Simulations of the Irradiation and Temperature Dependence of the Efficiency of Tandem Photoelectrochemical Water-splitting Systems
Abstract
The efficiency of an operating photoelectrochemical solar-fuels-generator system is determined by the system design, the properties and morphology of the system's components, and the operational conditions. We used a previously developed model comprising of i) the detailed balance limit to describe the currentpotential performance of the photoabsorber component, and ii) the detailed multi-physics device model solving for the governing conservation equations (mass, momentum, species and charge) spatially resolved in the device, to quantify the performance of photoelectrochemical devices. The investigated the performance and its variations as a function of operational conditions, i.e. daily and seasonal irradiation variations, concentration factor of irradiation, and isothermal device temperature. Additionally, the difference in performance of an integrated photoelectrochemical system and a photovoltaic array connected electrically to a standalone electrolyzer system was quantified.
Additional Information
We acknowledge the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. We thank Harry Atwater for fruitful discussions on temperature-dependent analysis of realistic systems.Additional details
- Eprint ID
- 120624
- Resolver ID
- CaltechAUTHORS:20230329-637828000.2
- Department of Energy (DOE)
- DE-SC0004993
- Created
-
2023-03-30Created from EPrint's datestamp field
- Updated
-
2023-03-30Created from EPrint's last_modified field
- Caltech groups
- JCAP