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1 The mutual information between stimulus and spikes equals the
mutual information between firing rates and spikes

In this section we prove the argument in the main text that the mutual information between the stimuli s
and the spike counts n⃗, equals the mutual information between the firing rates ν⃗ and the spike counts n⃗, i.e.,
I(s, n⃗) = I(ν⃗, n⃗) (Eq. 5). This was also shown in previous literature [1] but limited to a single neuron (i.e.,
N = 1, when n⃗ and ν⃗ are scalars).

Since the spike counts of different neurons are independent of each other, we can write

p(n⃗|s) =
∏
i

p(ni|s). (S1.1)

Inserting it into the formula of the Mutual Information (Eq. 3), we have

I(s, n⃗) =
∑
n⃗

ˆ
ds p(s) p(n⃗|s) log p(n⃗|s)

P (n⃗)

=
∑
n⃗

ˆ
ds p(s) p(n⃗|s) log p(n⃗|s)−

∑
n⃗

P (n⃗) logP (n⃗)

=
∑
n⃗

∑
i

ˆ
ds p(s) log p(ni|s)

∏
k

p(nk|s)−
∑
n⃗

P (n⃗) logP (n⃗)

=
∑
i

∑
n⃗

ˆ
ds p(s) log p(ni|s)

∏
k

p(nk|s)−
∑
n⃗

P (n⃗) logP (n⃗).

(S1.2)

Note that
∏

k p(nk|s) = p(ni|s)
∏

k ̸=i p(nk|s), summing over all k ̸= i, we have

I(s, n⃗) =
∑
i

∑
ni

ˆ
ds p(s) p(ni|s) log p(ni|s)−

∑
n⃗

P (n⃗) logP (n⃗)

=
∑
i

∑
ni

ˆ
dνi p(νi) p(ni|νi) log p(ni|νi)−

∑
n⃗

P (n⃗) logP (n⃗).

(S1.3)

Denoting by ν⃗(i) = (ν1, ..., νi−1, νi+1, ..., νN ) the vector of all the ν except for νi, we have

ˆ
dN−1ν⃗(i) p(ν⃗(i)|νi) = 1. (S1.4)
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Therefore, equation (Eq. S1.3) becomes

I(s, n⃗) =
∑
i

∑
ni

ˆ
dN−1ν⃗(i) p(ν⃗(i)|νi)

ˆ
dνi p(νi) p(ni|νi) log p(ni|νi)−

∑
n⃗

P (n⃗) logP (n⃗)

=
∑
i

∑
ni

ˆ
dN ν⃗ p(ν⃗) p(ni|νi) log p(ni|νi)−

∑
n⃗

P (n⃗) logP (n⃗)

=
∑
i

∑
ni

ˆ
dN ν⃗ p(ν⃗) p(ni|ν⃗) log p(ni|ν⃗)−

∑
n⃗

P (n⃗) logP (n⃗)

=
∑
i

∑
n⃗

ˆ
dN ν⃗ p(ν⃗) log p(ni|ν⃗)

∏
k

p(nk|ν⃗)−
∑
n⃗

P (n⃗) logP (n⃗).

(S1.5)

Similar to Eq. S1.1, we also have

p(n⃗|ν⃗) =
∏
i

p(ni|ν⃗) (S1.6)

which leads to

I(s, n⃗) =
∑
i

∑
n⃗

ˆ
dN ν⃗ p(ν⃗) p(n⃗|ν⃗) log p(ni|ν⃗)−

∑
n⃗

P (n⃗) logP (n⃗)

=
∑
n⃗

ˆ
dN ν⃗ p(ν⃗) p(n⃗|ν⃗)

∑
i

log p(ni|ν⃗)−
∑
n⃗

P (n⃗) logP (n⃗)

=
∑
n⃗

ˆ
dN ν⃗ p(ν⃗) p(n⃗|ν⃗) log p(n⃗|ν⃗)−

∑
n⃗

P (n⃗) logP (n⃗)

=
∑
n⃗

ˆ
ν⃗

dN ν⃗ p(ν⃗) p(n⃗|ν⃗) logp(n⃗|ν⃗)
P (n⃗)

= I(ν⃗, n⃗).

(S1.7)

2 Density of the mutual information for a single neuron is constant
when optimized

This section works as a first step to prove that the optimal activation function for a single neuron is discrete.
We limit our discussion to a single neuron. Without loss of generality, we only consider an ON neuron with
an activation function where the firing rate increases with stimulus intensity. Studying an OFF neuron is
entirely symmetric. As in the main text, the maximal firing rate of this neuron is constrained to νmax and
the spontaneous firing rate is denoted by ν0.

2.1 A neuron with a discrete activation function

First, we consider a neuron with a discrete activation function. In this case, the firing rate can only be some
discrete values between ν0 and νmax. Therefore, we denote the probability that the firing rate is ν by pν ,
instead of p(ν) that we commonly write. The mutual information is then

I(s, n) = I(ν, n) =
∑
n

∑
ν

pν p(n|ν) log
p(n|ν)
P (n)

. (S2.1)

We can define the entropy of the spike count at a given firing rate as

h(ν) = −
+∞∑
n=0

p(n|ν) log p(n|ν) (S2.2)

and note that
P (n) =

∑
ν

pν p(n|ν), (S2.3)

2



so that we have
I(ν, n) = −

∑
ν

pν h(ν)−
∑
ν

pν
∑
n

p(n|ν) logP (n). (S2.4)

Since pν are probabilities, we have the constraint that
∑

ν pν = 1, hence to optimize the objective function
we include a Lagrange multiplier,

Ĩ = I(ν, n) + λ(
∑
ν

pν − 1). (S2.5)

Assuming optimality,

∂pν
Ĩ = −h(ν)−

∑
n

p(n|ν) logP (n)−
∑
n

p(n|ν) + λ = 0. (S2.6)

Absorbing −
∑

n p(n|ν) = −1 into λ, i.e. λ → λ− 1, we have

−h(ν)−
∑
n

p(n|ν) logP (n) + λ = 0. (S2.7)

Multiplying both sides by pν and summing over ν, we have

I(s, n) + λ = 0. (S2.8)

We define

i(ν) =
∑
n

p(n|ν) logp(n|ν)
P (n)

. (S2.9)

Multiplying this equation with pν and summing over ν, we have

I =
∑
ν

pνi(ν). (S2.10)

Therefore, we call i(ν) “the density of mutual information”, which is also defined by Eq. 6 in the main text.
According to Eq. S2.7, we can write

I(ν, n) = −λ = −
∑
n

p(n|ν) logP (n)− h(ν) =
∑
n

p(n|ν) log p(n|ν)
P (n)

= i(ν). (S2.11)

This means when the mutual information is optimized, i(ν) is a constant for all possible ν. The convexity
of the mutual information ensures that the optimal solution is unique. As a special case, if the spontaneous
rate ν0 = 0, according to Eq. 1 and Eq. 2, we have p(n = 0|ν = 0) = 1 and p(n ̸= 0|ν = 0) = 0. As a result,

Imax = i(ν = 0) = − logP (0). (S2.12)

Also, Eq. S2.11 means the mutual information I(ν, n) is distributed proportionally to the probabilities pν
when it is maximized. In addition, one can also define

is(s) =
∑
n

p(n|s) logp(n|s)
P (n)

, (S2.13)

then we have

I =

ˆ
ds p(s) is(s) (S2.14)

and
i(ν) = is(s). (S2.15)

Therefore, the maximal mutual information I(s, n) will be distributed proportionally to the probability
density of the stimulus s, denoted by p(s) in the main text and Fig. 1B. The density function is(s) is also
a constant over the space of stimulus s. For example, if we have a ternary activation function with three
possible firing rates 0, νmax/2, and νmax, and the stimulus s follows a standard normal distribution, the input
space in terms of ν is {0, νmax/2, νmax}, so we have i(ν = 0) = i(ν = νmax/2) = i(ν = νmax). Similarly, the
input space of s is then the set of all real numbers R, and we have is(s) = const, s ∈ R.
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2.2 A neuron with a continuous activation function

We assume that the neuron has a continuous and smooth (analytic) activation function, with the lowest rate
(i.e., the spontaneous firing rate) ν0 and the maximal firing rate νmax. Then, the mutual information can
be written as:

I =

+∞∑
n=0

ˆ νmax

ν0

ds p(s) p(n|s) log p(n|s)
P (n)

=

+∞∑
n=0

ˆ νmax

ν0

dν p(ν) p(n|ν) log p(n|ν)
P (n)

. (S2.16)

Define Ĩ = I + λ
(´ νmax

ν0
p(ν)dν − 1

)
, then

Ĩ = −
+∞∑
n=0

P (n) logP (n) +

+∞∑
n=0

ˆ νmax

ν0

dν p(n|ν) p(ν) log p(n|ν) + λ

(ˆ νmax

ν0

dν p(ν)− 1

)
. (S2.17)

When optimized,

δĨ = −
+∞∑
n=0

(log P (n) + 1) δP (n)−
ˆ νmax

ν0

dν h(ν) δp(ν) + λ

ˆ νmax

ν0

dν δp(ν) = 0. (S2.18)

Because

δP (n) = δ

[ˆ νmax

ν0

dν p(ν) p(n|ν)
]
=

ˆ νmax

ν0

dν p(n|ν) δp(ν), (S2.19)

we have

δĨ = −
ˆ νmax

ν0

dν

+∞∑
n=0

p(n|ν) (log P (n) + 1) δp(ν)−
ˆ νmax

ν0

dν h(ν) δp(ν) + λ

ˆ νmax

ν0

dν δp(ν) = 0 (S2.20)

which leads to

−
+∞∑
n=0

p(n|ν) (logP (n) + 1)− h(ν) + λ = 0. (S2.21)

Absorbing −
∑+∞

n=0 p(n|ν) = −1 into λ, multiplying by p(ν), and integrating over ν, we have I + λ = 0. As
a result,

I = −λ = −
∑
n

p(n|ν) log P (n)− h(ν) =
∑
n

p(n|ν) log p(n|ν)
P (n)

= i(ν), for ν ∈ [ν0, νmax] (S2.22)

which means the density of mutual information i(ν) is a constant for all firing rates ν. One can still define the
density function with stimulus s as Eq. S2.13 and the is(s) is still a constant when the mutual information
is optimized.

In summary, we have shown that the density of mutual information i(ν) is a constant for all possible
firing rates, independent of whether the activation function is discrete or continuous. We note that this
result has also been proven in previous work using a different approach based on the convexity of mutual
information [2, 3].

3 The optimal activation functions of a population of neurons are
discrete

To prove that the optimal activation functions are discrete, we first need to prove that when the mutual
information of a population of N neurons is maximized, the density of mutual information ĩ(ν1) that we
defined in the main text is a constant and equals to the maximal mutual information Imax

N (Eq. 35). Con-
sistent with the main text, we denote p(ni|νi) by L(ni, νiT ) from now on.
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According to the definition in the main text (Eq. 34), we have

ĩ(ν1) =
∑
n1

p(n1|ν1) log
p(n1|ν1)
P (n)

+ p(n1 = 0|ν1)Imax
N−1

=
∑
n1

L(n1, ν1T ) log
L(n1, ν1T )

P (n)
+ L(0, ν1T )I

max
N−1

(S3.1)

and we can see that when neurons 2, ..., N are all optimized,

ˆ
dν1 i(ν1) p(ν1) = IN = I(F1) + P1(0)I

max
N−1. (S3.2)

Similar as in the last section, we define ĨN = IN + λ
(´ νmax

0
p(ν1)dν1 − 1

)
, and write

ĨN =−
+∞∑
n1=0

P (n1) logP (n1) +

+∞∑
n1=0

ˆ νmax

0

dν1 L(n1, ν1T ) p(ν1) logL(n1, ν1T )

+ Imax
N−1

ˆ νmax

0

dν1 p(ν1)L(0, ν1T ) + λ

(ˆ νmax

0

dν1 p(ν1)− 1

)
.

(S3.3)

When optimized,

δĨN = −
+∞∑
n1=0

(log P (n1) + 1) δP (n1)+

ˆ νmax

0

dν1
(
Imax
N−1L(0, ν1T )− h(ν1)

)
δp(ν1)+λ

ˆ νmax

0

dν1 δp(ν1) = 0.

(S3.4)
Because

δP (n1) = δ

[ˆ νmax

0

dν1 p(ν1)L(n1, ν1T )

]
=

ˆ νmax

0

dν1 L(n1, ν1T ) δp(ν1), (S3.5)

we have

δĨN =−
ˆ νmax

0

dν1

+∞∑
n1=0

L(n1, ν1T ) (log P (n1) + 1) δp(ν1)

+

ˆ νmax

0

dν1
(
Imax
N−1 L(0, ν1T )− h(ν1)

)
δp(ν1) + λ

ˆ νmax

0

dν1 δp(ν1) = 0

(S3.6)

which leads to

−
+∞∑
n1=0

L(n1, ν1T ) (logP (n1) + 1) + Imax
N−1 L(0, ν1T )− h(ν1) + λ = 0. (S3.7)

Absorbing −
∑+∞

n1=0 L(n1, ν1T ) = −1 into λ, multiplying by p(ν1), and integrating over ν1, we have IN +λ =
0. As a result,

Imax
N = −λ = −

∑
n1

L(n1, ν1T ) log P (n1) + Imax
N−1 L(0, ν1T )− h(ν1)

=
∑
n1

L(n1, ν1T ) log
L(n1, ν1T )

P (n1)
+ Imax

N−1 L(0, ν1T ) = ĩ(ν1), for ν1 ∈ [0, νmax].
(S3.8)

Second, we need to prove that the above result (Eq. S3.8) will lead to a contradiction if the optimal activation
function F1 is continuous. From the discussion in the main text, this is equivalent to finding a paradox in

ĩ(ν1) =

+∞∑
n1=0

L(n1, ν1T ) log
L(n1, ν1T )

P (n1)
+ Imax

N−1 L(0, ν1T ) = Imax
N = const. (S3.9)
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Following the same procedure as in the main text, we can prove that if we write the Maclaurin series

L(n1, ν1T ) =

+∞∑
k=1

an1,k(ν1T )
k (S3.10)

for any n1 ≥ 1, the sum of the coefficients of log(νT ) terms in themth derivative of ĩ(ν1) is then
∑+∞

n1=1 an1,m j(n1),
where j(n1) is the minimal index of k that makes an1,k > 0. This follows the same formalism as Eq. 22 in
the main text, because the additional term here, Imax

N−1 L(0, ν1T ), does not contribute to log(νT ) terms when
it is written as a Maclaurin series.

If Eq. S3.9 were correct, all the derivatives of ĩ(ν1) would be 0, and we would have

+∞∑
n1=1

an1,m j(n1) = 0 for any m ≥ 1 (S3.11)

because log(ν1T ) diverges as ν1T → 0. Again, similar as in the main text, we could show that in this case,

L(n1 = 0, ν1T ) = 1 for any ν1, (S3.12)

which cannot be true. Therefore, we have proved that the optimal F1 being continuous will lead to a paradox.
Therefore, in a population of N neurons, given that neurons 2, ..., N are all optimized, the optimal activation
function of neuron 1 will be discrete.

4 The number of steps in the optimal activation functions in-
creases as a function of the maximal firing rate constraint

Here, we perform extensive numerical calculations on neuronal populations with up to four neurons and any
ON-OFF mixture to demonstrate that as the maximal firing rate constraint νmax increases, the number of
steps in the optimal activation functions increases. We calculated the optimal thresholds numerically using
three different noise generation functions L(n, νT ) (Fig. S1):
(1) Poisson distribution

L(n, νT ) =
(νT )n

n!
exp(−νT ), (S4.1)

(2) Binomial distribution
L(n, νT ) =

(
N
n

)
pn(1− p)N−n, (S4.2)

where N = 30 and p = νT/N , and
(3) Geometric distribution

L(n, νT ) = pn(1− p) (S4.3)

where p = νT/(1 + νT ).
In detail, we calculated the mutual information as a function of the firing thresholds and intermediate

firing rates, based on Eq. 5. These parameters were initialized randomly, and then optimized using SLSQP
method [4]. All code was written in Python 2.7. A sample is publicly available at https://zenodo.org/record/8083056.

We find that the number of thresholds increases as the maximal firing rate constraint νmax increases.
Moreover, for all neurons in the same population, the threshold splitting occurs at the same firing rate,
meaning that every neuron in the population has an optimal discrete activation function with the same
number of steps. Hence, the optimal neuronal population consists of exclusively binary neurons, or exclusively
ternary neurons, or exclusively quaternary neurons, etc. But it can never be a mixture of neurons with
different numbers of steps, e.g., binary and ternary.
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Figure S1. Optimal thresholds in different neuronal populations (1 ON + 1 OFF, 2 ON, 2 ON + 1 OFF,
3 ON, 2 ON + 2 OFF, and 3 ON + 1 OFF) with different noise generation functions (Poisson, Binomial,
and Geometric distribution).
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5 Population coding of binary neurons with any noise generation
function

From now on, we denote the probability function of spike generation as L(ni, ri), where ni is the spike count
of neuron i, and ri is the expected value of ni. When the firing rate of neuron i is νi and the time window
is T , we have ri = νiT . Consistent with the main text, we assume the neurons do not have a spontaneous
firing rate, i.e., ν0 = 0. R = νmaxT is the maximal value of any ri.

For a binary neuron, we define the interval of stimulus space partitioned by its threshold as ui = Prob(νi =
νmax), which is the same as Eq. 38 in the main text (Fig. 2B). The mutual information between stimuli and
spikes can be formulated as

I1 = g(u1) =
∑
n

ˆ
s

ds p(s) p(n|s) log P (n|s)
P (n)

= −(1− u1) logP (0) + u1L(0, R) log
L(0, R)

P (0)
+ u1

+∞∑
n=1

L(n,R) log
L(n,R)

u1L(n,R)

= −P (0) logP (0) + u1L(0, R) logL(0, R)− u1 log u1

+∞∑
n=1

L(n,R).

(S5.1)

Define q = L(0, R) = 1−
∑+∞

n=1 L(n,R), we have

P (0) = 1− u1 + u1q (S5.2)

I1 = −P (0) logP (0) + u1q log q − u1(1− q) log u1. (S5.3)

Here, all the nonzero spike counts have been merged as in previous work with Poisson spike statistics [5].
It is equivalent to only having a firing state n ̸= 0 and a non-firing state n = 0. The only difference from
Poisson spike statistics is the exact formulation of the function L and the value of q. This similarity allows us
to use some of the results derived in previous literature [5]. For example, given a population of N neurons,
its mutual information can be written as

IN = g(u1) + (1− u1(1− q))
[
g(u

(1)
2 ) + ...+

(
1− u

(N−2)
N−1 (1− q)

)
g(u

(N−1)
N )

]
(S5.4)

where u
(j)
i means the revised probability of ui after knowing that all neurons 1, ..., j (j < i) did not spike,

and g(u) = −(1 − u + uq)log(1 − u + uq) + uq log q − u(1 − q) log u. The index of neurons follow Eq. 37 in
the main text (Fig. 2B).

One can show that u
(j)
i follows the rule below [5]:

u
(j)
i =

u
(j−1)
i −

(
1− P

(j−1)
j (0)

)
P

(j−1)
j (0)

=
u
(j−1)
i − u

(j−1)
j (1− q)

1− u
(j−1)
j (1− q)

(S5.5)

if neuron i and neuron j are both ON, or both OFF, and

u
(j)
i =

u
(j−1)
i

P
(j−1)
j (0)

=
u
(j−1)
i

1− u
(j−1)
j (1− q)

(S5.6)

if neuron i is OFF but neuron j is ON. Here P
(k)
j (0) is the probability that neuron j does not fire after

knowing that none of the neurons 1, ..., k (k < j) spikes, we also have

P
(k)
j (0) = 1− u

(k)
j (1− q). (S5.7)

Taking derivatives of IN with respect to u
(N−1)
N , u

(N−2)
N−1 , ..., and u1 yields [5]

u
(i−1)
i =

1

(N − i+ 1)(1− q) + q−q/(1−q)
. (S5.8)
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Using Eq. S5.8, Eq. S5.5, and Eq. S5.6 iteratively, we can then derive the optimal solution

ui =
1 + (i− 1)(1− q)

N(1− q) + q−q/(1−q)
(S5.9)

for ON neurons and

ui =
1 + (m− i+ 1)(1− q)

N(1− q) + q−q/(1−q)
(S5.10)

for OFF neurons. With the definition in Eq. 44, we instantly get

p1 = pm+1 =
1

N(1− q) + q−q/(1−q)

def
= pedge

p2 = ... = pm = pm+2 = ... = pN =
1− q

N(1− q) + q−q/(1−q)
=

def
= p

p = (1− q)pedge

(S5.11)

which is summarized in Eq. 45 of the main text. In this case the maximal mutual information

Imax
N = log

(
1 +N(1− q)qq/(1−q)

)
= − logP (⃗0) (S5.12)

and we also have
Imax
N = − log (1−Np) . (S5.13)

Using Eq. S5.12 and comparing Imax
1 and Imax

N , we have

Imax
N = log [N(exp(Imax

1 )− 1) + 1] . (S5.14)

We can also calculate the overall mean firing rate (ν̄) of a population given the optimal thresholds of Eq. S5.11.
If the stimulus s is higher than θ1 (the threshold of the highest ON neuron), all the m ON neurons fire at
νmax together. If s ∈ (θ2, θ1), m− 1 ON neurons (neuron 2, ...,m) fire at νmax, and so on so forth. Following
this idea, we can write

ν̄ =
νmax

N

[
pedgem+ p

m−1∑
i=1

(m− i) + pedge(N −m) + p

N−m−1∑
i=1

(N −m− i)

]

=
νmax

N

[
pedgeN + p

m(m− 1)

2
+ p

(N −m)(N −m− 1)

2

]
=

[
pedge +

N − 1

2
p+

m

N
(m−N) p

]
νmax,

(S5.15)

which produces Eq. 82 in the main text.

6 Population coding of binary neurons with heterogeneous maxi-
mal firing rates

6.1 Maximal mutual information and optimal firing thresholds

As mentioned in the main text, we define νmax,i as the maximal firing rate of neuron i, and then

Ri = νmax,i T, qi = L(0, Ri), (S6.1)

and

ui = Prob(νi = νmax,i) =

{´ +∞
θi

ds p(s), for ON´ θi
−∞ ds p(s), for OFF.

(S6.2)
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Similar to Eq. S5.4, the mutual information of a population of N neurons can be decomposed into N terms,

IN = g1(u1) + (1− u1(1− q1))
[
g2(u

(1)
2 ) + ...+

(
1− u

(N−2)
N−1 (1− qN−1)

)
gN (u

(N−1)
N )

]
(S6.3)

where u
(j)
i means the revised probability of ui after knowing that all neurons 1, ..., j(j < i) did not spike,

and gi(u) denotes the information encoded by neuron i. With binary neurons and heterogeneous maximal
firing rates

gi(u) = −(1− u+ uqi) log(1− u+ uqi) + uqi log qi − u(1− qi) log u. (S6.4)

Also similarly to the case with identical maximal firing rates for all cells (Eq. S5.5 and Eq. S5.6), u
(j)
i relates

to u
(j−1)
i with

u
(j)
i =

u
(j−1)
i −

(
1− P

(j−1)
j (0)

)
P

(j−1)
j (0)

=
u
(j−1)
i − u

(j−1)
j (1− qj)

1− u
(j−1)
j (1− qj)

(S6.5)

if neuron i and neuron j are both ON, or both OFF, and

u
(j)
i =

u
(j−1)
i

P
(j−1)
j (0)

=
u
(j−1)
i

1− u
(j−1)
j (1− qj)

(S6.6)

if neuron i is OFF but neuron j is ON. P
(k)
j (0) is the probability that neuron j does not fire after knowing

that none of the neurons 1, ..., k (k < j) spikes, and can be calculated as

P
(k)
j (0) = 1− u

(k)
j (1− qj). (S6.7)

Taking derivatives of IN with respect to u
(N−1)
N , u

(N−2)
N−1 , ..., and u1 yields

u
(i−1)
i =

q
qi/(1−qi)
i

1 +
∑N

j=i(1− qj)q
qj/(1−qj)
j

. (S6.8)

Using Eq. S6.5 and Eq. S6.6 iteratively, we can derive the optimal solution

ui =
q
qi/(1−qi)
i +

∑i−1
j=1(1− qj)q

qj/(1−qj)
j

1 +
∑N

j=1(1− qj)q
qj/(1−qj)
j

(S6.9)

for ON neurons and

ui =
q
qi/(1−qi)
i +

∑i−1
j=m+1(1− qj)q

qj/(1−qj)
j

1 +
∑N

j=1(1− qj)q
qj/(1−qj)
j

. (S6.10)

for OFF neurons. Also, inserting Eq. S6.8 into Eq. S6.3, we can calculate the maximal mutual information
as

IN = log

[
1 +

N∑
i=1

(1− qi)q
qi/(1−qi)
i

]
(S6.11)

With the definition of pi (Eq. 54), we can calculate the cumulative stimulus intervals partitioned by firing
thresholds as

p1 =
q
q1/(1−q1)
1

1 +
∑N

j=1(1− qj) q
qj/(1−qj)
j

= e−IN q
q1/(1−q1)
1

pm+1 =
q
qm+1/(1−qm+1)
m+1

1 +
∑N

j=1(1− qj) q
qj/(1−qj)
j

= e−IN q
qm+1/(1−qm+1)
m+1

pi =
q
qi/(1−qi)
i − q

1/(1−qi−1)
i−1

1 +
∑N

j=1(1− qj) q
qj/(1−qj)
j

= e−IN
[
q
qi/(1−qi)
i − q

1/(1−qi−1)
i−1

]
, i ̸= 1 and i ̸= m

(S6.12)
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which produces Eq. 55 in the main text. Next, we ask how the optimal stimulus intervals {pi} depend on
the noise levels qi. To proceed, we define

f1(x) = xx/(1−x), f2(x) = x1/(1−x), x ∈ (0, 1) (S6.13)

which are the two functions appearing in Eq. S6.12 above. One can prove that

d log f1(x)

dx
=

1− x+ log x

(1− x)2
< 0

d log f2(x)

dx
=

1− x+ x log x

(1− x)2x
> 0.

(S6.14)

Therefore, given the fixed amount of mutual information IN , p1 decreases with q1, pm+1 decreases with
qm+1, and any other pi decreases with both qi and qi−1. When qi → 1 and qi−1 → 1, pi approaches its lower
limit 0. In contrast, when qi → 0 and qi−1 → 0, pi approaches its upper limit e−IN .

6.2 Mean firing rate

The mean firing rate can be calculated as

ν̄ =
1

N

N∑
i=1

νmaxi
ui

=
e−IN

NT

− N∑
i=1

q
qi/(1−qi)
i log qi −

m∑
i=1

log qi

i−1∑
j=1

(1− qj)q
qj/(1−qj)
j −

N∑
i=m+1

log qi

i−1∑
j=m+1

(1− qj)q
qj/(1−qj)
j


(S6.15)

Here, we prove that (1) homogeneous populations of ON or OFF neurons generate the highest mean firing
rate ν̄; (2) When the lowest ν̄ is reached, Eq. 85 and Eq. 86 must be valid. To proceed, we denote

Ai = − log qi, Bi = (1− qi) q
qi/(1−qi)
i . (S6.16)

Note that for any i, Ai > 0 and Bi > 0.
To prove the first argument, we rewrite the mean firing rate as a function of m, the number of ON

neurons in the population:

ν̄(m) =
e−IN

NT

 N∑
i=1

q
qi/(1−qi)
i Ai +

m∑
i=1

Ai

i−1∑
j=1

Bj +

N∑
i=m+1

Ai

i−1∑
j=m+1

Bj

 . (S6.17)

One can then obtain

ν̄(m = N)− ν̄(m) =
e−IN

NT

 N∑
i=1

Ai

i−1∑
j=1

Bj −
m∑
i=1

Ai

i−1∑
j=1

Bj −
N∑

i=m+1

Ai

i−1∑
j=m+1

Bj


=

e−IN

NT

 N∑
i=m+1

Ai

i−1∑
j=1

Bj −
N∑

i=m+1

Ai

i−1∑
j=m+1

Bj


=

e−IN

NT

N∑
i=m+1

Ai

m∑
j=1

Bj ≥ 0,

(S6.18)

which means a homogeneous ON population always generates higher mean firing rate than a mixed population
with the same maximal firing rates {νmax,i}. Similarly, one can also find ν̄(m = 0)− ν̄(m) ≥ 0. Therefore,
we have proved the first proposition above, that homogeneous populations of ON or OFF neuron generate
the highest mean firing rate ν̄.
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To prove Eq. 85, we assume for neuron t and t + 1 (1 ≤ t < m), qt > qt+1, which results in At < At+1

and Bt < Bt+1. Then we swap neuron t and t+ 1 and show that ν̄ becomes lower. The change of ν̄ due to
the swap can be expressed as

∆ν̄ =
e−IN

NT

t−1∑
i=1

Ai

i−1∑
j=1

Bj +At+1

t−1∑
j=1

Bj +At

t−1∑
j=1

Bj +Bt+1

+

m∑
i=t+2

Ai

i−1∑
j=1

Bj −
N∑
i=1

Ai

i−1∑
j=1

Bj


=

e−IN

NT

(At+1 −At)

t−1∑
j=1

Bj + (At −At+1)

t∑
j=1

Bj + (Bt+1 −Bt)At


=

e−IN

NT
(Bt+1At −At+1Bt) .

(S6.19)
To compare Bt+1At and At+1Bt, we calculate the derivative d(Ai/Bi)/dqi as follows:

d

dqi

(
Ai

Bi

)
= Bi

[(
log qi
1− qi

)2

− 1

qi

]
, (S6.20)

where we have used Eq. S6.14 to acquire dBi/dqi = Bi log qi/(1− qi)
2. Then we define

f3(x) = log x− x− 1√
x

(S6.21)

and show that f ′
3(x) ≤ 0. This leads to

d

dqi

(
Ai

Bi

)
= Bi

[(
log qi
1− qi

)2

− 1

qi

]
< 0, (S6.22)

and then
At

Bt
<

At+1

Bt+1
. (S6.23)

Therefore, if qt > qt+1, swapping neuron t and t + 1 will reduce the mean firing rate ν̄. This implies when
the mean firing rate ν̄ is minimized, there must be

q1 ≤ ... ≤ qm. (S6.24)

In the same way we can prove that there must also be

qm+1 ≤ ... ≤ qN , (S6.25)

which is the equivalency for OFF neurons. These two equations prove Eq. 85 in the main text.
Finally, to prove Eq. 86, we calculate the difference ν̄(m)− ν̄(m− 1), which should converge to 0 when

ν̄(m) approaches the minimum. According to Eq. S6.17,

ν̄(m)− ν̄(m− 1) = Am

m−1∑
j=1

Bj −Bm

N∑
j=m+1

Ai. (S6.26)

Then ν̄(m)− ν̄(m− 1) → 0 gives rise to Eq. 86 in the main text.

7 Population coding of ternary neurons with any noise generation
function

7.1 Maximal mutual information of a population of ternary neurons

Following Eq. 29, we decompose the mutual information encoded by N neurons as

IN (u⃗1, ..., u⃗N ) = Im (u⃗1, ..., u⃗m) +QmIN−m

(
⃗

u
(m)
m+1, ...,

⃗
u
(m)
N

)
. (S7.1)
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Here, the cumulative stimulus intervals u⃗i are written as vectors because the activation functions are ternary.
Qm denotes the probability that none of the neurons 1, 2, ...,m fires. As before, we define the superscript
(m) to denote the ‘revised’ stimulus intervals assuming that the m ON neurons do not fire.

To generalize the definitions of these revised thresholds for N ternary activation functions, we use u
(j,N)
i1

and u
(j,N)
i2 to denote the cumulative stimulus intervals given the condition that none of the neurons 1, ..., j (j <

i) fires, and

P
(j,N)
i (0) = 1− u

(j,N)
i1 (1− L(0, fiR))− u

(j,N)
i2 (1− L(0, R)) (S7.2)

to denote the probability that neuron i does not fire, when none of the neurons 1, ..., j (j < i) fires. We can
decompose the mutual information encoded by a population of N neurons into N single terms, each of which
contains the mutual information encoded by one neuron. This allows us to calculate the mutual information
and optimize the threshold in a recursive way, first for one neuron, then for two neurons and then generalize
for any N neurons (compare to Eq. 32),

IN = g(u⃗1) + P1(0)

{
g

(
⃗
u
(1)
2

)
+ P

(1,N)
2 (0)

[
g

(
⃗
u
(2)
3

)
+ ...+ P

(N−2,N)
N−1 (0) g

(
⃗

u
(N−1)
N

)]}
. (S7.3)

Note that similar to the case of binary neurons (Eq. S5.1 and Eq. S5.4), the function g here still denotes the
mutual information of a single neuron, despite the difference that it takes in a vector instead of a scalar.

The mutual information of one single neuron can be written as

I1 = g(u11, u12) =
∑
n

ˆ
s

ds p(s)p(n|s) log P (n|s)
P (n)

= −(1− u11 − u12) logP (0) + u11L(0, fR) log
L(0, fR)

P (0)
+ u12L(0, R) log

L(0, R)

P (0)

+ u11

+∞∑
n=1

L(n, fR) log
L(n, fR)

u11L(n, fR) + u12L(n,R)
+ u12

+∞∑
n=1

L(n,R) log
L(n,R)

u11L(n, fR) + u12L(n,R)

= −P (0) logP (0) + u11L(0, fR) logL(0, fR) + u12L(0, R) logL(0, R)

+ u11

+∞∑
n=1

L(n, fR) log
L(n, fR)

u11L(n, fR) + u12L(n,R)
+ u12

+∞∑
n=1

L(n,R) log
L(n,R)

u11L(n, fR) + u12L(n,R)
.

(S7.4)
Its derivatives are

∂g(u11, u12)

∂u11
=

∂P (0)

∂u11
[−1− logP (0)]+L(0, fR) logL(0, fR)+

+∞∑
n=1

L(n, fR)

(
log

L(n, fR)

u11L(n, fR) + u12L(n,R)
− 1

)
(S7.5)

∂g(u11, u12)

∂u12
=

∂P (0)

∂u12
[−1− logP (0)]+L(0, R) logL(0, R)+

+∞∑
n=1

L(n,R)

(
log

L(n,R)

u11L(n, fR) + u12L(n,R)
− 1

)
(S7.6)

and
∂g(u11, u12)

∂f
=− u11

∂L(0, fR)

∂f
logP (0) + u11

+∞∑
n=0

logL(n, fR)
∂L(n, fR)

∂f

−
+∞∑
n=1

log[u11L(n, fR) + u12L(n,R)]u11
∂L(n, fR)

∂f
.

(S7.7)

Note that
P (0) = 1− u11 [1− L(0, fR)]− u12 [1− L(0, R)] , (S7.8)

∂P (0)

∂u11
= L(0, fR)− 1,

∂P (0)

∂u12
= L(0, R)− 1 (S7.9)
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we can rewrite Eq. S7.5 and Eq. S7.6 into

∂g(u11, u12)

∂u11
= [1− L(0, fR)] logP (0) + L(0, fR) logL(0, fR) +

+∞∑
n=1

L(n, fR) log
L(n, fR)

u11L(n, fR) + u12L(n,R)

(S7.10)
and

∂g(u11, u12)

∂u12
= [1− L(0, R)] logP (0) + L(0, R) logL(0, R) +

+∞∑
n=1

L(n,R) log
L(n,R)

u11L(n, fR) + u12L(n,R)
.

(S7.11)
Combining these two derivatives, and comparing to Eq. S7.4, we can find

g(u11, u12) = u11
∂g

∂u11
+ u12

∂g

∂u12
− logP1(0). (S7.12)

When g(u11, u12) is at its maximal value, ∂g/∂u11 = 0, ∂g/∂u12 = 0, then

Imax
1 = g(u∗

11, u
∗
12) = − logP1(0). (S7.13)

We then examine the mutual information of a population of two neurons,

I2 = g(u11, u12) + P1(0) g
(
u
(1)
21 , u

(1)
22

)
. (S7.14)

Maximizing g
(
u
(1)
21 , u

(1)
22

)
gives

I2 = g(u11, u12)− P1(0) logP
(1)
2 (0). (S7.15)

Note that P1(0) = 1−u11(1−L(0, fR))−u22(1−L(0, R)). When I2 is at its maximum, we have ∂I2/∂u11 = 0
and ∂I2/∂u12 = 0, which leads to

Imax
2 = − logP

(1)
2 (0)− logP1(0). (S7.16)

Next, we use mathematical induction to prove that for arbitrary N (Eq. S7.21), there is

Imax
N = −

N∑
j=1

logP
(j−1)
j (0). (S7.17)

Assume Imax
m = −

∑m
j=1 logP

(j−1)
j (0), we have

Im+1 = g(u11, u12)− P1(0)

m+1∑
j=2

logP
(j−1)
j (0). (S7.18)

When optimized,

∂Im+1

∂u11
=

∂g

∂u11
+ [1− L(0, fR)]

m+1∑
j=2

logP
(j−1)
j (0) = 0

∂Im+1

∂u12
=

∂g

∂u12
+ [1− L(0, R)]

m+1∑
j=2

logP
(j−1)
j (0) = 0 (S7.19)

Imax
m+1 = u11

∂g

∂u11
+ u12

∂g

∂u12
− logP1(0)− P1(0)

m+1∑
j=2

logP j−1
j (0)

= − [u11(1− L(0, fR)) + u12(1− L(0, R))]

m+1∑
j=2

logP
(j−1)
j (0)− logP1(0)− P1(0)

m+1∑
j=2

logP
(j−1)
j (0)

= −
m+1∑
j=1

logP
(j−1)
j (0).

(S7.20)
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Hence we have verified that if Imax
m = −

∑m
j=1 logP

(j−1)
j (0), we can show Imax

m+1 = −
∑m+1

j=1 logP
(j−1)
j (0).

This means we can use mathematical induction to generalize the mutual information from N = 2 to arbitrary
number of neurons N , and obtain

Imax
N = −

N∑
j=1

logP
(j−1)
j (0) = −logP (⃗0). (S7.21)

7.2 Revised probability of ternary neurons

The mutual information of N neurons can be formulated by Eq. S7.3, i.e.,

IN = g(u⃗1) + P1(0)

{
g

(
⃗
u
(1)
2

)
+ P

(1,N)
2 (0)

[
g

(
⃗
u
(2)
3

)
+ ...+ P

(N−2,N)
N−1 (0)g

(
⃗

u
(N−1)
N

)]}
.

Assuming we already know that neuron 1, 2, ..., j do not fire, we can then derive that for ON neurons, if
j + 1 < i,

u
(j+1,N)
i1 =

ˆ θ
(j,N)
i2

θ
(j,N)
i1

p(s|nj+1 = 0) ds =

ˆ θ
(j,N)
i2

θ
(j,N)
i1

p(s) p(nj+1 = 0|s)
p(nj+1 = 0)

ds. (S7.22)

Since we already know that neuron 1, 2, ..., j do not fire, here we have p(nj+1 = 0) = P
(j,N)
j+1 (0). Also, given

j + 1 < i, stimulus s between θ
(j,N)
i1 and θ

(j,N)
i2 is too low to trigger a nonzero firing rate of neuron j + 1.

Therefore, within the interval of the integral of Eq. S7.22, p(nj+1 = 0|s) = 1. Eq. S7.22 then becomes

u
(j+1,N)
i1 =

1

P
(j,N)
j+1 (0)

ˆ θ
(j,N)
i2

θ
(j,N)
i1

p(s)ds =
u
(j,N)
i1

P
(j,N)
j+1 (0)

. (S7.23)

Similarly, we have

u
(j+1,N)
i2 =

ˆ +∞

θ
(j,N)
i2

p(s|nj+1 = 0) ds =

ˆ +∞

θ
(j,N)
i2

p(s) p(nj+1 = 0|s)
p(nj+1 = 0)

ds. (S7.24)

Same as Eq. S7.22, we have p(nj+1 = 0) = P
(j,N)
j+1 (0). Also because p(nj+1 = 0|s) = 1 − p(nj+1 ̸= 0|s), we

can rewrite Eq. S7.24 as

u
(j+1,N)
i2 =

1

P
(j,N)
j+1 (0)

ˆ +∞

θ
(j,N)
i2

p(s) [1− p(nj+1 ̸= 0|s)] ds. (S7.25)

Because stimulus s lower than θ
(j,N)
i2 cannot trigger a nonzero firing rate of neuron j + 1, we have

ˆ +∞

θ
(j,N)
i2

p(s) p(nj+1 ̸= 0|s) ds = 1− P
(j,N)
j+1 (0). (S7.26)

Substituting back into Eq. S7.25 gives rise to

u
(j+1,N)
i2 =

1

P
(j,N)
j+1 (0)

[
u
(j,N)
i2 −

(
1− P

(j,N)
j+1 (0)

)]
. (S7.27)

Notably, Eq. S7.23 and Eq. S7.27 have similar formulation compared to Eq. S5.5 and Eq. S5.6.
When IN is maximized,

∂IN

∂
⃗

u
(N−1)
N

=

(
N−1∏
i=1

P
(i−1,N)
i (0)

) ∂g

(
⃗

u
(N−1)
N

)
∂

⃗
u
(N−1)
N

= 0. (S7.28)
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Therefore, optimizing u
(N−1)
N is equivalent to maximizing the function g(·), which is the mutual information

of a single neuron. Denoting the optimal values using an asterisk, we have

u
(N−1,N)
N,1 |∗ = u∗

1, u
(N−1,N)
N,2 |∗ = u∗

2, (S7.29)

where u∗
1 and u∗

2 correspond to the (u11, u12) that maximizes g(u⃗1) = g(u11, u12). Also, we can see that

g

(
⃗
u
(1)
2

)
+ P

(1,N)
2 (0)

[
g

(
⃗
u
(2)
3

)
+ ...+ P

(N−2,N)
N−1 (0)g

(
⃗

u
(N−1)
N

)]
(S7.30)

has the exactly same formulation as IN−1, which means

u
(j,N)
i,1 |∗ = u

(j+1,N+1)
i+1,1 |∗, u

(j,N)
i,2 |∗ = u

(j+1,N+1)
i+1,2 |∗. (S7.31)

7.3 A lemma that connects two adjacent neurons

Next, we seek to find the optimal thresholds by deriving the relationship among {ui1} and {ui2}. We start
with proving the following lemma that links two adjacent neurons, i.e., (ui1, ui2, fi) and (ui+1,1, ui+1,2, fi+1).

Lemma: For any N neurons, when IN is optimized,

u
(i−1,N)
i1 = P

(i−1,N)
i (0)u

(i,N)
i+1,1, u

(i−1,N)
i2 = P

(i−1,N)
i (0)u

(i,N)
i+1,2, fi = fi+1. (S7.32)

Remark:

I = g(u11, u12) + P
(0,N)
1 (0)

[
g
(
u
(1,N)
21 , u

(1,N)
22

)
+ ...+ P

(N−2,N)
N−1 (0)g

(
u
(N−1,N)
N1 , u

(N−1,N)
N2

)]
. (S7.33)

When all the ui1, ui2 and fi are optimized, according to the previous subsection,

g
(
u
(i−1,N)
i1 , u

(i−1,N)
i2

)
+ P

(i−1,N)
i (0)

[
g
(
u
(i,N)
i+1,1, u

(i,N)
i+1,2

)
+ ...+ P

(N−2,N)
N−1 (0)g

(
u
(N−1,N)
N1 , u

(N−1,N)
N2

)]
= −

N∑
j=i

logP
(j−1,N)
j (0).

(S7.34)

This means when
(
u
(i,N)
i+1,1, u

(i,N)
i+1,2, fi+1

)
is optimized,

∂IN

∂u
(i,N)
i+1,1

= Pi(0)

∂g
(
u
(i,N)
i+1,1, u

(i,N)
i+1,2

)
∂u

(i,N)
i+1,1

+ [1− L(0, fi+1R)]

N∑
j=i+2

logP
(j−1,N)
j (0)

 = 0 (S7.35)

∂IN
∂fi+1

= Pi(0)

∂g
(
u
(i,N)
i+1,1, u

(i,N)
i+1,2

)
∂fi+1

− u
(i,N)
i+1,1

∂L(0, fi+1R)

∂fi+1

N∑
j=i+2

logP
(j−1,N)
j (0)

 = 0. (S7.36)

Denote
ûi1 = P

(i−1,N)
i (0)u

(i,N)
i+1,1, ûi2 = P

(i−1,N)
i (0)u

(i,N)
i+1,2, f̂i = fi+1, (S7.37)

so that with given ûi1, ûi2, f̂i,

P
(i−1,N)
i (0) = 1− ûi1[1− L(0, fiR)]− ûi2[1− L(0, R)] (S7.38)

ûi1 =
u
(i,N)
i+1,1

1 + u
(i,N)
i+1,1[1− L(0, fiR)] + u

(i,N)
i+1,2[1− L(0, R)]

(S7.39)
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ûi2 =
u
(i,N)
i+1,2

1 + u
(i,N)
i+1,1[1− L(0, fiR)] + u

(i,N)
i+1,2[1− L(0, R)]

. (S7.40)

We need to prove

∂IN

∂u
(i−1,N)
i1

|ûi1,ûi2,f̂i
= 0,

∂IN

∂u
(i−1,N)
i2

|ûi1,ûi2,f̂i
= 0,

∂IN
∂fi

|ûi1,ûi2,f̂i
= 0 (S7.41)

i.e. the combination of ûi1, ûi2, and f̂i is optimal.

Proof:

∂IN

∂u
(i−1,N)
i1

|ûi1,ûi2,f̂i
= Pi−1(0)

∂g
(
u
(i−1,N)
i1 , u

(i−1,N)
i2

)
∂u

(i−1,N)
i1

|ûi1,ûi2,f̂i
+ [1− L(0, f̂iR)]

N∑
j=i+1

logP
(j−1,N)
j (0)


(S7.42)

∂IN

∂u
(i−1,N)
i2

|ûi1,ûi2,f̂i
= Pi−1(0)

∂g
(
u
(i−1,N)
i1 , u

(i−1,N)
i2

)
∂u

(i−1,N)
i2

|ûi1,ûi2,f̂i
+ [1− L(0, R)]

N∑
j=i+1

logP
(j−1,N)
j (0)

 .

(S7.43)
According to Eq. S7.35,

1

Pi−1(0)

∂IN

∂u
(i−1,N)
i1

|ûi1,ûi2,f̂i
− 1

Pi(0)

∂IN

∂u
(i,N)
i+1,1

|
u
(i,N)
i+1,1,u

(i,N)
i+1,2,fi+1

Eq. S7.35
========

∂g
(
u
(i−1,N)
i1 , u

(i−1,N)
i2

)
∂u

(i−1,N)
i1

|ûi1,ûi2,f̂i
−

∂g
(
u
(i,N)
i+1,1, u

(i,N)
i+1,2

)
∂u

(i,N)
i+1,1

+
[
1− L(0, f̂iR)

]
logP

(i,N)
i+1 (0)

Eq. S7.5
======= [1− L(0, f̂iR)]

(
logP

(i−1,N)
i (0)− logP

(i,N)
i+1 (0)

)
−

+∞∑
n=1

L(n, f̂iR) log [ûi1L(n, fR) + ûi2L(n,R)] +

+∞∑
n=1

L(n, f̂iR) log
[
u
(i,N)
i+1,1L(n, fR) + u

(i,N)
i+1,2L(n,R)

]
+ [1− L(0, f̂iR)] logP

(i,N)
i+1 (0)

= [1− L(0, f̂iR)]
(
logP

(i−1,N)
i (0)− logP

(i,N)
i+1 (0)

)
−

+∞∑
n=1

L(n, f̂iR) logP
(i−1,N)
i (0) + [1− L(0, f̂iR)] logP

(i,N)
i+1 (0).

(S7.44)
Because

L(0, f̂iR) +

+∞∑
n=1

L(n, f̂iR) = 1 (the sum of probabilities), (S7.45)

1

Pi−1(0)

∂IN

∂u
(i−1,N)
i1

|ûi1,ûi2,f̂i
− 1

Pi(0)

∂IN

∂u
(i,N)
i+1,1

= 0,
∂IN

∂u
(i−1,N)
i1

|ûi1,ûi2,f̂i
= 0. (S7.46)

Similarly, we have
∂IN

∂u
(i−1,N)
i2

|ûi1,ûi2,f̂i
= 0. (S7.47)
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Also,

1

ûi1Pi−1(0)

∂IN
∂fi

|ûi1,ûi2,f̂i
− 1

u
(i,N)
i+1,1Pi(0)

∂IN
∂fi+1

|
u
(i,N)
i+1,1,u

(i,N)
i+1,2,fi+1

Eq. S7.36
======== −∂L(0, f̂iR)

∂f̂i
logP

(i−1,N)
i (0) +

+∞∑
n=0

logL(n, f̂iR)
∂L(n, f̂iR)

∂f̂i

−
+∞∑
n=1

log
[
ûi1L(n, f̂iR) + ûi2L(n,R)

] ∂L(n, f̂iR)

∂f̂i
−

+∞∑
n=0

logL(n, fi+1R)
∂L(n, fi+1R)

∂fi+1

+

+∞∑
n=1

log [ui+1,1L(n, fi+1R) + ui+1,2L(n,R)]
∂L(n, fi+1R)

∂fi+1

−

(
∂L(0, f̂iR)

∂f̂i
− ∂L(0, fi+1R)

∂fi+1

)
N∑

j=i+1

logP
(j−1,N)
j (0).

(S7.48)

According to the definition of f̂i, ûi1 and ûi2 (Eq. S7.37), we have

1

ûi1Pi−1(0)

∂IN
∂fi

|ûi1,ûi2,f̂i
− 1

u
(i,N)
i+1,1Pi(0)

∂IN
∂fi+1

= −∂L(0, f̂iR)

∂f̂i
logP

(i−1,N)
i (0)− logP

(i−1,N)
i (0)

+∞∑
n=1

∂L(n, f̂iR)

∂f̂i

= −
+∞∑
n=0

∂L(n, f̂iR)

∂f̂i
logP

(i−1,N)
i (0)

= − ∂

∂f̂i

[
+∞∑
n=0

L(n, f̂iR)

]
logP

(i−1,N)
i (0).

(S7.49)

Since
∑+∞

n=0 L(n, f̂iR) = 1 is a constant, ∂
∂f̂i

[∑+∞
n=0 L(n, f̂iR)

]
= 0, then

1

ûi1Pi−1(0)

∂IN
∂fi

|ûi1,ûi2,f̂i
− 1

u
(i,N)
i+1,1Pi(0)

∂IN
∂fi+1

= 0 (S7.50)

which leads to
∂IN
∂fi

|ûi1,ûi2,f̂i
= 0. (S7.51)

Combined with Eq. S7.46 and Eq. S7.47, the lemma has been proved. ■

7.4 Optimal thresholds for a homogeneous population of only ON neurons

We first consider a homogeneous population with only ON neurons. All the variables in this subsection are
optimized, so we omit the * symbol (that we previously used to indicate optimum, e.g., Eq. S7.31) for clarity.
From the lemma (Eq. S7.32) we know that fi = fi+1, which we denote as f . For brevity, we also denote
q1 = L(0, fR) and q2 = L(0, R).

Combining the lemma (Eq. S7.32) and Eq. S7.2

P
(i−1,N)
i (0) = 1− u

(i−1,N)
i1 (1− q1)− u

(i−1,N)
i2 (1− q2) , (S7.52)
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we can write

P
(i−1,N)
i (0) =

[
1 + u

(i,N)
i+1,1 (1− q1) + u

(i,N)
i+1,2 (1− q2)

]−1

u
(i−1,N)
i1 =

u
(i,N)
i+1,1

1 + u
(i,N)
i+1,1 (1− q1) + u

(i,N)
i+1,2 (1− q2)

u
(i−1,N)
i2 =

u
(i,N)
i+1,2

1 + u
(i,N)
i+1,1 (1− q1) + u

(i,N)
i+1,2 (1− q2)

.

(S7.53)

Eq. S7.53 allows us to recursively calculate
(
u
(i−1,N)
i1 , u

(i−1,N)
i2

)
from

(
u
(i,N)
i+1,1, u

(i,N)
i+1,2

)
. Starting from u

(N−1,N)
N1 =

u1, u
(N−1,N)
N2 = u2, we can reach

P
(i−1,N)
i (0) =

1 + (N − i− 1) [u1 (1− q1) + u2 (1− q2)]

1 + (N − i) [u1 (1− q1) + u2 (1− q2)]

u
(i−1,N)
i1 =

u1

1 + (N − i) [u1 (1− q1) + u2 (1− q2)]

u
(i−1,N)
i2 =

u2

1 + (N − i) [u1 (1− q1) + u2 (1− q2)]
.

(S7.54)

Using Eq. S7.23 and Eq. S7.27, we can do the inverse calculation of revising the probabilities and obtain

u
(j,N)
i1 =

u1

1 + (N − j − 1) [u1 (1− q1) + u2 (1− q2)]

u
(j,N)
i2 =

u2 + (i− j − 1) [u1 (1− q1) + u2 (1− q2)]

1 + (N − j − 1) [u1 (1− q1) + u2 (1− q2)]
.

(S7.55)

Letting j = 0, this becomes the non-revised stimulus intervals (Eq. 58), which is

ui1 =
u1

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]

ui2 =
u2 + (i− 1) [u1 (1− q1) + u2 (1− q2)]

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]
.

(S7.56)

With the definition of pi1 and pi2 (Eq. 61), we can write

p11 = p21 = ... = pN1 =
u1

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]

def
= p1

p22 = ... = pN2 =
−u1q1 + u2 (1− q2)

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]

def
= p2

p12 =
u2

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]

def
= pedge

p1q1 + p2 = pedge (1− q2) .

(S7.57)

This derives the optimal thresholds for a homogeneous population of ternary ON cells (Fig. 5B).

7.5 Revised probability in ON-OFF mixtures

For ON-OFF mixtures, the revised probability (Eq. S7.23, Eq. S7.27) needs to be adjusted. We derive the
equivalency of Eq. S7.23 and Eq. S7.27 that we derived before for ON neurons.

Assuming we already know that neuron 1, 2, ..., j do not fire, for an OFF neuron i, if neuron j + 1 is
also an OFF neuron, and j + 1 < i, we have

u
(j+1,N)
i1 =

ˆ θ
(j,N)
i1

θ
(j,N)
i2

p(s|nj+1 = 0) ds =

ˆ θ
(j,N)
i1

θ
(j,N)
i2

p(s) p(nj+1 = 0|s)
p(nj+1 = 0)

ds. (S7.58)
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Stimulus s within the interval
[
θ
(j,N)
i2 , θ

(j,N)
i1

]
cannot trigger a nonzero firing rate of neuron j + 1. For this

reason, in the integral above, p(nj+1 = 0|s) = 1. Since we already assumed that neuron 1, 2, ..., j do not fire,

p(nj+1 = 0) = P
(j,N)
j+1 (0). Then we can rewrite Eq. S7.58 as

u
(j+1,N)
i1 =

1

P
(j,N)
j+1 (0)

ˆ θ
(j,N)
i1

θ
(j,N)
i2

p(s) ds =
u
(j,N)
i1

P
(j,N)
j+1 (0)

. (S7.59)

For u
(j+1,N)
i2 , we have

u
(j+1,N)
i2 =

ˆ θ
(j,N)
i2

−∞
p(s|nj+1 = 0) ds =

ˆ θ
(j,N)
i2

−∞

p(s) p(nj+1 = 0|s)
p(nj+1 = 0)

ds. (S7.60)

Similar to Eq. S7.25 before, we have p(nj+1 = 0) = P
(j,N)
j+1 (0) and p(nj+1 = 0|s) = 1 − p(nj+1 ̸= 0|s). We

can rewrite Eq. S7.60 as

u
(j+1,N)
i2 =

1

P
(j,N)
j+1 (0)

ˆ θ
(j,N)
i2

−∞
p(s) [1− p(nj+1 ̸= 0|s)] ds. (S7.61)

Because stimulus s higher than θ
(j,N)
i2 cannot lead to nj+1 ̸= 0, we have

ˆ θ
(j,N)
i2

−∞
p(s) p(nj+1 ̸= 0|s) ds = P

(j,N)
j+1 (0). (S7.62)

Substituting back into Eq. S7.61 gives rise to

u
(j+1,N)
i2 =

1

P
(j,N)
j+1 (0)

[
u
(j,N)
i2 −

(
1− P

(j,N)
j+1 (0)

)]
. (S7.63)

Here we find Eq. S7.59 and Eq. S7.63 are the same as Eq. S7.23 and Eq. S7.27 we derived before. However,

if neuron j + 1 is an ON neuron, u
(j+1,N)
i1 will remain the same as above while for u

(j+1,N)
i2 , we have

p(nj+1 = 0|s) = 1 for s ∈ (−∞, θ
(j,N)
i2 ]. As a result, Eq. S7.63 changes into

u
(j+1,N)
i2 =

u
(j,N)
i2

P
(j,N)
j+1 (0)

. (S7.64)

7.6 Optimal thresholds for a population of ON and OFF cells

For ON-OFF mixtures, the mutual information can still be written recursively as Eq. S7.3, hence, the lemma
(Eq. S7.32) and Eq.S7.52-S7.54 also pertain to ON-OFF mixed populations. If neuron i and neuron j are
both ON neurons (j < i ≤ m) or both OFF neurons (i > m and j ≥ m), Eq. S7.55 becomes

u
(j,N)
i1 =

u1

1 + (N − j − 1) [u1 (1− q1) + u2 (1− q2)]

u
(j,N)
i2 =

u2 + (i− j − 1) [u1 (1− q1) + u2 (1− q2)]

1 + (N − j − 1) [u1 (1− q1) + u2 (1− q2)]

(S7.65)

and if neuron i is an OFF neuron but neuron j is an ON neuron (i > m, j ≤ m)

u
(j,N)
i1 =

u1

1 + (N − j − 1) [u1 (1− q1) + u2 (1− q2)]

u
(j,N)
i2 =

u2 + (i−m− 1) [u1 (1− q1) + u2 (1− q2)]

1 + (N − j − 1) [u1 (1− q1) + u2 (1− q2)]
.

(S7.66)
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Letting j = 0, we get the non-revised stimulus intervals for the ON neurons (Eq. 58)

ui1 =
u1

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]
,

ui2 =
u2 + (i− 1) [u1 (1− q1) + u2 (1− q2)]

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]
,

i ≤ m

(S7.67)

and for the OFF neurons (Eq. 59)

ui2 =
u2 + (i−m− 1) [u1 (1− q1) + u2 (1− q2)]

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]
, i > m. (S7.68)

The cumulative stimulus intervals then become

p11 = p21 = ... = pN1 =
u1

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]

def
= p1

p22 = ... = pm2 = pm+2,2 = ... = pN2 =
−u1q1 + u2 (1− q2)

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]

def
= p2

p12 = pm+1,2 =
u2

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]

def
= pedge

p1q1 + p2 = pedge (1− q2) .

(S7.69)

This derives the optimal thresholds for a mixed population of ON and OFF cells (Eq. 62, Fig. 5B).

7.7 Mean firing rate of an optimized population

Similar to neuronal populations of binary neurons (Eq. S7.70), here we can still calculate the mean firing
rate (ν̄) in an optimized population of ternary neurons, based on the thresholds of Eq. S7.69. Similar to
Eq. S7.70, calculating the mean firing rate yields

ν̄ =
1

N

[
pedgem+ p2

m−1∑
i=1

(m− i) + p1

m−1∑
i=0

(m− i− 1 + f)+

pedge(N −m) + p2

N−m−1∑
i=1

(N −m− i) + p1

N−m−1∑
i=0

(N −m− i− 1 + f)
]

=
1

N

[
pedgem+ (p1 + p2)

m(m− 1)

2
+ p1 m− p1 m (1− f)+

pedge(N −m) + (p1 + p2)
(N −m)(N −m− 1)

2
+ p1 (N −m)− p1 (N −m) (1− f)

]
= pedge +

N − 1

2
(p1 + p2) +

m

N
(m−N) (p1 + p2) + p1f.

(S7.70)

Thus, we have Eq. 83 in the main text.

7.8 The maximal mutual information grows logarithmically with the number
of neurons

Next, we show that the maximal mutual information for a population of ternary neurons also grows logarith-
mically with the number of neurons N as for binary neurons (Eq. 41). We first derive a universal relationship
between the maximal mutual information Imax

N and the stimulus intervals p1, p2 for all mixtures of ON and
OFF neurons. Then we apply Eq. S7.57 and Eq. S7.69 to reach the conclusion.

As previously shown (Eq. S7.21), the maximal mutual information is

Imax
N = − logP (⃗0). (S7.71)
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This allows us to derive the relationship between the maximal mutual information and the stimulus interval
p.

For a homogeneous ON neuron population we define with p0 = Prob(ν⃗ = 0⃗) the ‘silent’ interval that is
lower than all the thresholds. We also denote q1 = L(0, fR) and q2 = L(0, R) for brevity and write:

P (⃗0)

= p0 + (p1q1 + p2q2) + (p1q1 + p2q2)q2 + ...

+ (p1q1 + p2q2)q
N−2
2 + (p1q1 + pedgeq2)q

N−1
2

= p0 + (p1q1 + p2q2)
1− qN−1

2

1− q2
+ p1q1q

N−1
2 + pedgeq

N
2 .

(S7.72)

Since all the cumulative stimulus intervals sum up to 1, we get

p0 = 1− (N − 1)(p1 + p2)− p1 − pedge. (S7.73)

Also, from Eq. S7.69 we know

pedge =
p1q1 + p2
1− q2

. (S7.74)

Substituting these two equations back into Eq. S7.72, we can derive

P (⃗0) = 1−N(p1 + p2) (S7.75)

which leads to
Imax
N = − log [1−N(p1 + p2)] . (S7.76)

Since a mixed population has the same maximal information as a homogeneous population with the same
p1 and p2 partitioning the stimulus intervals, this ensures that the maximal mutual information grows
exponentially with the number of neurons as in Eq. S7.76 independent of the ON-OFF mixture.

Using the optimal values of p1 and p2 (Eq. S7.57 and Eq. S7.69), we have

Imax
N = − log

1− u1 (1− q1)− u2 (1− q2)

1 + (N − 1) [u1 (1− q1) + u2 (1− q2)]
. (S7.77)

This allows us to write the maximal mutual information of an N -neuron ternary population as a function of
the the maximal mutual information of a single neuron population:

Imax
N = log [N(exp(Imax

1 )− 1) + 1] , (S7.78)

similar to the case with binary neurons (Eq. 41).

8 Population coding of neurons with any shapes of activation func-
tions and any noise generation function

Here we derive the calculations with (M + 1)-ary neurons. Because the calculations are similar to the last
section, we omit some details and only show the framework of the calculations.

8.1 Maximal mutual information

Eq. S7.1 is still valid for (M + 1)-ary neurons. The only difference from before is that every u⃗i or
⃗

u
(m)
i is

now an M -elements vector. Hence, we can still decompose IN into N terms (Eq. S7.3). Similarly, we use

u
(j,N)
ik to denote the cumulative stimulus interval given the condition that none of the neurons 1, ..., j (j < i)

fires (see Fig. 6A and Eq. 37) and P
(j,N)
i (0) = 1−

∑M
k=1 u

(j,N)
ik (1−L(0, fikR)) to denote the probability that

neuron i does not fire, when none of the neurons 1, ..., j (j < i) fires. Similar to Eq. S7.29 and Eq. S7.31,

22



denoting the optimal values using an asterisk, we derive several important relationships among the revised
probabilities,

u
(N−1,N)
Nk |∗ = u∗

k, u
(j,N)
ik |∗ = u

(j+1,N+1)
i+1,k |∗. (S8.1)

If neuron i and neuron j + 1 are both ON neurons or both OFF neurons, the revised probabilities follow

u
(j+1,N)
ik =

u
(j,N)
ik

P
(j,N)
j+1 (0)

, k < M (S8.2)

u
(j+1,N)
iM =

1

P
(j,N)
j+1 (0)

[
u
(j,N)
iM −

(
1− P

(j,N)
j+1 (0)

)]
. (S8.3)

If neuron i is an OFF neuron but neuron j + 1 is an ON neuron, we have

u
(j+1,N)
ik =

u
(j,N)
ik

P
(j,N)
j+1 (0)

, k < M ; uiM =
u
(j,N)
iM

P
(j,N)
j+1 (0)

. (S8.4)

Similar to Eq. S7.4, the mutual information of one single neuron can be written as

I1 = g(u11, u12, ..., u1M ). (S8.5)

We can verify that consistent with Eq. S7.12,

g =

M∑
k=1

uk
∂g

∂uk
− logP (0), (S8.6)

which indicates that

Imax
1 = − logP (0) = − log

[
1−

M∑
k=1

u∗
k (1− L(0, f∗

kR))

]
. (S8.7)

Same as Section 7.2 and Eq. S7.21, we can use mathematical induction to generalize the mutual information
from N = 2 to arbitrary N . Here, we omit it for simplicity, and give the conclusion directly as

Imax
N = −

N∑
j=1

logP
(j−1)
j (0)|∗ = − logP (⃗0). (S8.8)

8.2 Optimal thresholds

Next, we seek to find the optimal thresholds by deriving the relationship among all uik. We start from a
lemma that links two adjacent neurons, uik and ui+1,k, as we did for ternary neurons (Eq. S7.32).

Lemma: For any N neurons, when IN is maximized,

u
(i−1,N)
ik = P

(i−1,N)
i (0)u

(i,N)
i+1,k, fik = fi+1,k. (S8.9)

Since the proof strictly follows those steps in Section 7.3, we do not repeat it here.

We first discuss a homogeneous population with only ON neurons. All the variables in subsequent equations
are optimized, so we omit the * symbol for clarity. For simplicity we also denote qk = L(0, fkR). For a
homogeneous ON population, similar to Eq. S7.54, we have

u
(i−1,N)
ik =

uk

1 + (N − i)
∑M

k=1 uk(1− qk)
, k < M

P
(i−1,N)
i (0) =

1 + (N − i− 1)
∑M

k=1 uk(1− qk)

1 + (N − i)
∑M

k=1 uk(1− qk)
.

(S8.10)
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Using Eq. S8.2 and Eq. S8.3, we can do the inverse calculation of revising the probabilities and have

u
(j,N)
ik =

uk

1 + (N − j − 1)
∑M

k=1 uk(1− qk)
, k < M

u
(j,N)
iM =

uM + (i− j − 1)
∑M

k=1 uk(1− qk)

1 + (N − j − 1)
∑M

k=1 uk(1− qk)
.

(S8.11)

Letting j = 0, these two equations turn to

u
(j,N)
ik =

uk

1 + (N − 1)
∑M

k=1 uk(1− qk)
, k < M

u
(j,N)
iM =

uM + (i− 1)
∑M

k=1 uk(1− qk)

1 + (N − j − 1)
∑M

k=1 uk(1− qk)
.

(S8.12)

With the definition of pik (Eq. 69), we can write

p1k = p2k = ... = pNk =
uk

1 + (N − 1)
∑M

k=1 uk(1− qk)

def
= pk, k < M

p2M = ... = pNM =
−
∑M

k=1 uk qk + uM

1 + (N − 1)
∑M

k=1 uk(1− qk)

def
= pM

p1M =
uM

1 + (N − 1)
∑M

k=1 uk(1− qk)

def
= pedge

M−1∑
k=1

pk qk + pM = pedge (1− qM )

(S8.13)

which is summarized in Eq. 70 and Fig. 6B.
The equivalence to ON-OFF mixture has been discussed with ternary neurons in the main text. It still

holds for (M + 1)-ary neurons, so that we can derive that the optimal thresholds in a mixed population are

p1k = p2k = ... = pNk =
uk

1 + (N − 1)
∑M

k=1 uk(1− qk)

def
= pk, k < M

p2M = ... = pmM = pm+2,M = ... = pNM =
−
∑M

k=1 uk qk + uM

1 + (N − 1)
∑M

k=1 uk(1− qk)

def
= pM

p1M = pm+1,M =
uM

1 + (N − 1)
∑M

k=1 uk(1− qk)

def
= pedge

M−1∑
k=1

pk qk + pM = pedge (1− qM ) ,

(S8.14)

which are also summarized in Eq. 70 and Fig. 6B.

24



8.3 Mean firing rate of an optimized population

Similar to neuronal populations of ternary neurons (Eq. S7.70), here we can calculate the mean firing rate
ν̄ in an optimized population of (M + 1)-ary neurons, based on the thresholds in Eq. S8.14. We can write

ν̄ =
1

N

[
pedgem+ pM

m−1∑
i=1

(m− i) +

M−1∑
k=1

m−1∑
i=0

pk (m− i− 1 + fk)+

pedge(N −m) + pM

N−m−1∑
i=1

(N −m− i) +

M−1∑
k=1

N−m−1∑
i=0

pk (N −m− i− 1 + fk)
]

=
1

N

[
pedgem+

1

2
m (m− 1)

M∑
k=1

pk +m

M−1∑
k=1

pk fk+

pedge(N −m) +
1

2
(N −m) (N −m− 1)

M∑
k=1

pk + (N −m)

M−1∑
k=1

pk fk

]
= pedge +

1

2
(N − 1)

M∑
k=1

pk +
m

N
(m−N)

M∑
k=1

pk +
M−1∑
k=1

pk fk,

(S8.15)

which gives rise to Eq. 84 in the main text.

8.4 The maximal mutual information grows logarithmically with the number
of neurons

Similar to ternary neurons, here we show that the maximal mutual information of a population of M -
ary neurons also grows logarithmically with the number of neurons N (Eq. 41). Same as before, we first
derive a universal relationship between the maximal mutual information Imax

N and the stimulus intervals
pk (k = 1, ...,M) for all mixtures of ON and OFF neurons. Then we apply Eq. S8.13 and Eq. S8.14 to reach
the conclusion (Eq. 41). Similarly, we start from

Imax
N = − logP (⃗0) (S8.16)

to derive the relationship between the maximal mutual information and the stimulus interval p. Consider a
homogeneous ON neuron population, define p0 = Prob(ν⃗ = 0), i.e. the ‘silent’ interval that is lower than all
the thresholds. Also denote qk = L(0, fkR) and qM = L(0, R) for clarity, we have

P (⃗0) = p0 +

M∑
k=1

pk qk +

(
M∑
k=1

pk qk

)
qM + ...+

(
M∑
k=1

pk qk

)
qN−2
M +

(
M−1∑
k=1

pk qk + pedge qM

)
qN−1
M

= p0 +

(
M∑
k=1

pk qk

)
1− qN−1

M

1− qM
+

(
M−1∑
k=1

pk qk

)
qN−1
M + pedgeq

N
M .

(S8.17)

Note that

p0 = 1− (N − 1)

M∑
k=1

pk −
M−1∑
k=1

pk − pedge

pedge =

∑M−1
k=1 pk + pM
1− qM

(S8.18)

we can derive

P (⃗0) = 1−N

M∑
k=1

pk (S8.19)

which leads to

Imax
N = − log

[
1−N

M∑
k=1

pk

]
. (S8.20)
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The ON-OFF mixed population has been shown to have the same maximal information as a homogeneous
population and also the same pk. Hence Eq. S8.20 is valid for all possible ON-OFF neuron populations.
Using the optimal values of pk (Eq. S8.13 and Eq. S8.14), we have

Imax
N = − log

1−
∑M

k=1 uk(1− qk)

1 + (N − 1)
∑M

k=1 uk(1− qk)
. (S8.21)

This allows us to relate the maximal mutual information of neuron populations of different sizes. Specifically,

Imax
N = log [N(exp(Imax

1 )− 1) + 1] . (S8.22)

9 Population coding of neurons with activation functions of any
shape and heterogeneous maximal firing rates

Here we provide the calculations of the optimal thresholds of neurons with any shape of activation functions
and heterogeneous maximal firing rates. Similar to before, here we still start from ternary neurons, which
is the simplest case beyond binary neurons. It is straightforward that Eq. S7.3 and Eq. S7.21 still hold, i.e.,
for heterogeneous maximal firing rates across the cells, we still have

IN = g(u⃗1) + P1(0)

{
g

(
⃗
u
(1)
2

)
+ P

(1,N)
2 (0)

[
g

(
⃗
u
(2)
3

)
+ ...+ P

(N−2,N)
N−1 (0)g

(
⃗

u
(N−1)
N

)]}
. (S9.1)

and

Imax
N = −

N∑
j=1

logP
(j−1)
j (0) = −logP (⃗0). (S9.2)

In addition, the equations deriving revised probabilities (Eq. S7.58, Eq. S7.60, and Eq. S7.61) are still valid.
However, the lemma (Eq. S7.32) becomes invalid due to the heterogeneous maximal firing rates across the
cells. Therefore, we need to update the lemma.

9.1 Updated lemma that connects a neuron in a population to a single neuron
with the same maximal firing rate

Lemma 2: For any N (ternary) neurons, when IN is optimized,

u
(i−1,N)
i1 =

∏N
j=i P

(j−1)
j (0, Rj)

P ∗(0, Ri)
u∗
1(Ri)

u
(i−1,N)
i2 =

∏N
j=i P

(j−1)
j (0, Rj)

P ∗(0, Ri)
u∗
2(Ri)

fi = f∗(Ri)

(S9.3)

where Ri = νmax,iT is the maximal expected spike count of neuron i in the population of N neurons. u∗
1(Ri),

u∗
2(Ri), and f∗(Ri) are defined in the main text as the optimal thresholds and intermediate firing rate of a

single neuron with the same maximal firing rate as νmax,i.

Remark: According to the definition of u∗
1(Ri), u

∗
2(Ri), and f∗(Ri), using Eqs. S7.5-S7.7, we can obtain

∂g (u∗
1(Ri), u

∗
2(Ri))

∂u∗
1(Ri)

=
∂P ∗(0, Ri)

∂u∗
1(Ri)

[−1− logP ∗(0, Ri)] + L(0, f∗(Ri)Ri) logL(0, f
∗(Ri)Ri)

+

+∞∑
n=1

L(n, f∗(Ri)Ri)

(
log

L(n, f∗(Ri)Ri)

u∗
1(Ri)L(n, f∗(Ri)Ri) + u∗

2(Ri)L(n,Ri)
− 1

)
= 0,

(S9.4)
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∂g (u∗
1(Ri), u

∗
2(Ri))

∂u∗
2(Ri)

=
∂P ∗(0, Ri)

∂u∗
2(Ri)

[−1− logP ∗(0, Ri)] + L(0, Ri) logL(0, Ri)

+

+∞∑
n=1

L(n,Ri)

(
log

L(n,Ri)

u∗
1(Ri)L(n, f∗(Ri)Ri) + u∗

2(Ri)L(n,Ri)
− 1

)
= 0,

(S9.5)

and

∂g (u∗
1(Ri), u

∗
2(Ri))

∂f∗(Ri)
=− u∗

1(Ri)
∂L(0, f∗(Ri)Ri)

∂f∗(Ri)
logP ∗(0, Ri) + u∗

1(Ri)

+∞∑
n=0

logL(n, f∗(Ri)Ri)
∂L(n, f∗(Ri)Ri)

∂f∗(Ri)

−
+∞∑
n=1

log[u∗
1(Ri)L(n, f

∗(Ri)Ri) + u∗
2(Ri)L(n,Ri)]u

∗
1(Ri)

∂L(n, f∗(Ri)Ri)

∂f∗(Ri)
= 0.

(S9.6)
Denote

ûi1 =

∏N
j=i P

(j−1)
j (0, Rj)

P ∗(0, Ri)
u∗
1(Ri),

ûi2 =

∏N
j=i P

(j−1)
j (0, Rj)

P ∗(0, Ri)
u∗
2(Ri),

f̂i = f∗(Ri),

(S9.7)

we need to prove

∂IN

∂u
(i−1,N)
i1

|ûi1,ûi2,f̂i
= 0,

∂IN

∂u
(i−1,N)
i2

|ûi1,ûi2,f̂i
= 0,

∂IN
∂fi

|ûi1,ûi2,f̂i
= 0 (S9.8)

i.e. the combination of ûi1, ûi2, and f̂i is optimal.

Proof:

∂IN

∂u
(i−1,N)
i,1

|ûi1,ûi2,f̂i
= Pi−1(0)

∂g
(
u
(i−1,N)
i1 , u

(i−1,N)
i2

)
∂u

(i−1,N)
i1

|ûi1,ûi2,f̂i
+ [1− L(0, fiRi)]

N∑
j=i+1

logP
(j−1,N)
j (0)

 .

(S9.9)

∂IN

∂u
(i−1,N)
i2

|ûi1,ûi2,f̂i
= Pi−1(0)

∂g
(
u
(i−1,N)
i1 , u

(i−1,N)
i2

)
∂u

(i−1,N)
i2

|ûi1,ûi2,f̂i
+ [1− L(0, Ri)]

N∑
j=i+1

logP
(j−1,N)
j (0)

 .

(S9.10)

∂IN
∂fi

|ûi1,ûi2,f̂i
= Pi−1(0)

∂g
(
u
(i−1,N)
i1 , u

(i−1,N)
i2

)
∂fi

|ûi1,ûi2,f̂i
− u

(i−1,N)
i1

∂L(0, fiRi)

∂fi

N∑
j=i+1

logP
(j−1,N)
j (0)

 .

(S9.11)
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According to Eq. S9.4,

1

Pi−1(0)

∂IN

∂u
(i−1,N)
i1

|ûi1,ûi2,f̂i
− ∂g (u∗

1(Ri), u
∗
2(Ri))

∂u∗
1(Ri)

Eq. S9.4
=======

∂g
(
u
(i−1,N)
i1 , u

(i−1,N)
i2

)
∂u

(i−1,N)
i1

|ûi1,ûi2,f̂i
− ∂g (u∗

1(Ri), u
∗
2(Ri))

∂u∗
1(Ri)

+
[
1− L(0, f̂iRi)

] N∑
j=i+1

logP
(j−1,N)
j (0)

Eq. S7.5
======= [1− L(0, f̂iRi)]

(
logP

(i−1,N)
i (0)− logP

(i,N)
i+1 (0)

)
−

+∞∑
n=1

L(n, f̂iRi) log
[
ûi1L(n, f̂iRi)) + ûi2L(n,Ri))

]
+

+∞∑
n=1

L(n, f∗(Ri)Ri) log [u
∗
1(Ri)L(n, f

∗(Ri)Ri) + u∗
2(Ri)L(n,Ri)]

+ [1− L(0, f∗(Ri)Ri)]

N∑
j=i+1

logP
(j−1,N)
j (0)

= [1− L(0, f̂iRi)]
(
logP

(i−1,N)
i (0)− logP ∗(0, Ri)

)
−

+∞∑
n=1

L(n, f̂iRi) log

∏N
j=i P

(j−1)
j (0, Rj)

P ∗(0, Ri)

+
[
1− L(0, f̂iRi)

] N∑
j=i+1

logP
(j−1,N)
j (0).

(S9.12)
Because

L(0, f̂iRi) +

+∞∑
n=1

L(n, f̂iRi) = 1 (the sum of probabilities), (S9.13)

1

Pi−1(0)

∂IN

∂u
(i−1,N)
i1

|ûi1,ûi2,f̂i
− ∂g (u∗

1(Ri), u
∗
2(Ri))

∂u∗
1(Ri)

= 0,
∂IN

∂u
(i−1,N)
i1

|ûi1,ûi2,f̂i
= 0. (S9.14)

Similarly, we have
∂IN

∂u
(i−1,N)
i2

|ûi1,ûi2,f̂i
= 0. (S9.15)

Also,

1

ûi1Pi−1(0)

∂IN
∂fi

|ûi1,ûi2,f̂i
− 1

u∗
1(Ri)

∂g (u∗
1(Ri), u

∗
2(Ri))

∂f∗

Eq. S9.6
======= −∂L(0, f̂iRi)

∂f̂i
logPi(0) +

+∞∑
n=0

logL(n, f̂iRi)
∂L(n, f̂iRi)

∂f̂i

−
+∞∑
n=1

log
[
ûi1L(n, f̂iRi) + ûi2L(n,Ri)

] ∂L(n, f̂iRi)

∂f̂i
− ∂L(0, f̂iRi)

∂f̂i

N∑
j=i+1

logP
(j−1)
j (0)

+
∂L(0, f∗(Ri)Ri)

∂f∗(Ri)
logP ∗(0, Ri)−

+∞∑
n=0

logL(n, f∗(Ri)Ri)
∂L(n, f∗(Ri)Ri)

∂f∗(Ri)

+

+∞∑
n=1

log [u∗
1(Ri)L(n, f

∗(Ri)Ri) + u∗
2(Ri)L(n,Ri)]

∂L(n, f∗(Ri)Ri)

∂f∗(Ri)
.

(S9.16)
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Figure S2. Optimal intermediate firing levels in a population with heterogeneous maximal
firing rate across the cells. The population consists of N = 3 ternary ON neurons, with
R1 : R2 : R3 = 1 : 2 : 3. A. Optimal intermediate firing levels fi as a function of ⟨Ri⟩ = (R1 +R2 +R3)/3.
B. Optimal intermediate firing levels fi as a function of Ri of individual neurons.

According to the definition of f̂i, ûi1 and ûi2 (Eq. S7.37), we have

1

ûi1Pi−1(0)

∂IN
∂fi

|ûi1,ûi2,f̂i
− 1

u∗
1(Ri)

∂g (u∗
1(Ri), u

∗
2(Ri))

∂f∗

=
∂L(0, f̂iRi)

∂f̂i

(
logP ∗(0, Ri)− logP

(i−1,N)
i (0)

)
− log

∏N
j=i P

(j−1)
j (0, Rj)

P ∗(0, Ri)

+∞∑
n=1

∂L(n, f̂iRi)

∂f̂i

=

+∞∑
n=0

∂L(n, f̂iRi)

∂f̂i

(
logP ∗(0, Ri)− logP

(i−1,N)
i (0)

)
=
(
logP ∗(0, Ri)− logP

(i−1,N)
i (0)

) ∂

∂f̂i

[
+∞∑
n=0

L(n, f̂iRi)

]
.

(S9.17)

Since
∑+∞

n=0 L(n, f̂iRi) = 1 is a constant, ∂
∂f̂i

[∑+∞
n=0 L(n, f̂iRi)

]
= 0, then

1

ûi1Pi−1(0)

∂IN
∂fi

|ûi1,ûi2,f̂i
− 1

u∗
1(Ri)

∂g (u∗
1(Ri), u

∗
2(Ri))

∂f∗ = 0 (S9.18)

which leads to
∂IN
∂fi

|ûi1,ûi2,f̂i
= 0. (S9.19)

Combined with Eq. S9.14 and Eq. S9.15, the lemma has been proved. ■

9.2 Optimal thresholds for a population with heterogeneous maximal firing
rates

Using Eq. S7.59, Eq. S7.63, and Eq. S7.64, we can do the inverse calculation of revising the probabilities and
obtain

u
(j,N)
i1 =

∏N
k=j+1 P

(k−1)
k (0, Rk)

P ∗(0, Ri)
u∗
1(Ri),

u
(j,N)
i2 =

∏N
k=j+1 P

(k−1)
k (0, Rk)

P ∗(0, Ri)
u∗
2(Ri) + 1−

i−1∏
k=j+1

P
(k−1)
k (0)

(S9.20)
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Figure S3. Numerical calculations for a population of ternary neurons with heterogeneous
maximal firing rates. A. Optimal thresholds (u1, u2) of a single ternary neuron. B. The values of two
terms in Eq. 78. Blue: (u∗

2(R)− u∗
1(R)) /P ∗(0, R). Orange: [u∗

2(R) q∗2(R)− u∗
1(R) (1− q∗1(R))] /P ∗(0, R).

if neuron i and neuron j are both ON neurons (j < i ≤ m) or both OFF neurons (i > m and j ≥ m), and

u
(j,N)
i1 =

∏N
k=j+1 P

(k−1)
k (0, Rk)

P ∗(0, Ri)
u∗
1(Ri),

u
(j,N)
i2 =

∏N
k=j+1 P

(k−1)
k (0, Rk)

P ∗(0, Ri)
u∗
2(Ri) +

m∏
k=j+1

P
(k−1)
k (0)−

i−1∏
k=j+1

P
(k−1)
k (0)

(S9.21)

if neuron i is an OFF neuron but neuron j is an ON neuron (i > m, j ≤ m).
Letting j = 0, this becomes the non-revised stimulus intervals (Eq. 74), which is

ui1 =
u∗
1(Ri)

P ∗(0, Ri)

N∏
k=1

P
(k−1)
k (0, Rk)

ui2 =
u∗
2(Ri)

P ∗(0, Ri)

N∏
k=1

P
(k−1)
k (0, Rk) + 1−

i−1∏
k=1

P
(k−1)
k (0, Rk)

(ON neurons, i = 1, ...,m)

ui2 =
u∗
2(Ri)

P ∗(0, Ri)

N∏
k=1

P
(k−1)
k (0, Rk) +

m∏
k=1

P
(k−1)
k (0, Rk)−

i−1∏
k=1

P
(k−1)
k (0, Rk)

(OFF neurons, i = m+ 1, ..., N)

fi = f∗(Ri).

(S9.22)

Note that with

IN = − logP (⃗0) =

N∏
j=1

P
(j−1)
j (0, Rj) (S9.23)

and

P
(i−1)
i (0, Ri) = 1− u

(i−1)
i1 (1− q1(Ri))− u

(i−1)
i2 (1− q2(Ri))

= 1−
[
u∗
1(Ri)

P (0, Ri)
(1− q1(Ri)) +

u∗
2(Ri)

P (0, Ri)
(1− q2(Ri))

] N∏
j=i

P
(j−1)
j (0, Rj),

(S9.24)
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we can obtain

P
(i−1)
i (0, Ri) =

[
1 +

u∗
1(Ri)

P (0, Ri)
(1− q1(Ri)) +

u∗
2(Ri)

P (0, Ri)
(1− q2(Ri))

]−1

, (S9.25)

and then  N∏
j=i

P
(j−1)
j (0, Rj)

−1

=

N∑
j=i

1

P (0, Rj
− (N − i). (S9.26)

With Eq. S9.26, we can rewrite the optimal thresholds (Eq. S9.22) as

ui1 =
u∗
1(Ri)

P ∗(0, Ri)
e−IN

ui2 =

 u∗
2(Ri)

P ∗(0, Ri)
−

N∑
j=i

1

P ∗(0, Rj)
+ (N − i)

 e−IN + 1 (ON neurons, i = 1, ...,m)

ui2 =

 u∗
2(Ri)

P ∗(0, Ri)
−

N∑
j=i

1

P ∗(0, Rj)
−

m∑
j=1

1

P ∗(0, Rj)
+ (N − i+m)

 e−IN + 1 (OFF neurons, i = m+ 1, ..., N)

fi = f∗(Ri).
(S9.27)

According to the definition of pi1 and pi2, we can write

pi1 =
u∗
1(Ri)

P ∗(0, Ri)
e−IN

pi2 =

[
u∗
2(Ri)− u∗

1(Ri)

P ∗(0, Ri)
− u∗

2(Ri−1) q
∗
2(Ri−1)− u∗

1(Ri−1) (1− q∗1(Ri−1))

P ∗(0, Ri−1)

]
e−IN (i = 2, ...,m,m+ 2, ..., N)

p12 =

 u∗
2(R1)

P ∗(0, R1)
−

N∑
j=1

1

P ∗(0, Rj)
+ (N − 1)

 e−IN + 1

pm+1,2 =

 u∗
2(Rm+1)

P ∗(0, Rm+1)
−

N∑
j=1

1

P ∗(0, Rj)
+ (N − 1)

 e−IN + 1

fi = f∗(Ri).
(S9.28)

This derives the optimal thresholds for a mixed population of ON and OFF ternary cells with heteroge-
neous maximal firing rates (Eq. 62, Fig. 5B).

Here, fi = f∗(Ri) indicates that the optimal intermediate firing level of a neuron in a population only
depends on the maximal firing rate of that specific neuron (Fig. S2). Consequently, the optimal activation
functions of different neurons may consist of different numbers of steps depending on the maximal firing rate
constraint of those neurons (Fig. 7).

We performed numerical calculations for Poisson noise to better understand this optimal thresholds
structure (Fig. S3). We found that u∗

1(R) increases with R (Fig. S3A). Since P ∗(0, R) decreases with R,
within a population, pi1 is larger for neurons with higher Ri. To analyze how pi2 depends on Ri and Ri−1,
we plotted the two terms in Eq. S9.28 (second line), as functions of R (Fig. S3B). We found that both of
them decrease with R (Fig. S3B), which indicates that within a neuron population, pi2 is smaller for higher
Ri and lower Ri−1.

Again, using Eq. S9.26, the maximal mutual information can be rewritten as

IN = log

 N∑
j=i

1

P ∗(0, Rj)
− (N − 1)

 , (S9.29)
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9.3 (M + 1)-ary neurons

Above we derived the maximal mutual information solution for ternary neurons with heterogeneous max-
imal firing rates. Generalizing this from ternary neurons to activation functions with any any shape is
straightforward (see Section 8). For (M + 1)-ary neurons, the optimal thresholds are

uik =
u∗
k(Ri)

P ∗(0, Ri)
e−IN k = 1, ...,M − 1

uiM =

 u∗
M (Ri)

P ∗(0, Ri)
−

N∑
j=i

1

P ∗(0, Rj)
+ (N − i)

 e−IN + 1 (ON neurons, i = 1, ...,m)

uiM =

[
u∗
M (Ri)

P ∗(0, Ri)
−

N∑
j=i

1

P ∗(0, Rj)
−

m∑
j=1

1

P ∗(0, Rj)
+ (N − i+m)

]
e−IN + 1 (OFF neurons, i = m+ 1, ..., N)

fik = f∗
k (Ri). k = 1, ...,M − 1,

(S9.30)
the maximal mutual information is:

IN = log

 N∑
j=i

1

P ∗(0, Rj)
− (N − 1)

 , (S9.31)

and the optimal stimulus intervals p are given by

pik =
u∗
1(Ri)

P ∗(0, Ri)
e−IN k = 1, ...,M − 1

piM =

[
u∗
M (Ri)−

∑M−1
k=1 u∗

k(Ri)

P ∗(0, Ri)
−

u∗
M (Ri−1) q

∗
M (Ri−1)−

∑M−1
k=1 u∗

k(Ri−1) (1− q∗k(Ri−1))

P ∗(0, Ri−1)

]
e−IN

(i = 2, ...,m,m+ 2, ..., N)

p1M =

 u∗
M (R1)

P ∗(0, R1)
−

N∑
j=1

1

P ∗(0, Rj)
+ (N − 1)

 e−IN + 1

pm+1,M =

 u∗
2(Rm+1)

P ∗(0, Rm+1)
−

N∑
j=1

1

P ∗(0, Rj)
+ (N − 1)

 e−IN + 1

fik = f∗
k (Ri), k = 1, ...,M − 1.

(S9.32)
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