of 8
S1
Reduced and Superreduced Diplatinum Complexes
Tania V. Darnton,
a,‡
Bryan M. Hunter,
a,‡
Michael G. Hill,
b
Stanislav Záliš,*
,c
Antonín Vl
č
ek
Jr.,*
,c,d
and Harry B. Gray*
,a
a
Beckman Institute, California Institute of Technolo
gy, Pasadena, CA 91125, United States
b
Occidental College, Los Angeles, California 90041,
United States
c
J. Heyrovský Institute of Physical Chemistry, Czech
Academy of Sciences, Dolejškova 3, CZ-
182 23 Prague, Czech Republic
d
Queen Mary University of London, School of Biologic
al and Chemical Sciences, Mile End
Road, London E1 4NS, United Kingdom
‡ Indicates that these authors contributed equally.
SUPPLEMENTARY INFORMATION
FIGURES
Figure S1.
Cyclic voltammogram of Pt(pop-BF
2
)
4–
in MeCN containing 0.1 M Bu
4
NPF
6
at room
temperature (~294 K). Potentials vs. Fc
+
/Fc. Scan rate 50 mV/s.
-1.2
-1.6
-2.0
-2.4
-2.8
-1000
-500
0
500
1000
1500
2000
2500
Current density /

V cm
-2
Potential / V
S2
Figure S2.
Full-range cyclic voltammogram of Pt(pop-BF
2
)
4–
in MeCN containing 0.1 M Bu
4
NPF
6
at 273 K. Potentials vs. Fc
+
/Fc. Scan rate 200 mV/s.
Figure S3.
UV-vis absorption spectra monitored in the course
of the first Pt(pop-BF
2
)
4–
reduction
to Pt(pop-BF
2
)
5–
(left) and subsequent product reoxidation (right).
The slightly lower intensities
in the right panel are caused by product diffusion
out of the spectroscopically probed region.
1
0
-1
-2
-3
-3E3
-2E3
-1E3
0
1E3
Current density /

A cm
-2
Potential / V
300
400
500
600
0.00
0.04
0.08
0.12
Absorbance
Wavelength / nm
300
400
500
600
0.00
0.04
0.08
0.12
Wavelength / nm
S3
Figure S4.
UV-vis absorption spectra monitored in the course
of the second Pt(pop-BF
2
)
4–
reduction (left) and subsequent product reoxidation
(right). The slightly lower intensities in the
right panel are caused by product diffusion out of
the spectroscopically probed region.
300
400
500
600
0.00
0.04
0.08
0.12
*
Absorbance
Wavelength / nm
*
300
400
500
600
0.00
0.04
0.08
0.12
Wavelength / nm
S4
Figure S5a.
TD-DFT simulated UV-vis absorption spectra of Pt(p
op-BF
2
)
n–
(n = 4 (black), 5 (red)
and 6/conformer
6
(blue)). The same FWHM of 3000 cm
–1
was assumed for all transitions. TD-
DFT (PBE0/PCM-MeCN)
Figure S5b.
TD-DFT simulated UV-vis absorption spectra of Pt(p
op-BF
2
)
n–
·nMe
4
N
+
(n = 5 (red),
6/conformer
6
(blue)). The same FWHM of 3000 cm
–1
was assumed for all transitions.
TD-DFT (PBE0/PCM-MeCN)
300
400
500
600
Intensity [arb. un.]
Wavelength [nm]
300
400
500
600
Intensity [arb. un.]
Wavelength [nm]
S5
Figure S6.
Left and middle:
DFT-optimized structures of Pt(pop-BF
2
)
5–
(
5
) and the
6
and
6'
conformers of Pt(pop-BF
2
)
6–
in MeCN.
Figure S7.
DFT-optimized structure of Pt(pop-BF
2
)
6–
·6Me
4
N
+
in MeCN.
S6
Figure S8.
Calculated absorption spectrum of Pt(pop-BF
2
)
6–
, conformer
6'
. TD-DFT (PBE0/PCM-
MeCN)
Figure S9.
Cyclic voltammogram of Pt(pop-BF
2
)
4–
in MeCN containing 0.1 M Bu
4
NPF
6
and 1 mM
CH
2
Cl
2
at 273 K. Potentials vs. Fc
+
/Fc. Scan rate 100 mV/s.
300
400
500
600
Intensity [arb. un.]
Wavelength [nm]
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0
-400
0
400
800
1200
Current density /

A cm
-2
Potential / V
S7
TABLES
Table S1.
DFT (ADF/PBE0/COSMO-MeCN) calculated spin densitie
s
ρ
and g and A(Pt) (in MHz)
EPR parameters for Pt(pop-BF
2
)
5–
.
calc.
exp.
ρ
Pt (total)
0.552
-
ρ
P (total)
0.389
-
g
1
1.987
1.98
g
2
2.035
2.03
g
3
2.047
2.04
g
1
-
g
3
0.060
0.060
g
iso
2.023
a
A
1
(Pt)
599
900
A
2
(Pt)
-430
550
A
3
(Pt)
-428
550
A
1
(Pt’)
623
900
A
2
(Pt’)
-419
500
A
3
(Pt’)
-420
350
a
Calculated as
g
iso
= ((
g
1
2
+
g
2
2
+
g
3
2
)/3)
1/2
.
S8
Table S2.
DFT-calculated (PBE0/PCM-MeCN) structural paramete
rs of Pt(pop-BF
2
)
5–
and the two
conformers of Pt(pop-BF
2
)
6–
. Atom P5 is in alignment with atom P1, etc.
Bond
n = 5
n = 6/conf
6
n = 6/conf
6’
Pt1-Pt2
2.803
2.739
2.745
Pt-P1
2.277
2.268
2.255
Pt-P2
2.277
2.258
2.255
Pt-P3
2.278
2.265
2.257
Pt-P4
2.278
2.255
2.257
Pt-P5
2.277
2.256
2.256
Pt-P6
2.277
2.260
2.255
Pt-P7
2.278
2.260
2.255
Pt-P8
2.278
2.266
2.256
P-O(-P) (average)
1.634
1.644
1.645
angle
Pt2-Pt1-P1
91.9
87.3
93.1
Pt2-Pt1-P2
91.9
96.2
91.7
Pt2-Pt1-P3
90.8
87.5
91.7
Pt2-Pt1-P4
90.8
96.3
93.1
Pt2-Pt1-P5
91.9
97.1
92.3
Pt2-Pt1-P6
91.9
88.4
92.3
Pt2-Pt1-P7
90.8
96.8
90.8
Pt2-Pt1-P8
90.8
88.3
90.8
Table S3.
TD-DFT (PBE0/PCM-MeCN) calculated lowest singlet ex
citation energies (eV) for
Pt(pop-BF
2
)
6–
/ conformer
6'
with oscillator strength larger than 0.003.
State
Main contributing excitations
(%)
Transition energy
eV (nm)
Oscillator
strength
Exptl.
eV (nm)
b
1
A
95 (HOMO
LUMO)
2.69 (461)
0.284
461
c
1
A
93 (HOMO
LUMO+4)
3.18 (404)
0.076
490
d
1
A
99 (HOMO
LUMO+6)
3.75 (331)
0.009
356
e
1
A
98 (HOMO
LUMO+7)
3.84 (323)
0.012