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The efficient coding theory postulates that single cells in a neuronal population should be optimally configured
to efficiently encode information about a stimulus subject to biophysical constraints. This poses the question of
how multiple neurons that together represent a common stimulus should optimize their activation functions to
provide the optimal stimulus encoding. Previous theoretical approaches have solved this problem with binary
neurons that have a step activation function, and have assumed that spike generation is noisy and follows a
Poisson process. Here we derive a general theory of optimal population coding with neuronal activation functions
of any shape, different types of noise and heterogeneous firing rates of the neurons by maximizing the Shannon
mutual information between a stimulus and the neuronal spiking output subject to a constraint on the maximal
firing rate. We find that the optimal activation functions are discrete in the biological case of non-negligible noise
and demonstrate that the information does not depend on how the population is divided into ON and OFF cells
described by monotonically increasing vs decreasing activation functions, respectively. However, the population
with an equal number of ON and OFF cells has the lowest mean firing rate, and hence encodes the highest
information per spike. These results are independent of the shape of the activation functions and the nature of
the spiking noise. Finally, we derive a relationship for how these activation functions should be distributed in
stimulus space as a function of the neurons’ firing rates.
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I. INTRODUCTION

In many neuronal systems, sensory information is pro-
cessed by multiple neurons in parallel, forming a population
code. However, how a population of neurons works together
to efficiently encode a sensory stimulus in the presence of
different biological constraints is still an open question. Many
experimental and theoretical studies have proposed that neu-
ronal coding is optimal [1–5]. Determining optimality is
typically considered in the context of various constraints pro-
vided by the biological system in question. These include
various assumptions made about the structure of the neuronal
population, the relationship between stimulus and neuronal
firing, the source and magnitude of sensory noise, and differ-
ent measures used to quantify coding efficiency. For example,
a common way to describe the firing rate of a neuron as a func-
tion of the stimulus is through an activation function, which
usually describes a nonlinear dependence determined by the

*gjorgjieva@tum.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

various ion channels embedded in the neuron’s membrane or
elaborate dendrites morphologies [6,7]. The activation func-
tions of sensory neurons can be monotonically increasing or
decreasing as a function of the stimulus, referred to as ON
or OFF, respectively [Fig. 1(a)], although in some sensory
systems ON-OFF cells with nonmonotonic activation func-
tions also exist [8,9]. ON and OFF cells are found in many
sensory systems, including the retina where ON (OFF) gan-
glion cells code for increases (decreases) in visual stimulus
intensity or contrast [10,11] and the insect mechanosensory
system where they code for increases and decreases in leg
angle [12]. In line with most optimal coding theories of
neuronal populations, here we assume that multiple cells
together encode a sensory stimulus more efficiently than sin-
gle cells in the presence of sensory noise and biophysical
constraints.

Populations of sensory neurons are typically affected by
noise, which can come from different sources including from
the sensory environment and biophysical constraints. Assum-
ing a description of neuronal firing by activation functions,
noise can enter before or after the activation function, called
input vs output noise, respectively, and can have a different
influence of stimulus coding [13,14]. Since neurons com-
municate via action potentials, theoretical studies of optimal
coding have commonly assumed that individual neurons gen-
erate spike counts in fixed coding windows following Poisson
statistics [15–18]. Under conditions of low spike count
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FIG. 1. Efficient coding framework of a population of ON and OFF neurons. (a) A schematic of ON and OFF neurons. An ON neuron
fires more frequently when the stimulus (which is light in this example) is high and fires at the spontaneous rate (here 0) when the stimulus is
absent. The opposite is true for an OFF neuron. (b) The population coding model. Sensory stimuli s, which are constant in the coding windows
of size T , are drawn from a distribution p(s). The stimuli are encoded by a population of neurons with firing rates νi(s), which fire noisy
spike trains, ni. The distribution of ni is given by the conditional probability p(ni|νi(s)), which denotes the spiking noise. The efficiency of the
neuronal coding is quantified by the Shannon mutual information between the stimuli s and the spike trains ni, i.e., I (n1, . . . , nN ; s). (c) The
optimal activation function, which maximizes the mutual information for a single ON neuron is discrete. (Upper) The optimal thresholds
of a single neuron that maximizes the Shannon mutual information. �i denotes the cumulative probability of s above a threshold. (Lower)
Schematics depicting that the number of steps of the optimal activation function increases with the product of the maximal firing rate and the
coding window, i.e., R = νmaxT . For low R, the optimal activation function is binary and has one threshold (i = 1). As R increases, the optimal
activation function become ternary (i = 2), etc. The activation function becomes continuous in the limit of R → ∞.

intensity of the Poisson process, the optimal activation func-
tions of single neurons can be proven to be discrete with
a single step, i.e., binary [15,16]. However, when the spike
count intensity increases, binary neurons are no longer opti-
mal, but rather the number of steps in the activation function
increases as a function of spike count intensity [16]. Espe-
cially in biological systems, many of these assumptions need
to be relaxed. First, activation functions in different sensory
systems usually do not manifest as binary and may appear
continuous due to the presence of noise [14,19,20]. Neuronal
spike counts can also be non-Poisson, for instance, in the
retina [21,22]. Therefore, it is an interesting question what op-
timal configuration of activation functions can be achieved in
theoretical frameworks of efficient coding where spike counts
follow statistics other than Poisson.

What quantity might neural populations optimize? Two
measures have been commonly used [17,23–27]. The Shan-
non mutual information between the stimulus and neuronal
responses does not assume how the information should be

decoded downstream. Alternatively, the stimulus can be esti-
mated using a decoder and the difference between the stimulus
and the estimate can be minimized. These two measures can
generate very different predictions about the optimal popula-
tion coding strategy [18,28].

Here, we develop a general efficient coding theory based
on a population coding model with multiple ON and OFF
neurons that code for a scalar stimulus from a given distribu-
tion assuming any (monotonic) nonlinear activation function
and any noise statistics. We use the Shannon mutual infor-
mation between the stimulus and the neuronal spikes as a
measure of coding efficiency, and discover that this measure is
independent of how the population is divided into ON and
OFF neurons. We also investigate how the optimal firing
thresholds of ON and OFF neurons partition the stimulus
space as a function of the maximal neuronal firing rates. When
these firing rates are equal for all neurons, we find that the
thresholds divide the stimulus distribution into surprisingly
regular stimulus regions.
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II. THEORETICAL FRAMEWORK

We propose a theoretical framework of population coding
with the following assumptions [Fig. 1(a)]:

(i) A population of ON and OFF neurons code for a
one-dimensional stimulus, with monotonically increasing and
decreasing firing rates as a function of the stimulus (respec-
tively), called activation functions;

(ii) Each neuron i in the population has a minimum (spon-
taneous) firing rate ν0 usually assumed to be 0, and a maximal
firing rate constraint νmax,i;

(iii) The dynamic range of each neuron i, defined as the
stimulus that leads to nonzero and nonmaximal firing rate νi

(with ν0 < νi < νmax,i), does not overlap with the dynamic
range of other neurons;

(iv) The dynamic ranges of OFF neurons are lower than
those of ON neurons.

For the second assumption, we start with a simple case
in which the maximal firing rates in a population are iden-
tical across the cells, i.e., νmax,i = νmax. Later in this paper
(Secs. III D and III H) we also consider neuron popula-
tions with heterogeneous νmax,i. The assumption of zero
spontaneous firing rate ensures analytical tractability. Our
conclusions hold, at least in the case of binary activation func-
tions for all cells with Poisson noise, even if this assumption
is relaxed [18].

We denote the sensory stimulus to be encoded by a pop-
ulation of N cells as the scalar s, which is drawn from a
distribution p(s). We denote the activation function of each
neuron as νi(s), where the subscript i is the index of neurons
in the population. We define “the coding window” T as the
time period when the stimulus s is constant [Fig. 1(b)]. The
coding window depends on the neuronal dynamics in the
specific sensory population. For instance, in the mammalian
retina, retinal ganglion cells have a coding window of 10 to
50 ms [17,29,30]. In the mouse auditory system, auditory
nerve fibers, have a coding window of 50 ms [14,19]. Defining
a coding window allows us to define the spike count ni for
neuron i within a coding window T , which has an expected
value of νi(s)T . Therefore, the stimulus s is encoded by a vec-
tor of noisy spike counts �n = {n1, . . . , nN }, which represents
the population code.

We consider a general noise model where the spike counts
follow a probability distribution p(�n|s), which only directly
depends on the expected value �ν(s)T . Since the firing rate
vector �ν is a deterministic function of the stimulus s, and
assuming the noise of different neurons is independent of each
other, the probability distribution p(�n|s) can also be written
as a product of the spike count probability distribution of
every neuron, i.e., p(�n|�ν(s)) =∏i p(ni|νi(s)). Because νi is
the firing rate and νiT is the expected value of the spike count
ni of neuron i, by definition, we have

+∞∑
ni=0

p(ni|νi ) = 1, (1)

+∞∑
ni=0

p(ni|νi )ni = νiT . (2)

While the noise can follow any distribution, a special case
commonly used in previous study is the Poisson noise
where p(�n|s) = p(�n|�ν(s)) =∏i

(νi (s)T )ni

ni!
e−νi (s)T . We quantify

the coding efficiency of this population code using the Shan-
non mutual information between the population spike count �n
and stimulus s,

I (s, �n) =
∑

�n

∫
ds p(s)p(�n|s) log

p(�n|s)

P(�n) (3)

where

P(�n) =
∫

ds p(s)
∏

i

p(ni|νi ), (4)

and
∑

�n =∑+∞
n1=0 . . .

∑+∞
nN =0 denotes the sum over all possible

spike counts of all the neurons.
Because the firing rates �ν depend deterministically on the

stimulus s, the mutual information between s and �n is the same
as the mutual information between �ν and �n (see Supplemental
Material, SM [31]),

I (s, �n) = I (�ν, �n) =
∑

�n

∫
�ν

dN �ν p(�ν)p(�n|�ν) log
p(�n|�ν)

P(�n)
. (5)

III. RESULTS

We seek to derive the optimal activation functions {νi(·)}i

of an entire population of ON and OFF neurons, which
maximize the mutual information I (s, �n) [Eq. (5)], when the
conditional probability p(ni|νi ) is given. We also aim to de-
termine how this maximal mutual information depends on the
ON-OFF composition of the neuronal population.

A. The optimal activation function for a single neuron is discrete

We first investigate a population with only a single neuron
subject to the constraints from Sec. II. Previous studies have
found that under these conditions and with Poisson-distributed
spike counts, the optimal activation function for a single neu-
ron should be discrete, with an increasing number of steps
as a function of the product R = νmaxT , i.e., the maximum
expected spike count [15,16] [Fig. 1(c)]. In two steps, we
generalize this result to any analytic conditional probability
p(n|ν) (analytic in terms of ν) using the fact that mutual
information is convex in the input space [32].

In step 1, we prove that the mutual information I (ν, n) is
distributed proportionally to the probability density p(ν) in
the optimal configuration. Defining the “density of mutual
information” as

i(ν) =
∑

n

p(n|ν)log
p(n|ν)

P(n)
(6)

we can write

I (ν, n) =
∫

ν

dν p(ν) i(ν). (7)

We can then prove that in the optimal case,

i(ν) = Imax for all possible ν (8)

where Imax is the maximal mutual information (see the SM
[31]).

043205-3



SHAO, MEISTER, AND GJORGJIEVA PHYSICAL REVIEW RESEARCH 5, 043205 (2023)

Then in step 2, we show that Eq. (8) cannot be true if the
activation function ν(s) is continuous, therefore concluding
that it must be discrete. To do this, we first redefine the
activation function using a function Fν . For an ON neuron (the
case for an OFF neuron follows similarly), we can write for
any arbitrary firing rate ν̃,

Fν (ν̃) =
∫ smax(ν̃)

−∞
ds p(s), (9)

where smax(ν̃) is defined as the highest s that makes ν(s) � ν̃,
i.e., smax = max{s|ν(s) � ν̃}. Because ν(s) is a monotonically
increasing function of s, smax(ν̃) is also monotonically increas-
ing, making Fν (ν̃) a monotonically increasing function of ν̃.
We can replace the variable in the integral of Eq. (9), leading
to

Fν (ν̃) =
∫ ν(s=smax(ν̃))

ν(s→−∞)
dν p(ν). (10)

Therefore, Fν becomes the cumulative distribution function of
the firing rate ν,

Fν (ν̃) =
∫ ν̃

0
dν p(ν). (11)

Let F ∗
ν denote the optimal activation function, which maxi-

mizes the mutual information I (ν, n) [Eqs. (5) and (7)]. We
explicitly include the dependence of the density of mutual
information i(ν) [Eq. (6)] on the activation function Fν by
writing i(ν, Fν ) because P(n) depends on Fν . Then, Eq. (8)
can be rewritten as

i(ν, F ∗
ν ) = I (F ∗

ν ) for all ν in E∗
ν (12)

where E∗
ν is the set of points at which F ∗

ν increases.
From now on, we denote the conditional probability

p(ni|νi ) by L(ni, νiT ), and call it the “noise generation func-
tion”. If we assume L(n, νT ) is analytic with respect to νT ,
then we can show that the optimal activation function has a
finite number of steps, i.e., E∗

ν is a finite set of points. Note
that because of Eq. (11), Eν is also the set of all possible
firing rates, i.e., Eν = {ν|p(ν) > 0}. If E∗

ν has a finite number
of points, then the optimal ν(s) will have a finite number of
steps.

Let us first consider the case that E∗
ν is infinite. In the

simplest case, if F ∗
ν is continuous over the interval [0, νmax],

then E∗
ν = [0, νmax]. As a result, i(ν, F ∗

ν ) = const for any ν ∈
[0, νmax].

If F ∗
ν is not continuous but E∗

ν has an infinite number
of points (e.g., F ∗

ν is only continuous on a subinterval of
[0, νmax]), similar to previous study [15,32], one can use the
Bolzano Weierstrass theorem [33] to prove that E∗

ν has a limit
point in [0, νmax]. Then by the identity theorem for analytic
functions [34], if two analytic functions, in our case i(ν, F ∗

ν )
and I (F ∗

ν ), have the same value on an infinite number of
points and the limit of these points, then they are equal, i.e.,
i(ν, F ∗

ν ) = const for any ν ∈ [0, νmax]. In short, assuming E∗
ν

has an infinite number of points also implies that i(ν, F ∗
ν ) is a

constant over the interval [0, νmax].

If E∗
ν is infinite, assuming optimal coding, based on Eq. (8),

we have

i(ν) =
+∞∑
n=0

L(n, νT ) log
L(n, νT )

P(n)
= Imax = const. (13)

Then the derivative with respect to νT ,

i′(ν) =
+∞∑
n=0

L′(n, νT ) log
L(n, νT )

P(n)
= 0 (14)

where L′(n, νT ) denotes ∂L(n,νT )
∂ (νT ) . Similarly, the second deriva-

tive

i′′(ν) =
+∞∑
n=0

[
L′′(n, νT ) log

L(n, νT )

P(n)
+ L′(n, νT )2

L(n, νT )

]
= 0.

(15)

Using mathematical induction, one can prove that for any
m ∈ N+, the mth derivative of i(ν) with respect to νT , i(m)(ν),
contains the term

+∞∑
n=0

L(m)(n, νT ) log
L(n, νT )

P(n)
. (16)

According to Eq. (2),
∑

n L(n, νT )n = νT , we have

L(0, 0) = 1, L(n � 1, 0) = 0. (17)

Based on these two boundary conditions, L(n, νT ) can be
written as a Maclaurin series

L(0, νT ) = 1 +
+∞∑
k=1

a0k (νT )k, (18)

L(n, νT ) =
+∞∑
k=1

ank (νT )k . (19)

Substituting these two series into the fractional or polyno-
mial terms of the derivatives of the noise generation function
L(n, νT ), L′(n, νT ), . . . , L(m−1)(n, νT ), and also in the terms∑

n L(m)(n, νT ) log P(n) in the derivatives i(m)(ν) [Eq. (16)],
we find that they all become fractional or polynomial terms
of νT after doing the Maclaurin expansion with respect to νT
around 0. For example, in i′′(ν) [Eq. (15)],

L′(n, νT )2

L(n, νT )

=
(∑+∞

k=1 ankk(νT )k−1
)2∑+∞

k=1 ank (νT )k

=
(∑+∞

k=1 ankk(νT )k−1
)2

an1νT

(
1 +

+∞∑
k=2

ank

an1
(νT )k−1

)−1

= an1

νT
+ 3an2 +

(
5an3 + a2

n2

an1

)
νT + · · · (n � 1). (20)
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The only exception is the term containing log(νT ) apart from the polynomial terms,

+∞∑
n=0

L(m)(n, νT ) log L(n, νT ) =
+∞∑
k=m

a0k
k!

(k − m)!
(νT )k−m log

[
1 +

+∞∑
l=1

a0l (νT )l

]
+

+∞∑
n=1

[+∞∑
k=m

ank
k!

(k − m)!
(νT )k−m

]

×
⎡⎣log an, j(n) + j(n) log(νT ) + log

⎛⎝1 +
∑

l> j(n)

anl

an j
(νT )l− j(n)

⎞⎠⎤⎦ (21)

where j(n) is the minimal index of k that makes ank > 0
when n is given. When νT → 0, we can see that the first
term in Eq. (21) is finite. The second term can be expanded
as the sum of polynomial terms and other terms proportional
to (νT )k−m log(νT ), which converge to 0 if k > m. The only
diverging term is (νT )k−m log(νT ) when k = m, which be-
comes log(νT ). Hence, the second term diverges as

+∞∑
n=1

anm j(n) log(νT ) (22)

while other terms of i(m)(ν) either converge to a finite value
or diverge even faster than log(νT ), because they are either
polynomial or fractional terms of νT . The sum of the coef-
ficients anm of all the fractional terms with the same order
should then be 0. If we could not find a relationship among
anm that make the sum 0, a paradox would arise completing the
proof. In addition, the sum of the coefficients anm of log(νT )
terms should also be 0, i.e.,

+∞∑
n=1

anm j(n) = 0 for all m � 1. (23)

According to Eq. (17), when νT = 0, L(n � 1, νT ) reaches
its lower bound 0. Then the derivative L′(n, 0), which equals
to an1 [see Eq. (19)], is positive or 0 for any n � 1, i.e.,

an1 � 0. (24)

Combining with Eq. (23), and noting that j(n) > 0, we have

an1 = 0 for all n � 1. (25)

Similarly, based on an1 = 0, we can derive an2 = 0. This is
because the second derivative L′′(n � 1, 0) also needs to be
positive or 0, given that L(n � 1, νT ) is at its lower bound
and its first derivative is 0. Continuing this process, we get

anm = 0 (26)

for all n � 1 and m � 1. Substituting into Eq. (19), we have

L(n, νT ) = 0 for any n � 1 and any ν, (27)

which leads to

L(0, νT ) = 1 for any ν. (28)

This is in contradiction to Eq. (2),
∑

n L(n, νT )n = νT , since
ν > 0 means that the neuron fires and L(0, νT ) cannot be 1.
Therefore, Eq. (13) leads to a paradox, which indicates that
the set of increasing points E∗

ν cannot be infinite.
In summary, this proves that a continuous activation func-

tion is inconsistent with Eq. (8). This means that the optimal

activation function for a single neuron must be discrete for any
noise generation function.

B. The optimal activation functions for a population
of neurons are discrete

Next, we investigate a population of N neurons, made up of
ON and OFF neurons that have monotonically increasing and
decreasing activation functions as a function of the stimulus
s, respectively. We continue to consider the same constraints
of a maximal firing rate and zero spontaneous firing rate
[Fig. 1(a)]. Under these conditions, the optimal activation
functions for all neurons in the population continues to be
discrete for any analytic noise generation function L(ni, νiT ).

We define the “dynamic range” of a neuron to be the
interval of s that leads to unsaturated firing rates, i.e., {s|0 <

νi(s) < νmax} for neuron i (see Sec. II). For a discrete activa-
tion function, the dynamic range is the interval between the
lowest and highest threshold. We assume that the dynamic
ranges of any two neurons do not overlap and also assumed
that any OFF neuron encodes smaller stimuli than any ON
neuron (see Sec. II), which is consistent with experimental
measurements [12] and previous theoretical study [18].

We consider a mixed population of m ON neurons and
N − m OFF neurons. To proceed, we label all ON neurons
with decreasing indices (m to 1) from low to high dynamic
ranges, where the ON neuron with the highest dynamic range
has index 1. Similarly, we label all OFF neurons with increas-
ing indices (m + 1 to N) from low to high dynamic ranges
to ensure symmetry in our mathematical expressions (note
this ordering is different from previous work [18] to ensure
symmetry of the expressions).

If one of the ON neurons 1, 2, . . . , m fires, assuming that
spontaneous firing rates are 0, we know that the stimulus s
is higher than, or is at least within the dynamic range of
neuron m. Then we also know the firing rates of neurons
m + 1, m + 2, . . . , N , which means the spike counts of these
neurons cannot give any new information about the stimulus
s. Based on this, we can write the mutual information encoded
by the mixture of m ON neurons and N − m OFF neurons as

IN (F1, . . . , FN ) = Im(F1, . . . , Fm) + QmIN−m
(
F (m)

m+1, . . . , F (m)
N

)
.

(29)

Here Fi = Fνi is defined in the same way as before [Eq. (11)],
while Qm denotes the probability that none of the ON neurons
1, 2, . . . , m fires. We additionally define the terms F (m) to
denote the “revised” distribution functions under the condi-
tion that none of the neurons 1, 2, . . . , m fires, i.e., given an
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arbitrary firing rate ν̃,

F (m)
i (ν̃) = Prob(νi � ν̃|n1 = · · · = nm = 0). (30)

From Bayes rule, we can write

F (m)
i (ν̃) = Fi(ν̃) Prob(n1 = · · · = nm = 0|νi � ν̃)

Qm
. (31)

Here, Qm does not depend on ν̃. Within the dynamic range
of neuron i (where i > m), the firing rate of neurons 1, . . . , m
are all 0, which means Prob(n1 = · · · = nm = 0|νi � ν̃) also
does not depend on ν̃ in the dynamic range of Fi. Therefore,
if Fi is discrete, F (m)

i will also be discrete, and vice versa.
This relationship also exists between Fi and F ( j)

i where j is
an arbitrary positive integer smaller than i.

Following a similar logic, we can also decompose the
mutual information encoded by a population of N neurons
in Eq. (29) into N single terms, each containing the mutual
information encoded by one neuron, i.e.,

IN = I (F1) + P1(0)
{
I
(
F (1)

2

)+ P(1)
2 (0)

[
I
(
F (2)

3

)+ · · ·
+ P(N−2)

N−1 (0) I
(
F (N−1)

N

)]}
(32)

where Pi(0) = ∫ L(0, νiT ) dFi denotes the probability that
neuron i does not fire, i.e., ni = 0. Furthermore, we have
used I (F (i−1)

i ) to denote the mutual information of neuron i
assuming that neurons 1, . . . , i − 1 do not fire. Since m does
not explicitly appear in this equation, Eq. (32) applies to any
mixed ON-OFF population, including homogeneous ON pop-
ulations (where m = N) or homogeneous OFF populations
(where m = 0).

We use mathematical induction to demonstrate that the
optimal activation functions in a population are all discrete.
Having already shown this for a single neuron, we assume it is
true for a population of N − 1 cells. Then we add an additional
neuron and show the optimal activation functions of all N
neurons are discrete. Without loss of generality, we assume
that the newly added neuron is an ON neuron with a high-
est dynamic range, labeled with 1, and the remaining N − 1
neurons 2, . . . , N . The sum of all the terms multiplying P1(0)
in Eq. (32) has the same mathematical form as IN−1. As a
result, the sum equals Imax

N−1 when optimizing F (1)
2 , . . . , F (N−1)

N ,
allowing us to write

IN = I (F1) + P1(0)Imax
N−1. (33)

Meanwhile, because we assumed that optimal activation func-
tions are discrete in a population of N − 1 neurons, the
optimal F (1)

2 , . . . , F (N−1)
N are all discrete. As we argued be-

fore, since Fi and F ( j)
i are either both discrete or both

continuous, this means that F2, . . . , FN are all discrete. As
before [Eq. (6)], we can also define the density of mutual
information here as

ĩ(ν1) =
∑

n1

p(n1|ν1) log
p(n1|ν1)

P(n)
+ p(n1 = 0|ν1)Imax

N−1

=
∑

n1

L(n1, ν1T ) log
L(n1, ν1T )

P(n)
+ L(0, ν1T )Imax

N−1.

(34)
Therefore, maximizing IN is equivalent to optimizing F1 as-
suming optimal F (1)

2 , . . . , F (N−1)
N as in Eq. (33). If the optimal

F1 is continuous, when IN is maximized we have

ĩ(ν1) = Imax
N , ν1 ∈ [0, νmax] (35)

and this leads to (see the SM [31])

L(n1 = 0, ν1T ) = 1 for any ν1. (36)

Similar to Eq. (28), here Eq. (36) is also in contradiction to
Eq. (2),

∑
n1

L(n1, ν1T )n1 = ν1T . Therefore, the optimal F1

must be discrete and we have proved that all the N optimal
activation functions need to be discrete.

Hence, using mathematical induction, we have proved that
all the neurons’ optimal activation functions in a population
of any number of neurons are discrete.

C. The optimal thresholds and the maximal mutual information
for a population of binary neurons

Having shown that the optimal activation functions in pop-
ulation are discrete for any noise generation function, we first
consider the simplest discrete activation function, which is bi-
nary, to derive the optimal thresholds and the maximal mutual
information. As before, we study a combination of a total of
N neurons, m ON and N − m OFF neurons. Assuming that
the spontaneous firing rate (the firing rate when the stimulus s
is subthreshold) is 0 [Fig. 2(a)], only two parameters charac-
terize the activation function of neuron i, νi(s): the threshold
(denoted as θi) and the maximal firing rate, which as before
we assume is the same for all neurons (νmax,i = νmax for all i).

Because there is only one threshold for every neuron, the
dynamic range of every neuron is compressed to a single
point, the neuron’s threshold. Labeling all the neurons as
before

θm+1 < · · · < θN < θm < · · · < θ1, (37)

we note that there is only one noisy firing level at the maxi-
mum firing rate. The absence of noise in the zero firing state
enables us to lump all firing states with nonzero spike count
into one [18] (see also SM [31]).

Because the optimal activation functions are discrete, fol-
lowing [18], we can replace the firing thresholds with the
intervals of stimulus space partitioned by those thresholds
[Fig. 2(a)] and optimize them instead of directly optimizing
thresholds, i.e., we define

ui = Prob(νi = νmax) =
⎧⎨⎩
∫ +∞
θi

ds p(s), for ON∫ θi

−∞ ds p(s), for OFF.
(38)

Denoting

R = νmaxT,

q = L(0, R) = 1 −
+∞∑
n=1

L(n, R), (39)

we extend the finding of [18] to any noise generation function
that the maximal mutual information is

Imax
N = log(1 + N (1 − q)qq/(1−q) ) = −log(P(�0)) (40)

where P(�0) is the probability that spike counts are all 0 (see
the SM [31]). The maximal information Imax

N is independent
of the composition of ON neurons and OFF neurons and

043205-6



EFFICIENT POPULATION CODING OF SENSORY STIMULI PHYSICAL REVIEW RESEARCH 5, 043205 (2023)

FIG. 2. Efficient population coding of binary neurons. (a) Ac-
tivation functions of ON and OFF binary neurons. Each neuron
has the same maximal firing rate νmax, with an activation function
described by a single threshold θi. (b) Optimal configurations of
homogeneous populations with only ON neurons and mixed ON
and OFF neurons. �i denotes the cumulative probability of s above
threshold θi. The optimal thresholds partition the cumulative stimulus
space into regular intervals [Eqs. (46)–(48)]. The optimized mutual
information is independent of the ON-OFF mixture for any noise
generation function [Eq. (49)].

only depends on the total number of neurons N . Hence, we
have generalized the previously termed “equal coding theo-
rem” to other noise generation functions than Poisson [18].
In addition, comparing the maximal mutual information of a
single neuron population Imax

1 , and of an N-neuron population
Imax
N , reveals that the maximum mutual information encoded

by a population of neurons increases logarithmically with the
number of neurons,

Imax
N = log

[
N
(

exp
(
Imax
1

)− 1
)+ 1

]
. (41)

Given this maximum mutual information, we next cal-
culate the optimal threshold distribution of the population’s
binary activation functions. We can show (see the SM [31])

that the optimal {ui} for the ON neurons are

ui = 1 + (i − 1)(1 − q)

N (1 − q) + q−q/(1−q)
(42)

and for the OFF neurons

ui = 1 + (m − i + 1)(1 − q)

N (1 − q) + q−q/(1−q)
. (43)

The terms {ui} represent an arithmetic progression for any
noise generation function L, whereby all the firing thresholds
equally partition the probability space of stimuli similar to the
case with Poisson noise [18]. If we define

p1 = u1, pm+1 = um+1,

pi = ui − ui−1, i = 2, . . . , m, m + 2, . . . , N, (44)

as the probabilities of the stimulus intervals, i.e., the intervals
of stimuli s that lead to the same firing rates �ν [Fig. 2(b)], we
have

p1 = pm+1
def= pedge,

p2 = · · · = pm = pm+2 = · · · = pN
def= p,

p = (1 − q)pedge.

(45)

This gives us the optimal thresholds in cumulative stimulus
space [Fig. 2(b)],

�i =
∫ θi

−∞
ds p(s), (46)

for the ON cells as:

�1 = 1 − pedge,

�2 = 1 − pedge − p,

· · ·
�m = 1 − pedge − (m − 1)p,

(47)

and for the OFF cells as:

�m+1 = pedge,

�m+2 = pedge + p,

· · ·
�N = pedge + (N − m − 1)p.

(48)

Given these optimal thresholds, we can combine this with
Eq. (40) to find the expression for the optimal mutual infor-
mation

Imax
N = − log(1 − N p). (49)

Hence, we conclude that, for a mixed ON-OFF population
with binary activation functions, the optimal thresholds and
mutual information look exactly the same for any noise gener-
ation function as for Poisson [18]. Homogeneous populations
with only ON or OFF neurons, and mixed ON-OFF popula-
tions with any ON-OFF mixture can encode the same amount
of information.

D. The optimal thresholds for a population of binary neurons
with heterogeneous maximal firing rates

Different neurons might have different maximal firing rate
constraints. For example, ON ganglion cells in the primate
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retina have higher firing rates than OFF ganglion cells [30]. To
explore the effect of these maximal firing rate differences on
efficient coding, next we assume that the different neurons in
the population might have different maximal firing rates, and
consider a heterogeneous population of ON and OFF neurons.
In this case, we define νmax,i as the maximal firing rate of
neuron i,

Ri = νmax,i T,

qi = L(0, Ri ). (50)

Similar to Eq. (38), we define ui as the probability that neuron
i fires at its maximal firing rate, i.e., ui = Prob(νi = νmax,i ).
Then we can prove that the optimal thresholds are {see
Eqs. (S6.9) and (S6.10) in the SM [31]}

ui = qqi/(1−qi )
i +∑i−1

j=1(1 − q j ) q
qj/(1−q j )
j

1 +∑N
j=1(1 − q j ) q

qj/(1−q j )
j

(51)

for ON neurons and

ui = qqi/(1−qi )
i +∑i−1

j=m+1(1 − q j ) q
qj/(1−q j )
j

1 +∑N
j=1(1 − q j ) q

qj/(1−q j )
j

(52)

for OFF neurons. The maximal mutual information now be-
comes

IN = log

⎡⎣1 +
N∑

j=1

(1 − q j ) q
qj/(1−q j )
j

⎤⎦. (53)

This result tells us that as long as the distribution of the maxi-
mal firing rates is the same (i.e., the same set of {qi}), shuffling
the thresholds within the ON and OFF subpopulations, replac-
ing ON neurons with OFF, or replacing OFF neurons with
ON, does not change the maximal mutual information (Fig. 3).
Similar to Eq. (44), defining

p1 = u1,

pm+1 = um+1,

pi = ui − ui−1, i = 2, . . . , m, m + 2, . . . , N,

(54)

we can derive the stimulus intervals partitioned by the thresh-
olds as

p1 = qq1/(1−q1 )
1

1 +∑N
j=1(1 − q j ) q

qj/(1−q j )
j

= e−IN qq1/(1−q1 )
1 ,

pm+1 = qqm+1/(1−qm+1 )
m+1

1 +∑N
j=1(1 − q j ) q

qj/(1−q j )
j

= e−IN qqm+1/(1−qm+1 )
m+1 ,

pi = qqi/(1−qi )
i − q1/(1−qi−1 )

i−1

1 +∑N
j=1(1 − q j ) q

qj/(1−q j )
j

= e−IN
[
qqi/(1−qi )

i − q1/(1−qi−1 )
i−1

]
,

i = 2, . . . , m, m + 2, . . . , N.

(55)

...
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FIG. 3. Efficient population coding of binary neurons with het-
erogeneous maximal firing rates. (a) Optimal configurations of
homogeneous populations with only ON neurons. �i denotes the cu-
mulative probability of s above threshold θi. The optimal thresholds
partition the cumulative stimulus space into intervals, which increase
with the maximal firing rate of the neurons within a population.
(b) Same as (a) but with maximal firing rates shuffled. (c) Same as
(a) but for mixed populations of ON and OFF neurons. (d) Same as
(c) but with maximal firing rates shuffled. All populations code the
same amount of mutual information assuming the same distribution
of the maximal firing rates [Eq. (53)].

One can show that (see the SM [31])

d

dq
(qq/(1−q) ) < 0,

d

dq
(q1/(1−q) ) > 0. (56)

We note that recently [35] derived a similar solution for binary
neurons.

In our solution [Eq. (56)], qi → 0 and qi−1 → 0, pi con-
verges to its maximum e−IN . On the other hand, when qi → 1
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and qi−1 → 1, pi converges to its minimum 0. Therefore,
given a fixed amount of mutual information IN , p1 increases
with νmax,1, pm+1 increases with νmax,m+1, and other pi in-
creases with both νmax,i and νmax,i−1 (Fig. 3). This dependency
indicates that when the maximal firing rates are heterogeneous
in a population, stimulus intervals corresponding to high firing
neurons are wider, which can be understood as a result of
noise reduction.

E. The optimal activation functions with increasing maximal
firing rate constraint

For a single neuron, Nikitin et al. [16] showed that the
optimal activation function is discrete with an increasing num-
ber of steps as the maximal firing rate constraint increases
[Fig. 1(c), assuming the coding window T is constant]. Given
our result that even in a population of neurons the optimal
activation functions remain discrete with increasing maximal
firing rate constraint (Sec. III B), we next determine the num-
ber of steps in the activation function for each neuron.

Similar to a single neuron [16], the number of steps for all
neurons in the population increases as a function of increasing
maximal firing rate (νmax,i), or equivalently decreasing level of
noise (Ri = νmax,iT ). In a population of neurons with identical
maximal firing rates (νmax,i = νmax and hence Ri = R for all i),
all the activation functions have the same number of steps for
a given noise level, such that, for example, the optimal acti-
vation function cannot be binary for one neuron and ternary
for another neuron in the same population. To verify this,
we perform extensive numerical calculations with multiple
noise generation functions L(n, νT ) for small populations of
neurons (Fig. 4, and Fig. S1 in the SM [31]), although we lack
an analytical proof that this is universally true.

F. The optimal thresholds and the maximal mutual information
for a population of ternary neurons

Knowing that at some critical level of maximal firing rate
the optimal activation functions of all neurons in the popu-
lation increase the number of steps, we next generalize our
results beyond binary neurons to activation functions with any
number of steps and any noise generation function. For the
time being, we assume identical maximal firing rates across all
neurons in the population. We first start with ternary activation
functions with three possible firing rate levels [Fig. 5(a)]. In
this case, one can no longer lump the firing states as we did
previously for binary neurons because there is more than one
noisy firing level in the activation function. We show that
the “equal coding theorem” remains valid in that the same
maximal information is encoded by any mixture of ON and
OFF neurons, and the thresholds of the ternary activation
functions of each neuron divide the cumulative stimulus space
equally [Fig. 5(b)].

Two thresholds, θi1 and θi2, describe a ternary neuron i,
separating the spontaneous firing rate ν = 0, an intermediate
firing rate ν = fiνmax, and the maximal firing rate ν = νmax

[Fig. 5(a)]. In a population of m ON neurons and N − m OFF
neurons, we assign all ON neuron indices, from the highest
to the lowest threshold, and for the OFF neurons, from the

0 5 10 15 20 25
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1

0
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0.5
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0

FIG. 4. The optimal activation functions in a neuronal population
are discrete with the number of steps (i.e., thresholds) increasing with
the maximal firing rate. (a) The optimal thresholds in a population of
three ON neurons with Poisson noise generation function. �i denotes
the cumulative probability of s above a threshold. The activation
functions acquire more discrete steps as the maximal firing rate νmax

increases (assuming constant T ). (b) Optimal activation functions for
the neurons in (a). Note that all the activation functions have the same
number of steps for a given noise level. The values of R = νmaxT are
indicated on the top left of each plot and shown as dashed lines in
(a).

lowest to the highest, as for the binary neurons [Eq. (37) and
Fig. 2(b)].

Because we assumed that the dynamic ranges of neurons
do not overlap (see Sec. II), we have

θm+1,2 � θm+1,1 < · · · < θN,2 � θN,1

< θm,1 � θm,2 < · · · < θ11 � θ12. (57)

We transform the firing thresholds {θi1} and {θi2} to inter-
vals of stimulus s, as for the binary neurons in Eq. (38), for
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FIG. 5. Efficient population coding of ternary neurons. (a) Ac-
tivation functions of ON and OFF ternary neurons. Each neuron
has the same maximal firing rate νmax, with an activation function
described by two thresholds, θi,1 and θi,2, and an intermediate firing
rate fiνmax. (b) Optimal configurations of homogeneous populations
with only ON neurons and mixed ON and OFF neurons. �i j denotes
the cumulative probability of s above a threshold θi j for j = {1, 2}.
The optimal thresholds partition the cumulative stimulus space into
regular intervals [Eqs. (60)–(62)]. The optimized mutual information
is independent of the ON-OFF mixture for any noise generation
function [Eq. (65)].

the ON neurons,

ui1 =
∫ θi2

θi1

ds p(s), ui2 =
∫ +∞

θi2

ds p(s) (58)

and for the OFF neurons,

ui1 =
∫ θi1

θi2

ds p(s), ui2 =
∫ θi2

−∞
ds p(s). (59)

We can still find direct relations between (ui1, ui2, fi ) and
(ui+1,1, ui+1,2, fi+1) {Eq. (S7.32) in the SM [31]}. Finally,
we can express the optimal thresholds and intermediate firing
levels as

ui1 = u1

1 + (N − 1)[u1(1 − q1) + u2(1 − q2)]
,

ui2 = u2 + (i − 1)[u1(1 − q1) + u2(1 − q2)]

1 + (N − 1)[u1(1 − q1) + u2(1 − q2)]

(ON neurons, i = 1, . . . , m),

ui2 = u2 + (i − m − 1)[u1(1 − q1) + u2(1 − q2)]

1 + (N − 1)[u1(1 − q1) + u2(1 − q2)]

(OFF neurons, i = m + 1, . . . , N),

fi = f ,

(60)

where (u1, u2, f ) is the optimal (u11, u12, f1) in a population
of a single neuron (N = 1), q1 = L(0, f R) and q2 = L(0, R)
with R = νmaxT .

Defining the cumulative stimulus intervals as Eq. (44),

pi1 = ui1,

p12 = u12, pm+1,2 = um+1,2,

pi2 = ui2 − ui−1,2 − ui−1,1,

i = 2, . . . , m, m + 2, . . . , N, (61)

which are the probabilities of the stimulus intervals that have
the same firing rates �ν. With optimal {ui1}, {ui2}, and { fi}
[Eq. (60)], these intervals can be expressed as

p11 = p21 = · · · = pN1 = u1

1 + (N − 1)[u1(1 − q1) + u2(1 − q2)]
def= p1,

p22 = · · · = pm2 = pm+2,2 = · · · = pN2 = −u1q1 + u2(1 − q2)

1 + (N − 1)[u1(1 − q1) + u2(1 − q2)]
def= p2,

p12 = pm+1,2 = u2

1 + (N − 1)[u1(1 − q1) + u2(1 − q2)]
def= pedge,

p1q1 + p2 = pedge(1 − q2). (62)
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FIG. 6. (a) Efficient population coding of neurons with any activation function. Activation functions of ON and OFF (M + 1)-ary neurons.
Each neuron has the same maximal firing rate νmax, and M + 1 possible firing rates. (b) Optimal configurations of homogeneous ON population
and ON-OFF mixtures of (M + 1)-ary neurons. Black arrows indicate that the distances between each two adjacent activation functions are
the same in the probability space of the stimuli s. (c) As M → +∞, the activation functions of (M + 1)-ary neurons become continuous.
(d) Correspondingly, the optimal configuration of activation functions also transforms into the continuous limit as M → +∞.

This derives the optimal thresholds for a mixed population of
ON and OFF cells [Fig. 5(b)].

Similar to binary neurons {Eq. (40) in the SM [31]}, the
maximal mutual information can be related to P(�0) as

Imax
N = − log P(�0). (63)

This allows us to derive the relationship between the maximal
mutual information and the stimulus interval p as (see the SM
[31])

Imax
N = − log [1 − N (p1 + p2)]. (64)

Using the optimal values of p1 and p2 {Eq. (S7.57) in the SM
[31] and Eq. (62)}, we have

Imax
N = − log

1 − u1(1 − q1) − u2(1 − q2)

1 + (N − 1)[u1(1 − q1) + u2(1 − q2)]
. (65)

We can then write the maximal mutual information of an N-
neuron ternary population as a function of the maximal mutual
information of a single neuron population,

Imax
N = log

[
N
(

exp
(
Imax
1

)− 1
)+ 1

]
, (66)

similar to the case with binary neurons [Eq. (41)].

G. The optimal thresholds and the maximal mutual information
for a population of neurons with any shapes

of activation functions

After generalizing the optimal thresholds in our efficient
population coding framework from binary to ternary neurons,
it is now straightforward to generalize them to activation
functions with any number of steps. Activation functions
with more than three steps can be represented with multi-
ple pi j and fi. For example, an (M + 1)-ary neuron i can
be described with M thresholds, θi1, . . . , θiM , separating the
spontaneous firing rate ν = 0, intermediate firing rate ν =
fi1νmax, . . . , fi,M−1νmax, and the maximal firing rate ν = νmax

[Fig. 6(a)]. For simplicity, we also define fiM = 1 for any
index i.

Defining the cumulative stimulus thresholds similarly to
binary neurons [Eqs. (38) and (44)] and ternary neurons
[Eqs. (58) and (61)], we have for ON neurons

uik =
∫ θi,k+1

θik

ds p(s), k = 1, . . . , M − 1,

uiM =
∫ +∞

θiM

ds p(s), (67)
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and for OFF neurons

uik =
∫ θik

θi,k+1

ds p(s), k = 1, . . . , M − 1,

uiM =
∫ θiM

−∞
ds p(s). (68)

Then the cumulative stimulus intervals can be written as

pik = uik, i = 1, . . . , N ; k = 1, . . . , M − 1,

p1M = u1M , pm+1,M = um+1,M ,

piM = uiM −
M∑

k=1

ui−1,k, i = 2, . . . , m, m + 2, . . . , N,

(69)

and based on this we can calculate the mutual information and
the optimal thresholds for discrete activation functions with
any number of steps.

The calculations with (M + 1)-ary neurons follow very
similarly to the calculations with ternary neurons (see the SM
[31]). In summary, for a population of m ON and N − m OFF
(M + 1)-ary neurons, when the mutual information I (s, �n) is
maximized, we have

p1k = p2k = · · · = pNk
def= pk, k = 1, 2, . . . , M − 1,

p2M = · · · = pmM = pm+2,M = · · · = pNM
def= pM ,

p1M = pm+1,M
def= pedge,

f1k = f2k = · · · = fNk
def= fk, k = 1, 2, . . . , M − 1,

M−1∑
k=1

pkL(0, fkR) + pM = pedge(1 − L(0, R)).

(70)

This derives the optimal thresholds for populations of (M +
1)-ary neurons [Fig. 6(b)].

Also same as before {Eq. (S7.21) in the SM [31] and
Eqs. (64), (41), and (66)}, we still have

Imax
N = − log P(�0), (71)

Imax
N = − log

[
1 − N

M∑
k=1

pk

]
, (72)

and

Imax
N = log

[
N
(

exp
(
Imax
1

)− 1
)+ 1

]
. (73)

We find that the maximal mutual information increases log-
arithmically with the number of neurons, independent of the
specific shape of the activation functions and the type of noise.

Even letting M → ∞, which corresponds to the limit-
ing case in which the activation functions are continuous
[Fig. 6(c)], the optimal activation functions have the same
shape on the probability space of the stimuli s, and the dis-
placement from one to the next is a constant [Fig. 6(d)].

H. The optimal thresholds and the maximal mutual information
for a population of neurons with any shapes of activation

functions and heterogeneous maximal firing rates

The optimal thresholds of ternary neurons or any shapes of
activation functions that we derived for identical maximal fir-

ing rates for all cells can also be generalized to heterogeneous
maximal firing rates, which are different across the different
cells. We first start with ternary neurons. Similarly as before
[Eqs. (57)–(59)], for every neuron i in a population, we define
an intermediate firing rate fi νmax,i, the cumulative stimulus
intervals

ui1 = Prob (νi = fi νmax,i ),

ui2 = Prob (νi = νmax,i ), (74)

and

qi1 = L(0, fiRi ),

qi2 = L(0, Ri ). (75)

Instead of searching for relations between (ui1, ui2, fi ) and
(ui+1,1, ui+1,2, fi+1) {Eq. (S7.32) in the SM [31]}, here we
need to derive direct relations between neuron i in a pop-
ulation and a population of a single neuron with the same
maximal firing rate (also νmax,i). Therefore, for such a pop-
ulation of a single neuron, given its maximal firing rate νmax,
we denote R = νmaxT , and then

(i) u∗
1(R) as its optimal u1

(ii) u∗
2(R) as its optimal u2

(iii) f ∗(R) as its optimal f
(iv) q∗

1 (R) = L(0, f ∗(R)R) as the probability p(n = 0|ν =
f ∗(R)R) after optimization

(v) q∗
2 (R) = L(0, R) as the probability p(n = 0|ν = R) af-

ter optimization
(vi) P∗(0, R) = 1 − u∗

1(R)[1 − q∗
1 (R)]−u∗

2(R)[1 − q∗
2 (R)]

as the probability of observing no spike after optimization.
With these new definitions, we can derive the optimal

thresholds and intermediate firing rates as (see the SM [31])

ui1 = u∗
1(Ri )

P∗(0, Ri )
e−IN .

ui2 =
⎡⎣ u∗

2(Ri )

P∗(0, Ri )
−

N∑
j=i

1

P∗(0, Rj )
+ (N − i)

⎤⎦e−IN + 1

(ON neurons, i = 1, . . . , m),

ui2 =
[

u∗
2(Ri )

P∗(0, Ri )
−

N∑
j=i

1

P∗(0, Rj )
(76)

−
m∑

j=1

1

P∗(0, Rj )
+ (N − i + m)

]
e−IN + 1

(OFF neurons, i = m + 1, . . . , N),

fi = f ∗(Ri ),

and the maximal mutual information as

IN = log

⎡⎣ N∑
j=i

1

P∗(0, Rj )
− (N − 1)

⎤⎦. (77)

Note that similarly to the case of binary neurons with het-
erogeneous maximal firing rates [Eq. (53), Fig. 3], this
equation indicates that the maximal mutual information is the
same as long as all the distribution of maximal firing rates is
the same, independent of how the population is mixed, any
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FIG. 7. The optimal activation functions in a neuronal population with heterogeneous maximal firing rate. The population consists of N = 3
ternary ON neurons, with R1 : R2 : R3 = 1 : 2 : 3. (a) Optimal thresholds as a function of 〈Ri〉 = (R1 + R2 + R3)/3. (b) Optimal thresholds as
a function of Ri of individual neurons. (c) Optimal activation functions at different values of 〈Ri〉 [dashed lines in (a)]. Note that the activation
functions can have different numbers of steps in the same population. 〈Ri〉 values are indicated on the top left corner of each plot.

threshold shuffling within the ON and OFF subpopulations
and any replacing of ON with OFF neurons and vice versa.

Defining pi1 = ui1, p12 = u12, pi2 = ui−1,2 − ui−1,1 −
ui2 (i > 1), we can express the stimulus intervals as

pi1 = u∗
1(Ri )

P∗(0, Ri )
e−IN .

pi2 =
[

u∗
2(Ri ) − u∗

1(Ri )

P∗(0, Ri )
− u∗

2(Ri−1) q∗
2 (Ri−1) − u∗

1(Ri−1)(1 − q∗
1 (Ri−1))

P∗(0, Ri−1)

]
e−IN (i = 2, . . . , m, m + 2, . . . , N ),

p12 =
⎡⎣ u∗

2(R1)

P∗(0, R1)
−

N∑
j=1

1

P∗(0, Rj )
+ (N − 1)

⎤⎦e−IN + 1,

pm+1,2 =
⎡⎣ u∗

2(Rm+1)

P∗(0, Rm+1)
−

N∑
j=1

1

P∗(0, Rj )
+ (N − 1)

⎤⎦e−IN + 1,

fi = f ∗(Ri ).

(78)

Here, fi = f ∗(Ri ) indicates that in a population, the optimal
activation functions of different neurons may consist of dif-
ferent numbers of steps depending on the maximal firing rate
constraint of those neurons (Fig. 7). This result is unique to the
case of heterogeneous maximal firing rates in the population,
compared to the case of identical maximal firing rates for all
cells where all the optimal activation functions in the popu-
lation have same number of steps (Fig. 4). The bifurcations
where the optimal activation functions acquire more steps are

now neuron specific (Fig. 7), only depending on the maximal
firing rate of single neurons but not other neurons in the
same population. This pattern of bifurcation differs from the
case of identical maximal firing rates for all cells where the
bifurcations occur at the same maximal firing rates for the
whole population (Fig. 4).

Unlike binary neurons [Eq. (55)], here we cannot analyt-
ically find how the stimulus intervals {pi1, pi2} depend on
the maximal firing rates νmax,i, or equivalently, the maximum
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spike counts {Ri}. To obtain some understanding of the op-
timal thresholds in Eq. (78), we performed numerical cal-
culations for Poisson noise (Figs. S2 and S3 in the SM [31]).

Similar to ternary neurons (see the SM [31]), we can also
derive the optimal thresholds and intermediate firing rates for
any activation function (with any number of steps) as

uik = u∗
k (Ri )

P∗(0, Ri )
e−IN k = 1, . . . , M − 1,

uiM =
⎡⎣ u∗

M (Ri )

P∗(0, Ri )
−

N∑
j=i

1

P∗(0, Rj )
+ (N − i)

⎤⎦e−IN + 1 (ON neurons, i = 1, . . . , m),

uiM =
[

u∗
M (Ri )

P∗(0, Ri )
−

N∑
j=i

1

P∗(0, Rj )
−

m∑
j=1

1

P∗(0, Rj )
+ (N − i + m)

]
e−IN + 1 (OFF neurons, i = m + 1, . . . , N),

fik = f ∗
k (Ri ), k = 1, . . . , M − 1. (79)

The maximal mutual information can be expressed in the same way as for ternary neurons [Eq. (77)],

IN = log

⎡⎣ N∑
j=i

1

P∗(0, Rj )
− (N − 1)

⎤⎦, (80)

which is again independent of the ON-OFF mixture and the shuffling within the ON or OFF subpopulations. Finally, the optimal
stimulus intervals are given by

pik = u∗
1(Ri )

P∗(0, Ri )
e−IN k = 1, . . . , M − 1,

piM =
[

u∗
M (Ri ) −∑M−1

k=1 u∗
k (Ri )

P∗(0, Ri )
− u∗

M (Ri−1) q∗
M (Ri−1) −∑M−1

k=1 u∗
k (Ri−1)

(
1 − q∗

k (Ri−1)
)

P∗(0, Ri−1)

]
e−IN

(i = 2, . . . , m, m + 2, . . . , N ),

p1M =
⎡⎣ u∗

M (R1)

P∗(0, R1)
−

N∑
j=1

1

P∗(0, Rj )
+ (N − 1)

⎤⎦e−IN + 1,

pm+1,M =
⎡⎣ u∗

2(Rm+1)

P∗(0, Rm+1)
−

N∑
j=1

1

P∗(0, Rj )
+ (N − 1)

⎤⎦e−IN + 1,

fik = f ∗
k (Ri ), k = 1, . . . , M − 1. (81)

In sum, we have generalized the efficient coding frame-
work to any spiking noise, any shapes of activation functions,
and any distribution of maximal firing rates. Although the
solution becomes more complicated as we relax the assump-
tions, we can analytically link the optimal thresholds and
optimal intermediate firing rates to those of a single neuron.
Thus, the dependence of the optimal activation functions on
the maximal firing rates, or equivalently the noise levels, can
be interpreted intuitively. In addition, for any spiking noise,
shapes of activation functions, and distribution of maximal fir-
ing rates, the maximal mutual information is always indepen-
dent of the mixture of ON and OFF neurons, and the reorder-
ing of firing thresholds within ON or OFF subpopulations.

I. Information per spike is the highest
for equal ON-OFF mixtures

While the total mutual information about a stimulus en-
coded by any mixture of ON and OFF cells is identical,
the different ON and OFF populations have different total

metabolic costs, measured in terms of the total mean firing rate
of the population. Using the derived optimal thresholds, we
can calculate the total population mean firing rate for different
ON and OFF mixtures. For a population of binary neurons,
same as [18], the mean firing rate ν̄ can be calculated as

ν̄ =
[

pedge + N − 1

2
p + m

N
(m − N )p

]
νmax, (82)

which reaches its maximum when m = 0 or m = N (a homo-
geneous ON or homogeneous OFF population), and reaches
its minimum when m → N/2 [an equally mixed ON-OFF
population, Fig. 8(a)].

Since the maximal mutual information is the same for ho-
mogeneous populations (all ON or all OFF) and all ON-OFF
mixtures, the information per spike is the highest for equal
ON-OFF mixtures and the lowest for homogeneous popula-
tions with only ON or OFF neurons [Fig. 8(b)].
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FIG. 8. Information per spike is the highest for equal ON-OFF mixtures. (a) The total mean firing rate ν̄ of neurons in populations with
different fractions of ON neurons (m/N). (b) Information per spike (I/(ν̄T )) of neuron populations of different ON neuron ratios (m/N). In
(a) and (b), T = 1 s and different line colors correspond to νmax = 0.1, 0.2, 0.5, 1, 2. (c) Same as (a) but for ternary neurons. (d) Same as
(b) but for ternary neurons. In (c) and (d), νmax = 4, 6, 8, 10. Population size is N = 10 for all the panels.

With ternary neurons, the average firing rate ν̄ in the popu-
lation with optimal thresholds becomes (see the SM [31])

ν̄ =
[

pedge + p1 f + N − 1

2
(p1 + p2)

+ m

N
(m − N )(p1 + p2)

]
νmax. (83)

And generalizing this to (M + 1)-ary neurons, the mean
firing rate of the population ν̄ becomes

ν̄ =
[

pedge + N − 1

2

M∑
k=1

pk

+ m

N
(m − N )

M∑
k=1

pk +
M−1∑
k=1

pk fk

]
νmax. (84)

As in the population with binary neurons, also here the highest
mean firing rate is achieved for the purely ON or OFF popula-
tions with m = 0 or m = N and the minimum is reached when
m → N/2 (see the SM [31]). Thus, similar to binary or ternary

neurons, the information per spike is the highest in the equally
mixed ON and OFF population, i.e., when m → N/2.

When the maximal firing rates are heterogeneous, the av-
erage firing rate ν̄ does not only depend on the ratio of ON
vs OFF neurons, but also depends on the order of neurons,
i.e., the shuffling of thresholds in the population. We can
demonstrate that for binary neurons (see the SM [31]): (1)
Homogeneous ON or OFF populations with only ON or OFF
cells generate the highest ν̄. (2) To reach the lowest ν̄, neurons
with higher maximal firing rates should have smaller probabil-
ity to fire (smaller ui). Mathematically, given the predefined
order of thresholds [Eq. (37)], that is,

θm+1 < · · · < θN < θm < · · · < θ1,

there should be

νmax,1 � · · · � νmax,m

νmax,m+1 � · · · � νmax,N . (85)

As an intuitive example, in Fig. 3, ν̄ is lower in panel
(c) than in (d), and also lower in (a) compared to (b). (3)
When the lowest ν̄ is reached, the number of ON neurons m
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should satisfy∑N
i=m+1 log qi∑m−1

i=1 (1 − qi )q
qi/(1−qi )
i


 log qm

(1 − qm)qqm/(1−qm )
m

. (86)

Point (3) can be understood as the balance between the
activity of ON and OFF neurons. | log qi| and (1 − qi )q

qi/(1−qi )
i

both decrease with qi, and thus, increase with Ri. There-
fore, the denominator of the left side of Eq. (86),

∑m−1
i=1 (1 −

qi )q
qi/(1−qi )
i , is approximately proportional to the total firing

rate of ON neurons, that is
∑m

i=1 νmax,i. Similarly, the nu-
merator

∑N
i=m+1 log qi is approximately proportional to the

total firing rate of OFF neurons, i.e.,
∑N

i=m+1 νmax,i. There-
fore, Eq. (86) provides the optimal firing rate ratio of ON vs
OFF neurons to minimize the mean firing rate of the mixed
population. As a special case, when the maximal firing rates
are identical for all cells, i.e., qi = q, Eq. (86) degenerates
into m 
 (N + 1)/2, which is consistent with the optimal m
in Eqs. (82)–(84) above (also see Fig. 8).

In sum, for any shape of activation functions, although the
maximal mutual information is independent of the numbers of
ON and OFF cells, equal ON-OFF mixtures are more efficient
in that their mean firing rate is the lowest, hence producing
the highest information per spike. In the case of heterogeneous
maximal firing rates, it is more efficient if neurons with higher
maximal firing rates fire with lower probabilities. Intuitively,
the mean firing rate of a neuron population can be related
to the overlap of the neurons’ high firing states—when the
overlap is bigger, the neurons fire simultaneously, increasing
the metabolic cost.

IV. DISCUSSION

Many neural systems process information using multiple
neurons in parallel to encode a sensory stimulus in the pres-
ence of different biological constraints. In this paper, we have
developed an efficient coding theory that maximizes the Shan-
non mutual information between stimuli and neuronal spikes
subject to neuronal noise. We considered several aspects of
the neuronal populations to make them more biologically
realistic, including ON and OFF neurons, different shapes of
neuronal activation functions and a heterogeneity of maximal
firing rates, different statistics of noise in the spike generation
mechanism, and different numbers of neurons.

We assumed that each neuron has a zero spontaneous firing
rate and a fixed maximal firing rate, which can be interpreted
as the inverse of the noise level. Generalizing previous results
beyond Poisson spiking to any noise statistics, we first showed
that the optimal activation function of a single neuron that
maximizes the mutual information must be discrete. Addi-
tionally, we demonstrated that also in a population of any
number of neurons and any noise statistics, the optimal acti-
vation functions are all discrete. Intuitively, discrete activation
functions could be advantageous because they create distinct
firing levels that are more distinguishable in the presence of
spiking noise, compared to continuous activation functions.
As the maximal firing rate increases, the different firing levels
become easier to separate, making room for more steps in the
activation functions. Interestingly, for a population of fixed
size with identical maximal firing rates for all cells, we found

that the number of steps in the population increases with
increasing the maximal firing rate constraint (or equivalently,
decreasing noise level) simultaneously for all the neurons.
This implies that at any noise level, all neurons have the
same activation function shape, i.e., an activation function
that consists of the same number of steps. When the maxi-
mal firing rates of the different cells are heterogeneous, the
number of steps in the optimal activation function of each
neuron depends on the maximal firing rate of that neuron only.
Therefore, neurons in the same population can have different
activation function shape.

A second aspect of optimal coding pertains to the optimal
activation functions distribution of all neurons in stimulus
space. Remarkably, when the maximal firing rates of all cells
are the same, the optimal activation functions divide the
probability space of the stimulus into equal regions, hence
implementing a coding strategy, which emphasizes stimuli
that occur with higher probability. While this result has been
long known in the limit of low noise (high maximal firing
rate) as “histogram equalization” [4], we show that it holds
for any noise generation function and any amount of noise.
When the maximal firing rates of the different cells are
heterogeneous, the organization of thresholds is no longer
regular but rather results in smaller (larger) stimulus regions
when the firing rates are low (high) to compensate for the
higher (lower) noise.

Finally, by considering populations with different propor-
tions of ON and OFF neurons, we demonstrated that the
maximal information is independent of the ON-OFF mixture.
ON and OFF splitting of a sensory signals has been experi-
mentally observed in various sensory systems, including the
mammalian retina [10,11], the medulla of Drosophila visual
system [36,37], and the mechanosensory neurons in the legs
of the adult Drosophila [12]. Our theory applies only to pop-
ulations, which code for the same one-dimensional stimulus
variable using just the spike count. However, in the vertebrate
retina, diverse types of retinal ganglion cells represent a visual
stimulus, and differ in their spatial and temporal processing
characteristics [38,39]. Nonetheless, certain types of ganglion
cells exist both as ON and OFF, with otherwise similar spa-
tial location and temporal processing features, and hence are
consistent with the assumptions in our theory. Considering a
theoretical framework for the encoding of a scalar stimulus,
which has no spatial or temporal correlations is clearly a
limitation of our model, since real-world stimuli possess rich
temporal and spatial patterns [11,40–42]. Several frameworks
have begun exploring the impact of these complex sensory
stimuli on efficient coding [43–45]. For example, mainly us-
ing the mammalian retina as a model, the optimal numbers of
ON and OFF retinal ganglion cells were derived as a func-
tion of the spatial contrast statistics in these natural scenes
[11]. Other studies have built more extensive cascade models
consisting of receptive fields and nonlinearities, and predicted
the structure of retinal mosaics (spatial grids of cells that
encode different sensory information) [46,47] and intermosaic
relationships [48,49] by considering the spatial structures of
natural scenes. To account for the temporally rich dynam-
ics, some models have extended similar cascade models to
the temporal domain and predicted the spatial and temporal
integration properties of retinal mosaics when training the
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models on natural videos [48,50,51] or studied adaptation
to a changing environment [52,53]. While these are exciting
recent developments that capitalize on new technologies to
simultaneously record many cells and evaluate the theoreti-
cal predictions, they are often focused on particular systems,
such as the vertebrate retina. Considering its applicability
to the encoding of a one-dimensional static stimulus, our
framework allows analytical tractability, and generalization
across different dimensions, including noise functions, firing
rate distributions, and activation functions, as well as being
agnostic to the neural populations being modeled. Our model
would need to be revised to account for the encoding of high-
dimensional spatial and temporal stimuli.

In addition to sensory stimuli, neural activity also exhibits
a high degree of structure, for example, firing with specific
temporal dynamics (sustained or transient [10,54]). Structured
neural activity significantly impacts neural coding and could
alter the conclusions of specific efficient coding theoretical
results. For instance, noise correlations can significantly af-
fect coding performance [55,56]. Bursting, another common
and functional type of neural activity other than spiking, also
has profound coding implications [57]. Burst coding can be
more efficient [58], more biological realistic [59], and more
multiplexed [60] than rate coding.

The equality of mutual information across different ON-
OFF mixtures predicted by our theoretical framework seems
to be inconsistent with experimental data in the many sensory
systems where different numbers of ON and OFF neurons
have been observed (e.g., primate somatosensory cortex, fly
visual system, and mammalian olfactory system, summarized
in [18]). Nonetheless, in our theoretical results, despite the
equality of total information the overall cost of spiking across
the different ON-OFF mixtures differs. Hence, populations
with equal ON-OFF mixtures have the lowest spiking cost,
while homogeneous populations with only ON or OFF neu-
rons have the highest cost. This implies despite the equality of
information across the different ON-OFF mixtures, the infor-
mation per spike is the highest for the equal ON-OFF mixture,
and decreases monotonically when a single subpopulation
(ON or OFF) begins to dominate the mixture. Taking into
account the metabolic cost could be one answer to explaining
different numbers of ON and OFF cells across different sen-
sory systems. Other possibilities include different measures
of coding efficiency than mutual information that might be
used by the different sensory systems [9,25], different sources
of noise (input vs output [14,61,62]), as well as including
spatiotemporal statistics in natural images.

Although we considered different noise statistics, we as-
sumed that the noise was inherent in the spike generation
mechanism. Noise can enter in different places along the
encoding pathway, for example, in the activation functions of
the neurons [13], and have considerable effects on neuronal
coding [14,62–64]. Furthermore, we only focused on stim-
ulus encoding without discussing how the information can
be further decoded from the neuronal spikes. The decoding
of information could be another key aspect of efficient neu-
ronal coding [18,28,43,65]. Previous study has shown that the
measure of efficiency can significantly influence conclusions
about the ON-OFF composition of the population and the
activation function distribution [18,20,62]. It is possible that

different sensory systems have evolved optimal coding strate-
gies by maximizing different objective functions, or may not
even be optimal at all. Our paper provides a general theoretical
framework that in principle can be applied to various sensory
systems without the nuances of each system.
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APPENDIX

The variables used in this paper and their definitions are
listed in Table I below.

TABLE I. Summary of the parameters in this paper.

Variables Definitions

N Number of neurons
s The scalar stimulus
p(s) The stimulus distribution
νmax The maximal firing rate constraint
νi(s) The activation function of neuron i
T The coding window within which the spike count is

computed
R νmaxT , the expected value of spike count when a

neuron fires at the maximal firing rate νmax

ni The spike count of neuron i
νiT The expected value of neuron i’s spike count
L(ni, νiT ) The noise generation function, equivalent to p(ni|νi )
I (s, n) Shannon mutual information between stimulus s and

spike count n encoded by the neuronal population
i(·) Density of mutual information
Fν The cumulative distribution function of the firing rate

ν

m The number of ON neurons
Qm The probability that none of the ON neurons

1, 2, . . . , m fires
F ( j)

i cumulative distribution function of νi, given that
none of the neurons 1, 2, . . . , j fires

θik The kth firing threshold of neuron i whose activation
function is discrete

pik The kth stimulus interval of neuron i
uik The kth cumulative stimulus interval of neuron i
fik The ratio of the kth intermediate firing rate
Pi(0) The probability that neuron i does not fire
u( j,N )

ik In a group of N neurons, the kth cumulative stimulus
interval of neuron i, given that none of the neurons
1, . . . , j ( j < i) fires

P(k,N )
i (0) In a group of N neurons, the kth cumulative stimulus

interval of neuron i, given that none of the neurons
1, . . . , j ( j < i) fires

q L(0, νT ), the probability that the spike count is 0
given a nonzero firing rate
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