃	S50
11	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S51
11	¹⁹ F NMR, 470 MHz, CDCl ₃	S52
12	¹ H NMR, 500 MHz, CDCl₃	S53
12	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S54
12	¹⁹ F NMR, 470 MHz, CDCl ₃	S55
13	¹ H NMR, 500 MHz, CDCl₃	S56
13	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S57
14	¹ H NMR, 500 MHz, CDCl ₃	S58
14	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S59
14	¹⁹ F NMR, 470 MHz, CDCl ₃	S60
15	¹ H NMR, 500 MHz, CDCl ₃	S61
15	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S62
16	¹ H NMR, 500 MHz, CDCl₃	S63
16	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S64
16	¹⁹ F NMR, 470 MHz, CDCl ₃	S65
17	¹ H NMR, 500 MHz, CDCl₃	S66
17	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S67
18	¹ H NMR, 500 MHz, CDCl₃	S68
18	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S69
19	¹ H NMR, 500 MHz, CDCl₃	S70
19	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S71
20	¹ H NMR, 500 MHz, CDCl ₃	S72
20	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S73
21	¹ H NMR, 500 MHz, CDCl ₃	S74
21	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S75

22	¹ H NMR, 500 MHz, CDCl ₃	S76
22	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S77
23	¹ H NMR, 500 MHz, CDCl ₃	S78
23	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S79
24	¹ H NMR, 500 MHz, CDCl ₃	S80
24	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S81
25	¹ H NMR, 500 MHz, CDCl ₃	S82
25	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S83
26	¹ H NMR, 500 MHz, CDCl₃	S84
26	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S85
27	¹ H NMR, 500 MHz, CDCl₃	S86
27	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S87
28	¹ H NMR, 500 MHz, CDCl ₃	S88
28	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S89
29	¹ H NMR, 500 MHz, CDCl ₃	S90
29	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S91
30	¹ H NMR, 500 MHz, CDCl ₃	S92
30	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S93
31	¹ H NMR, 500 MHz, CDCl ₃	S94
31	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S95
31	¹⁹ F{ ¹ H} NMR, 376 MHz, CDCl ₃	S96
32	¹ H NMR, 500 MHz, CDCl ₃	S97
32	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S98
33	¹ H NMR, 500 MHz, CDCl ₃	S99
33	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S100
34	¹ H NMR, 500 MHz, CDCl ₃	S101
34	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S102
35	¹ H NMR, 500 MHz, CDCl ₃	S103
35	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S104
36	¹ H NMR, 500 MHz, CDCl ₃	S105
36	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S106
37	¹ H NMR, 500 MHz, CDCl ₃	S107
37	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S108
38	¹ H NMR, 500 MHz, CDCl ₃	S109
38	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S110
39	¹ H NMR, 500 MHz, CDCl ₃	S111
39	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S112
40	¹ H NMR, 500 MHz, CDCl ₃	S113
40	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S114
41	¹ H NMR, 500 MHz, CDCl ₃	S115

41	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S116
42	¹ H NMR, 500 MHz, CDCl ₃	S117
42	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S118
43	¹ H NMR, 500 MHz, CDCl ₃	S119
43	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S120
44	¹ H NMR, 500 MHz, CDCl ₃	S121
44	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S122
45	¹ H NMR, 500 MHz, CDCl₃	S123
45	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S124
46	¹ H NMR, 500 MHz, CDCl ₃	S125
46	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S126
47	¹ H NMR, 500 MHz, CDCl ₃	S127
47	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S128
48	¹ H NMR, 500 MHz, CDCl ₃	S129
48	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S130
48	³¹ P NMR, 202 MHz, CDCl ₃	S131
49	¹ H NMR, 500 MHz, CDCl ₃	S132
49	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S133
50	¹ H NMR, 500 MHz, CDCl ₃	S134
50	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S135
52	¹ H NMR, 500 MHz, CDCl ₃	S136
52	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S137
54	¹ H NMR, 500 MHz, CDCl ₃	S138
54	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S139
55	¹ H NMR, 500 MHz, CDCl ₃	S140
55	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S141
56	¹ H NMR, 500 MHz, CDCl₃	S142
56	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S143
57	¹ H NMR, 500 MHz, CDCl ₃	S144
57	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S145
58	¹ H NMR, 500 MHz, CDCl ₃	S146
58	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S147
60	¹ H NMR, 500 MHz, CDCl ₃	S148
60	¹³ C{ ¹ H} NMR, 126 MHz, CDCl ₃	S149

Compound **4**: ¹H NMR (500 MHz, CDCl₃)

Compound 4: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound 7: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound 9: ¹³C{¹H} NMR (126 MHz, CDCl₃)

	,	57		-	CDCI3				
	-150.90	-134.98	-127.55	-104.70	-83.73 -77.16 (√64.95 √64.91	-50.61	-42.87 33.88 33.88 31.46 31.46 30.29 25.04 25.02	
	I	I	I	I		Ŷ	Ι	יורר ו	
	$\langle \rangle$								
								ļ	
					I				
	ternen and an an an an an					Vereise state of the second			
210 200 190 180 170 160) 150	140 1	30 120	110 100 ppm	90 80	70 60	50	40 30 20 10	0
				S49					

Compound **11**: ¹H NMR (500 MHz, CDCl₃)

Compound **11**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **11**: ¹⁹F NMR (470 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260

Compound **12**: ¹⁹F NMR (470 MHz, CDCl₃)

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240

Compound **13**: ${}^{13}C{}^{1}H{}$ NMR (126 MHz, CDCl₃)

Compound 14: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **14**: ¹⁹F NMR (470 MHz, CDCl₃)

60

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240

Compound **16**: ¹⁹F NMR (470 MHz, CDCl₃)

Compound **17**: ¹H NMR (500 MHz, CDCl₃)

Compound **17**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **18**: ¹H NMR (500 MHz, CDCl₃)

Compound **18**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **20**: ¹H NMR (500 MHz, CDCl₃)

Compound **22**: ¹H NMR (500 MHz, CDCl₃)

Compound 23: ¹H NMR (500 MHz, CDCl₃)

Compound **23**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Cor	npoun	a 24 :		1} 11111	— 159.20 0 7 7 1	, IVI⊓ <i>2</i> ,	CDCI3		—120.58	—114.58	97.80		77.16 CDCl3	68.60 68.09	60.45 L67.25 L66.83	L66.75 —49.16	∫34.72	人 33.98 入 31.25 入 30.61	27.12		
		Fe		\checkmark	0																
210	200	190	180	170	160	150	140	130	120	110 p	100 pm	90	80	70	60	50	40	30	20	10	, 0

Compound **24**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

ppm

S83

Compound **25**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

				2	<u>n</u>			
	—129.51	-120.49			//.16 CDC 		/ 37.50 / 31.81 / 31.68 / 25.33	25.12
						l nen u kvennaspatrete		
210 200 190 180 170 160 150 140	130	120	110 100 90 ppm	80	70 60	50	40 30	20 10 0

Compound **26**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **27**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **28**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **29**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **31**: ¹⁹F{¹H} NMR (376 MHz, CDCl₃)

--217.42

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

Compound **33**: ¹H NMR (500 MHz, CDCl₃)

Compound **34**: ¹H NMR (500 MHz, CDCl₃)

Compound **34**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **35**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **36**: ¹H NMR (500 MHz, CDCl₃)

Compound **36**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **37**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound 38 : ¹³ C{ ¹ H} NMR (126 MHz, CDCl ₃)								
				-83.33	—77.16 CDCl3	~68.70 ~64.13 ~63.99	53.34	39.76 37.83 31.96 25.32 24.94 23.24 23.20
210 200 190 180 170 160 150 140	130	120	110 100 90 ppm S110	80		70 60	50	40 30 20 10 0

-

Compound **39**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **41**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **46**: ¹H NMR (500 MHz, CDCl₃)

Compound **48**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **48**: ³¹P NMR (202 MHz, CDCl₃)

Compound **49** (impure): ¹H NMR (500 MHz, CDCl₃)

Compound **49** (impure): ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound **50**: ¹H NMR (500 MHz, CDCl₃)

Compound **50**: ¹³C{¹H} NMR (126 MHz, CDCl₃)

Compound 5	4 (Impure): ²² C{ ² H} NIVIR (1	26 MHZ, $CDCI_3$)		m			
<pre>203.19 203.17</pre>	∽162.62 ~160.67	$\begin{pmatrix} 133.82 \\ 133.79 \\ 127.57 \\ 127.51 \\ 115.34 \end{pmatrix}$	$\begin{pmatrix} 115.17 \\ 101.24 \\ 101.05 \end{pmatrix}$	—77.16 CDCI		31.92 31.06 31.06 27.90 21.84	
F	CI						
			· · · · ·				
210 200 19	0 180 170 160 150	140 130 120	110 100 ppm	90 80 70 60	50 4	0 30 20 10	0
			S139				

A. 13C(111) NINAD (12C NALL- CDCL) \sim

Compound **55** (impure): ¹H NMR (500 MHz, CDCl₃)

10.5

ppm

Compound **57**: ¹H NMR (500 MHz, CDCl₃)

S146

ppm

S148

S149

S10. Reaction Reproduction Report

Reproduced by Jinjian Liu

Reaction 1:

Result: 75% ¹H NMR yield.

Reported result: 80% ¹H NMR yield, 79% isolated yield.

Reaction 2:

Result: 65% isolated yield.

Reported result: 69% isolated yield.

S11. References

- Guo, R.; Chang, Y.-C.; Herter, L.; Salome, C.; Braley, S. E.; Fessard, T. C.; Brown, M. K. Strain-Release [2π + 2σ] Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer. J. Am. Chem. Soc. 2022, 144, 7988–7994.
- Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. Copper-Catalyzed Asymmetric Radical 1,2-Carboalkynylation of Alkenes with Alkyl Halides and Terminal Alkynes. J. Am. Chem. Soc. 2020, 142, 9501–9509.
- Wang, C. H.; White, A. R.; Schwartz, S. N.; Alluri, S.; Cattabiani, T. M.; Zhang, L. K.; Chan, T. M.; Buevich, A. V.; Ganguly, A. K. Novel Synthesis and Functionalization of *ortho–ortho* Disubstituted Biphenyls and a Highly Condensed Novel Heterocycle Using Radical Cyclization Reaction. *Tetrahedron* 2012, *68*, 9750–9762.
- Liu, M.; Kong, D.; Li, M.; Zi, G.; Hou, G. Iridium-Catalyzed Enantioselective Hydrogenation of β,β-Disubstituted Nitroalkenes. *Adv. Synth. Catal.* 2015, *357*, 3875–3879.
- Ganić, A.; Pfaltz, A. Iridium-Catalyzed Enantioselective Hydrogenation of Alkenylboronic Esters. *Chem. Eur. J.* 2012, 18, 6724–6728.
- Su, Y.; Li, Q.-F.; Zhao, Y.-M.; Gu, P. Preparation of Optically Active *cis*-Cyclopropane Carboxylates: Cyclopropanation of α-Silyl Stryenes with Aryldiazoacetates and Desilylation of the Resulting Silyl Cyclopropanes. *Org. Lett.* **2016**, *18*, 4356–4359.
- Nakabayashi, K.; Abiko, Y.; Mori, H. RAFT Polymerization of S-Vinyl Sulfide Derivatives and Synthesis of Block Copolymers Having Two Distinct Optoelectronic Functionalities. *Macromolecules* 2013, 46, 5998–6012.
- Kobayashi, K.; Kawakita, M.; Yokota, K.; Mannami, T.; Yamamoto, K.; Morikawa, O.; Konishi, H. Reactions of Sulfoxides with Magnesium Amides. Transformation of Sulfoxides into Sulfides, Dithioacetals, and Vinyl Sulfides. *Bull. Chem. Soc. Jpn.* **1995**, *68*, 1401–1407.
- Lu, L.; Siu, J. C.; Lai, Y.; Lin, S. An Electroreductive Approach to Radical Silylation via the Activation of Strong Si–Cl Bond. J. Am. Chem. Soc. 2020, 142, 21272–21278.
- 10. Song, Y.; Song, S.; Duan, X.; Wu, X.; Jiang, F.; Zhang, Y.; Fan, J.; Huang, X.; Fu, C.; Ma, S. Copper-Catalyzed Radical Approach to Allenyl Iodides. *Chem. Commun.* **2019**, *55*, 11774–11777.
- Fu, H.; Look, G. C.; Zhang, W.; Jacobsen, E. N.; Wong, C. H. Mechanistic Study of a Synthetically Useful Monooxygenase Model Using the Hypersensitive Probe *trans*-2-Phenyl-1-vinylcyclopropane. *J. Org. Chem.* **1991**, *56*, 6497–6500.
- 12. Shim, E.; Zakarian, A. Stereoselective α-Tertiary Alkylation of *N*-(Arylacetyl)oxazolidinones. *Synlett* **2020**, *31*, 683–686.
- 13. Zhang, W.; Lin, S. Electroreductive Carbofunctionalization of Alkenes with Alkyl Bromides via a Radical–Polar Crossover Mechanism. J. Am. Chem. Soc. **2020**, *142*, 20661–20670.
- 14. Zhou, X.-T.; Carter, R. G. Synthesis of the C1–C26 Northern Portion of Azaspiracid-1: Kinetic versus Thermodynamic Control of the Formation of the *Bis*-spiroketal. *Angew. Chem., Int. Ed.* **2006**, *45*, 1787–1790.
- Kuwahara, M.; Kawano, Y.; Kajino, M.; Ashida, Y.; Miyake, A. Synthetic Studies on Condensed-Azole Derivatives.
 V. Synthesis and Anti-asthmatic Activities of ω-Sulfamoylalkyloxy[1,2,4]triazolo[1,5-*b*]pyridazines. *Chem. Pharm. Bull.* 1997, 45, 1447–1457.

- 16. Johnson, W. S.; Li, T.-T.; Harbert, C. A.; Bartlett, W. R.; Herrin, T. R.; Staskun, B.; Rich, D. H. Developments in the Nonenzymic Biogenetic-like Steroid Synthesis. *J. Am. Chem. Soc.* **1970**, *92*, 4461–4463.
- 17. Kaldas, S. J.; Cannillo, A.; McCallum, T.; Barriault, L. Indole Functionalization via Photoredox Gold Catalysis. *Org. Lett.* **2015**, *17*, 2864–2866.
- Choubdar, N.; Golshani, M.; Jalili-Baleh, L.; Nadri, H.; Küçükkilinç, T. T.; Ayazgök, B.; Moradi, A.; Moghadam, F. H.; Abdolahi, Z.; Ameri, A.; Salehian, F.; Foroumadi, A.; Khoobi, M. New Classes of Carbazoles as Potential Multi-Functional Anti-Alzheimer's Agents. *Bioorg. Chem.* **2019**, *91*, 103164.
- Fei, C.; Chen, Y.; Jiang, Z.; Jiang, D. Thioether-Bridged Arylalkyl-Linked N-Phenylpyrazole Derivatives: Design, Synthesis, Insecticidal Activities, Structure–Activity Relationship and Molecular-Modeling Studies. *Bioorg. Med. Chem. Lett.* 2018, *28*, 1792–1796.
- 20. Yamamoto, C.; Takamatsu, K.; Hirano, K.; Miura, M. Copper-Catalyzed Intramolecular Benzylic C–H Amination for the Synthesis of Isoindolinones. *J. Org. Chem.* **2016**, *81*, 7675–7684.
- Siu, J. C.; Parry, J. B.; Lin, S. Aminoxyl-Catalyzed Electrochemical Diazidation of Alkenes Mediated by a Metastable Charge-Transfer Complex. J. Am. Chem. Soc. 2019, 141, 2825–2831.
- 22. Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X. A General Synthesis of Fluoroalkylated Alkenes by Palladium-Catalyzed Heck-Type Reaction of Fluoroalkyl Bromides. *Angew. Chem., Int. Ed.* **2015**, *54*, 1270–1274.
- 23. Curran, D. P.; Bosch, E.; Kaplan, J.; Newcomb, M. Rate Constants for Halogen Atom Transfer from Representative α-Halo Carbonyl Compounds to Primary Alkyl Radicals. *J. Org. Chem.* **1989**, *54*, 1826–1831.
- Dong, M.; Horitani, M.; Dzikovski, B.; Freed, J. H.; Ealick, S. E.; Hoffman, B. M.; Lin, H. Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis. J. Am. Chem. Soc. 2017, 139, 5680–5683.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16*, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2019.
- Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* 2008, 120, 215–241.
- 27. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
- Zhao, Y.; Truhlar, D. G. Computational Characterization and Modeling of Buckyball Tweezers: Density Functional Study of Concave–Convex π^{...}π Interactions. *Phys. Chem. Chem. Phys.* **2008**, *10*, 2813–2818.
- 29. Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Use of Solution-Phase Vibrational Frequencies in

Continuum Models for the Free Energy of Solvation. J. Phys. Chem. B 2011, 115, 14556–14562.

- 30. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378–6396.
- 31. Itkis, D.; Cavallo, L.; Yashina, L. V.; Minenkov, Y. Ambiguities in Solvation Free Energies from Cluster-Continuum Quasichemical Theory: Lithium Cation in Protic and Aprotic Solvents. *Phys. Chem. Chem. Phys.* **2021**, *23*, 16077–16088.
- 32. Legault, C. Y. CYLview, 1.0b; Université de Sherbrooke, 2009; http://www.cylview.org (accessed 2017-10-07).