Published March 22, 2019 | Version Submitted
White Paper Open

Detecting Earth-like Biosignatures on Rocky Exoplanets around Nearby Stars with Ground-based Extremely Large Telescopes

Abstract

As we begin to discover rocky planets in the habitable zone of nearby stars with missions like TESS and CHEOPS, we will need quick advancements on instrumentation and observational techniques that will enable us to answer key science questions, such as What are the atmospheric characteristics of habitable zone rocky planets? How common are Earth-like biosignatures in rocky planets?} How similar or dissimilar are those planets to Earth? Over the next decade we expect to have discovered several Earth-analog candidates, but we will not have the tools to study the atmospheres of all of them in detail. Ground-based ELTs can identify biosignatures in the spectra of these candidate exo-Earths and understand how the planets' atmospheres compare to the Earth at different epochs. Transit spectroscopy, high-resolution spectroscopy, and reflected-light direct imaging on ELTs can identify multiple biosignatures for habitable zone, rocky planets around M stars at optical to near-infrared wavelengths. Thermal infrared direct imaging can detect habitable zone, rocky planets around AFGK stars, identifying ozone and motivating reflected-light follow-up observations with NASA missions like HabEx/LUVOIR. Therefore, we recommend that the Astro2020 Decadal Survey Committee support: (1) the search for Earth-like biosignatures on rocky planets around nearby stars as a key science case; (2) the construction over the next decade of ground-based Extremely Large Telecopes (ELTs), which will provide the large aperture and spatial resolution necessary to start revealing the atmospheres of Earth-analogues around nearby stars; (3) the development of instrumentation that optimizes the detection of biosignatures; and (4) the generation of accurate line lists for potential biosignature gases, which are needed as model templates to detect those molecules.

Attached Files

Submitted - 1903.09523.pdf

Files

1903.09523.pdf

Files (1.3 MB)

Name Size Download all
md5:d28eebf4183805d5ee56486054d6e9ea
1.3 MB Preview Download

Additional details

Identifiers

Eprint ID
94592
Resolver ID
CaltechAUTHORS:20190409-125055281

Related works

Dates

Created
2019-04-09
Created from EPrint's datestamp field
Updated
2023-06-02
Created from EPrint's last_modified field

Caltech Custom Metadata

Caltech groups
Astronomy Department
Series Name
Astro2020 Science White Paper