Observation of the baryonic decay
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
J. P. Lees,
1
V. Poireau,
1
V. Tisserand,
1
E. Grauges,
2
A. Palano,
3a,3b
G. Eigen,
4
B. Stugu,
4
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
M. J. Lee,
5
G. Lynch,
5
H. Koch,
6
T. Schroeder,
6
C. Hearty,
7
T. S. Mattison,
7
J. A. McKenna,
7
R. Y. So,
7
A. Khan,
8
V. E. Blinov,
9a,9b,9c
A. R. Buzykaev,
9a
V. P. Druzhinin,
9a,9b
V. B. Golubev,
9a,9b
E. A. Kravchenko,
9a,9b
A. P. Onuchin,
9a,9b,9c
S. I. Serednyakov,
9a,9b
Yu. I. Skovpen,
9a,9b
E. P. Solodov,
9a,9b
K. Yu. Todyshev,
9a,9b
A. J. Lankford,
10
M. Mandelkern,
10
B. Dey,
11
J. W. Gary,
11
O. Long,
11
C. Campagnari,
12
M. Franco Sevilla,
12
T. M. Hong,
12
D. Kovalskyi,
12
J. D. Richman,
12
C. A. West,
12
A. M. Eisner,
13
W. S. Lockman,
13
W. Panduro Vazquez,
13
B. A. Schumm,
13
A. Seiden,
13
D. S. Chao,
14
C. H. Cheng,
14
B. Echenard,
14
K. T. Flood,
14
D. G. Hitlin,
14
T. S. Miyashita,
14
P. Ongmongkolkul,
14
F. C. Porter,
14
R. Andreassen,
15
Z. Huard,
15
B. T. Meadows,
15
B. G. Pushpawela,
15
M. D. Sokoloff,
15
L. Sun,
15
P. C. Bloom,
16
W. T. Ford,
16
A. Gaz,
16
J. G. Smith,
16
S. R. Wagner,
16
R. Ayad,
17
,
†
W. H. Toki,
17
B. Spaan,
18
D. Bernard,
19
M. Verderi,
19
S. Playfer,
20
D. Bettoni,
21a
C. Bozzi,
21a
R. Calabrese,
21a,21b
G. Cibinetto,
21a,21b
E. Fioravanti,
21a,21b
I. Garzia,
21a,21b
E. Luppi,
21a,21b
L. Piemontese,
21a
V. Santoro,
21a
A. Calcaterra,
22
R. de Sangro,
22
G. Finocchiaro,
22
S. Martellotti,
22
P. Patteri,
22
I. M. Peruzzi,
22
,
‡
M. Piccolo,
22
M. Rama,
22
A. Zallo,
22
R. Contri,
23a,23b
M. Lo Vetere,
23a,23b
M. R. Monge,
23a,23b
S. Passaggio,
23a
C. Patrignani,
23a,23b
E. Robutti,
23a
B. Bhuyan,
24
V. Prasad,
24
A. Adametz,
25
U. Uwer,
25
H. M. Lacker,
26
P. D. Dauncey,
27
U. Mallik,
28
C. Chen,
29
J. Cochran,
29
S. Prell,
29
H. Ahmed,
30
A. V. Gritsan,
31
N. Arnaud,
32
M. Davier,
32
D. Derkach,
32
G. Grosdidier,
32
F. Le Diberder,
32
A. M. Lutz,
32
B. Malaescu,
32
,§
P. Roudeau,
32
A. Stocchi,
32
G. Wormser,
32
D. J. Lange,
33
D. M. Wright,
33
J. P. Coleman,
34
J. R. Fry,
34
E. Gabathuler,
34
D. E. Hutchcroft,
34
D. J. Payne,
34
C. Touramanis,
34
A. J. Bevan,
35
F. Di Lodovico,
35
R. Sacco,
35
G. Cowan,
36
J. Bougher,
37
D. N. Brown,
37
C. L. Davis,
37
A. G. Denig,
38
M. Fritsch,
38
W. Gradl,
38
K. Griessinger,
38
A. Hafner,
38
K. R. Schubert,
38
R. J. Barlow,
39
,
∥
G. D. Lafferty,
39
R. Cenci,
40
B. Hamilton,
40
A. Jawahery,
40
D. A. Roberts,
40
R. Cowan,
41
G. Sciolla,
41
R. Cheaib,
42
P. M. Patel,
42
,*
S. H. Robertson,
42
N. Neri,
43a
F. Palombo,
43a,43b
L. Cremaldi,
44
R. Godang,
44
,¶
P. Sonnek,
44
D. J. Summers,
44
M. Simard,
45
P. Taras,
45
G. De Nardo,
46a,46b
G. Onorato,
46a,46b
C. Sciacca,
46a,46b
M. Martinelli,
47
G. Raven,
47
C. P. Jessop,
48
J. M. LoSecco,
48
K. Honscheid,
49
R. Kass,
49
E. Feltresi,
50a,50b
M. Margoni,
50a,50b
M. Morandin,
50a
M. Posocco,
50a
M. Rotondo,
50a
G. Simi,
50a,50b
F. Simonetto,
50a,50b
R. Stroili,
50a,50b
S. Akar,
51
E. Ben-Haim,
51
M. Bomben,
51
G. R. Bonneaud,
51
H. Briand,
51
G. Calderini,
51
J. Chauveau,
51
Ph. Leruste,
51
G. Marchiori,
51
J. Ocariz,
51
M. Biasini,
52a,52b
E. Manoni,
52a
S. Pacetti,
52a,52b
A. Rossi,
52a
C. Angelini,
53a,53b
G. Batignani,
53a,53b
S. Bettarini,
53a,53b
M. Carpinelli,
53a,53b
,**
G. Casarosa,
53a,53b
A. Cervelli,
53a,53b
M. Chrzaszcz,
53a
F. Forti,
53a,53b
M. A. Giorgi,
53a,53b
A. Lusiani,
53a,53c
B. Oberhof,
53a,53b
E. Paoloni,
53a,53b
A. Perez,
53a
G. Rizzo,
53a,53b
J. J. Walsh,
53a
D. Lopes Pegna,
54
J. Olsen,
54
A. J. S. Smith,
54
R. Faccini,
55a,55b
F. Ferrarotto,
55a
F. Ferroni,
55a,55b
M. Gaspero,
55a,55b
L. Li Gioi,
55a
A. Pilloni,
55a,55b
G. Piredda,
55a
C. Bünger,
56
S. Dittrich,
56
O. Grünberg,
56
M. Hess,
56
T. Leddig,
56
C. Voß,
56
R. Waldi,
56
T. Adye,
57
E. O. Olaiya,
57
F. F. Wilson,
57
S. Emery,
58
G. Vasseur,
58
F. Anulli,
59
,
††
D. Aston,
59
D. J. Bard,
59
C. Cartaro,
59
M. R. Convery,
59
J. Dorfan,
59
G. P. Dubois-Felsmann,
59
W. Dunwoodie,
59
M. Ebert,
59
R. C. Field,
59
B. G. Fulsom,
59
M. T. Graham,
59
C. Hast,
59
W. R. Innes,
59
P. Kim,
59
D. W. G. S. Leith,
59
P. Lewis,
59
D. Lindemann,
59
S. Luitz,
59
V. Luth,
59
H. L. Lynch,
59
D. B. MacFarlane,
59
D. R. Muller,
59
H. Neal,
59
M. Perl,
59
,*
T. Pulliam,
59
B. N. Ratcliff,
59
A. Roodman,
59
A. A. Salnikov,
59
R. H. Schindler,
59
A. Snyder,
59
D. Su,
59
M. K. Sullivan,
59
J. Va
’
vra,
59
W. J. Wisniewski,
59
H. W. Wulsin,
59
M. V. Purohit,
60
R. M. White,
60
,
‡‡
J. R. Wilson,
60
A. Randle-Conde,
61
S. J. Sekula,
61
M. Bellis,
62
P. R. Burchat,
62
E. M. T. Puccio,
62
M. S. Alam,
63
J. A. Ernst,
63
R. Gorodeisky,
64
N. Guttman,
64
D. R. Peimer,
64
A. Soffer,
64
S. M. Spanier,
65
J. L. Ritchie,
66
A. M. Ruland,
66
R. F. Schwitters,
66
B. C. Wray,
66
J. M. Izen,
67
X. C. Lou,
67
F. Bianchi,
68a,68b
F. De Mori,
68a,68b
A. Filippi,
68a
D. Gamba,
68a,68b
L. Lanceri,
69a,69b
L. Vitale,
69a,69b
F. Martinez-Vidal,
70
A. Oyanguren,
70
P. Villanueva-Perez,
70
J. Albert,
71
Sw. Banerjee,
71
A. Beaulieu,
71
F. U. Bernlochner,
71
H. H. F. Choi,
71
G. J. King,
71
R. Kowalewski,
71
M. J. Lewczuk,
71
T. Lueck,
71
I. M. Nugent,
71
J. M. Roney,
71
R. J. Sobie,
71
N. Tasneem,
71
T. J. Gershon,
72
P. F. Harrison,
72
T. E. Latham,
72
H. R. Band,
73
S. Dasu,
73
Y. Pan,
73
R. Prepost,
73
and S. L. Wu
73
(
B
A
B
AR
Collaboration)
1
Laboratoire d
’
Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie,
CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
7
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
PHYSICAL REVIEW D
91,
031102(R) (2015)
1550-7998
=
2015
=
91(3)
=
031102(7)
031102-1
Published by the American Physical Society
RAPID COMMUNICATIONS
9a
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia
9b
Novosibirsk State University, Novosibirsk 630090, Russia
9c
Novosibirsk State Technical University, Novosibirsk 630092, Russia
10
University of California at Irvine, Irvine, California 92697, USA
11
University of California at Riverside, Riverside, California 92521, USA
12
University of California at Santa Barbara, Santa Barbara, California 93106, USA
13
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14
California Institute of Technology, Pasadena, California 91125, USA
15
University of Cincinnati, Cincinnati, Ohio 45221, USA
16
University of Colorado, Boulder, Colorado 80309, USA
17
Colorado State University, Fort Collins, Colorado 80523, USA
18
Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
19
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
20
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
21a
INFN Sezione di Ferrara, I-44122 Ferrara, Italy
21b
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy
22
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
23a
INFN Sezione di Genova, I-16146 Genova, Italy
23b
Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
24
Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
25
Universität Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany
26
Humboldt-Universität zu Berlin, Institut für Physik, D-12489 Berlin, Germany
27
Imperial College London, London, SW7 2AZ, United Kingdom
28
University of Iowa, Iowa City, Iowa 52242, USA
29
Iowa State University, Ames, Iowa 50011-3160, USA
30
Physics Department, Jazan University, Jazan 22822, Saudia Arabia
31
Johns Hopkins University, Baltimore, Maryland 21218, USA
32
Laboratoire de l
’
Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11,
Centre Scientifique d
’
Orsay, F-91898 Orsay Cedex, France
33
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
34
University of Liverpool, Liverpool L69 7ZE, United Kingdom
35
Queen Mary, University of London, London, E1 4NS, United Kingdom
36
University of London, Royal Holloway and Bedford New College, Egham,
Surrey TW20 0EX, United Kingdom
37
University of Louisville, Louisville, Kentucky 40292, USA
38
Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
39
University of Manchester, Manchester M13 9PL, United Kingdom
40
University of Maryland, College Park, Maryland 20742, USA
41
Massachusetts Institute of Technology, Laboratory for Nuclear Science,
Cambridge, Massachusetts 02139, USA
42
McGill University, Montréal, Québec, Canada H3A 2T8
43a
INFN Sezione di Milano, I-20133 Milano, Italy
43b
Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
44
University of Mississippi, University, Mississippi 38677, USA
45
Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
46a
INFN Sezione di Napoli, I-80126 Napoli, Italy
46b
Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
47
NIKHEF, National Institute for Nuclear Physics and High Energy Physics,
NL-1009 DB Amsterdam, Netherlands
48
University of Notre Dame, Notre Dame, Indiana 46556, USA
49
Ohio State University, Columbus, Ohio 43210, USA
50a
INFN Sezione di Padova, I-35131 Padova, Italy
50b
Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
51
Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie
Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
52a
INFN Sezione di Perugia, I-06123 Perugia, Italy
52b
Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
53a
INFN Sezione di Pisa, I-56127 Pisa, Italy
53b
Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
53c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
J. P. LEES
et al.
PHYSICAL REVIEW D
91,
031102(R) (2015)
031102-2
RAPID COMMUNICATIONS
54
Princeton University, Princeton, New Jersey 08544, USA
55a
INFN Sezione di Roma, I-00185 Roma, Italy
55b
Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
56
Universität Rostock, D-18051 Rostock, Germany
57
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
58
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
59
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
60
University of South Carolina, Columbia, South Carolina 29208, USA
61
Southern Methodist University, Dallas, Texas 75275, USA
62
Stanford University, Stanford, California 94305-4060, USA
63
State University of New York, Albany, New York 12222, USA
64
Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
65
University of Tennessee, Knoxville, Tennessee 37996, USA
66
University of Texas at Austin, Austin, Texas 78712, USA
67
University of Texas at Dallas, Richardson, Texas 75083, USA
68a
INFN Sezione di Torino, I-10125 Torino, Italy
68b
Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy
69a
INFN Sezione di Trieste, I-34127 Trieste, Italy
69b
Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
70
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
71
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
72
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
73
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 16 October 2014; published 11 February 2015)
We report the observation of the baryonic decay
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
using a data sample of
471
×
10
6
B
̄
B
pairs produced in
e
þ
e
−
annihilations at
ffiffiffi
s
p
¼
10
.
58
GeV. This data sample was recorded with the
BABAR
detector at the PEP-II storage ring at SLAC. We find
B
ð
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
Þ¼ð
2
.
5
0
.
4
ð
stat
Þ
0
.
2
ð
syst
Þ
0
.
6
B
ð
Λ
þ
c
Þ
Þ
×
10
−
5
, where the uncertainties are statistical, systematic, and due to the uncertainty of the
Λ
þ
c
→
pK
−
π
þ
branching fraction, respectively. The result has a significance corresponding to 5.0 standard
deviations, including all uncertainties. For the resonant decay
̄
B
0
→
Λ
þ
c
̄
p
φ
, we determine the upper limit
B
ð
̄
B
0
→
Λ
þ
c
̄
p
φ
Þ
<
1
.
2
×
10
−
5
at 90% confidence level.
DOI:
10.1103/PhysRevD.91.031102
PACS numbers: 13.25.Hw, 13.60.Rj, 14.20.Lq
About 7% of all
B
mesons decay into final states with
baryons
[1]
. Measurements of the branching fractions for
baryonic
B
decays and studies of the decay dynamics, e.g.,
the fraction of resonant subchannels or the possible
enhancement in the production rate at the baryon-
antibaryon threshold seen in some reactions
[2,3]
, can
provide detailed information that can be used to test
phenomenological models
[4
–
6]
. Studying baryonic
B
decays can also allow a better understanding of the
mechanism of these decays and, more generally, of the
baryon production process.
In this paper we present a measurement of the branching
fraction for the decay
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
. Throughout this
paper, all decay modes include the charge conjugate
process. No experimental results are currently available
for this decay mode. However, the related decay
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
has been observed with a branching fraction
B
ð
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
Þ¼ð
1
.
17
0
.
23
Þ
×
10
−
3
[1]
. The main
difference between the decay presented here and
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
is that there are fewer kinematically accessible
resonant subchannels for
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
. The heavier
mass of the
s
quark suggests a suppression factor of about
1
=
3
[7]
, which is consistent with the observed suppression
of
̄
B
0
→
D
0
Λ
̄
Λ
relative to
̄
B
0
→
D
0
p
̄
p
[8]
. However, the
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
and
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
decay processes are
described by different Feynman diagrams, and this simple
expectation might not hold.
*
Deceased.
†
Now at the University of Tabuk, Tabuk 71491, Saudi Arabia.
‡
Also with Università di Perugia, Dipartimento di Fisica,
Perugia, Italy.
§
Now at Laboratoire de Physique Nucléaire et de Hautes
Energies, IN2P3/CNRS, Paris, France.
∥
Now at the University of Huddersfield, Huddersfield HD1
3DH, UK.
¶
Now at University of South Alabama, Mobile, Alabama
36688, USA.
**
Also with Università di Sassari, Sassari, Italy.
††
Also with INFN Sezione di Roma, Roma, Italy.
‡‡
Now atUniversidad TécnicaFedericoSanta Maria, Valparaiso,
Chile 2390123.
Published by the American Physical Society under the terms of
the
Creative Commons Attribution 3.0 License
. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article
’
s title, journal citation, and DOI.
OBSERVATION OF THE BARYONIC DECAY
...
PHYSICAL REVIEW D
91,
031102(R) (2015)
031102-3
RAPID COMMUNICATIONS
The analysis is based on an integrated luminosity of
429
fb
−
1
[9]
of data collected at a center-of-mass energy
equivalent to the
Υ
ð
4
S
Þ
mass,
ffiffiffi
s
p
¼
10
.
58
GeV, with the
BABAR
detector at the PEP-II asymmetric-energy
e
þ
e
−
collider at SLAC, corresponding to
471
×
10
6
B
̄
B
pairs.
Trajectories of charged particles are measured with a five-
layer double-sided silicon vertex tracker and a 40-layer
drift chamber, operating in the 1.5 T magnetic field of a
superconducting solenoid. Ionization energy loss mea-
surements in the tracking chambers and information from
an internally reflecting ring-imaging detector provide
charged-particle identification
[10]
. The
BABAR
detector
is described in detail elsewhere
[11,12]
. Monte Carlo
(MC) simulations of events are used to study background
processes and to determine signal efficiencies. The
simulations are based on the E
VT
G
EN
[13]
event gen-
erator, with the G
EANT
4
[14]
suite of programs used to
describe the detector and its response. The
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
and
Λ
þ
c
→
pK
−
π
þ
final states are generated
according to four-body and three-body phase space,
respectively.
We reconstruct
Λ
þ
c
baryons in the decay mode
Λ
þ
c
→
pK
−
π
þ
. For the
B
meson reconstruction, we com-
bine the
Λ
þ
c
candidate with identified
̄
p
,
K
−
, and
K
þ
candidates and fit the decay tree to a common vertex
constraining the
Λ
þ
c
candidate to its nominal mass. We
require the
χ
2
probability of the fit to exceed 0.001. To
suppress combinatorial background, we require the
Λ
þ
c
candidate mass to lie within approximately two standard
deviations (
10
MeV
=c
2
) in the expected resolution from
the nominal
Λ
þ
c
mass.
We determine the number of signal candidates with a
two-dimensional unbinned extended maximum likelihood
fit to the
B
meson candidate invariant mass,
m
B
, and the
energy-substituted mass,
m
ES
, defined as
m
ES
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=
2
þ
~
p
B
·
~
p
0
E
0
2
−
~
p
2
B
s
;
ð
1
Þ
where the
B
momentum vector,
~
p
B
, and the four-momentum
vector of the
e
þ
e
−
system,
ð
E
0
;
~
p
0
Þ
, are measured in the
laboratory frame. For correctly reconstructed
B
decays,
m
B
and
m
ES
are centered at the nominal
B
mass. The
correlation between
m
B
and
m
ES
in simulated signal
(Fig.
1
) and background events is approximately zero and
not significant. It can be neglected in this analysis. For
signal events, the shape of the
m
ES
distributions is
described by the sum
f
2
G
of two Gaussian functions,
as is the
m
B
distribution. The means, widths, and relative
weights in the four Gaussians are determined using
simulated events and are fixed in the final fit.
Background from other
B
meson decays and continuum
events
ð
e
þ
e
−
→
q
̄
q; q
¼
u; d; s; c
Þ
is modeled using an
ARGUS function
[15]
,
f
ARGUS
, for
m
ES
and a first-order
polynomial,
f
poly
, for
m
B
.
The fit function is defined as
f
fit
¼
N
sig
·
S
ð
m
ES
;m
B
Þþ
N
bkg
·
B
ð
m
ES
;m
B
Þ
¼
N
sig
·
f
2
G
ð
m
ES
Þ
·
f
2
G
ð
m
B
Þ
þ
N
bkg
·
f
ARGUS
ð
m
ES
Þ
·
f
poly
ð
m
B
Þ
;
ð
2
Þ
where
N
sig
and
N
bkg
are the number of signal and back-
ground events, respectively, with
S
and
B
the correspond-
ing probability density functions (PDFs). The extended
likelihood function is
L
ð
N
sig
;N
bkg
Þ¼
e
−
ð
N
sig
þ
N
bkg
Þ
N
!
Y
N
i
¼
1
½
N
sig
S
i
ð
m
ES
i
;m
Bi
Þ
þ
N
bkg
B
i
ð
m
ES
i
;m
Bi
Þ
;
ð
3
Þ
where
i
denotes the
i
th candidate and
N
is the total
number of events in the fit region. The fit region is defined
by the intervals
5
.
2
GeV
=c
2
<m
B
<
5
.
55
GeV
=c
2
and
5
.
2
GeV
=c
2
<m
ES
<
5
.
3
GeV
=c
2
.
Figure
2
shows the one-dimensional projections of the fit
results onto the
m
ES
and
m
B
axes in comparison with the
data. Clear signal peaks at the
B
meson mass are visible. We
find
N
sig
¼
66
12
, where the uncertainty is statistical
only. The statistical significance
S
of the signal is deter-
mined from the ratio of the likelihood values for the best-
fit signal hypothesis,
L
sig
, and the best fit with no signal
included,
L
0
,
S
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2
ln
ð
L
0
=L
sig
Þ
p
, corresponding to 5.4
standard deviations.
The efficiency to reconstruct signal events depends on
the baryon-antibaryon invariant mass. Therefore, to deter-
mine the
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
branching fraction, we divide
the data into two regions. Region I is defined as
3
.
225
GeV
=c
2
<m
Λ
þ
c
̄
p
≤
3
.
475
GeV
=c
2
, and region II is
defined as
3
.
475
GeV
=c
2
<m
Λ
þ
c
̄
p
≤
4
.
225
GeV
=c
2
. The
results are shown in Table
I
. To determine an upper limit on
the branching fraction for the decay
̄
B
0
→
Λ
þ
c
̄
p
φ
, we do not
)
2
(GeV/c
ES
m
5.265
5.27
5.275
5.28
5.285
5.29
)
2
(GeV/c
B
m
5.2
5.25
5.3
5.35
5.4
0
50
100
150
200
250
300
350
FIG. 1 (color online). The
m
B
vs
m
ES
distribution for correctly
reconstructed simulated signal events.
J. P. LEES
et al.
PHYSICAL REVIEW D
91,
031102(R) (2015)
031102-4
RAPID COMMUNICATIONS
divide the events into regions of
m
Λ
þ
c
̄
p
. Instead we use only
events in the
φ
signal region, which we denote as region III,
defined by
1
.
005
GeV
=c
2
<m
KK
<
1
.
034
GeV
=c
2
.
We consider systematic uncertainties associated with the
initial number of
B
̄
B
pairs, the tracking efficiency, the
particle identification efficiency, the limited number of MC
events, the description of the background, and the descrip-
tion of the signal (Table
II
).
The uncertainty for the number of
B
̄
B
pairs is 0.6%
[9]
.
We determine the systematic uncertainty for the charged-
particle reconstruction to be 1.3% and for the charged-
particle identification (ID) to be 5.6%. The uncertainty for
the charged-particle identification is evaluated by adding
the uncertainty of the identification for each particle in
quadrature. For the kaon the uncertainty is 5.6%, for the
proton it is 0.7%, and for the pion it is 0.2%. The
information on the detector-related uncertainties is
described in Ref.
[12]
. The statistical uncertainty associated
with the MC sample is 0.4%. The systematic uncertainties
arising from the fit procedure are determined by changing
the background description for
m
B
from a first-order
polynomial to a second-order polynomial and by changing
the fit ranges in
m
ES
and
m
B
while using a first-order
polynomial for
m
B
(7.0%). Changing the signal description
for
m
B
and
m
ES
from a sum of two Gaussian functions with
fixed shape parameters to a single Gaussian function of
which the parameters are determined in the maximum
likelihood fit leads to an uncertainty of 3.1%. The total
systematic uncertainty is 9.6%, obtained by adding all
contributions in quadrature.
The 26% uncertainty of the
Λ
þ
c
branching fraction is
listed as a third uncertainty, separate from the statistical and
systematic components. To be consistent with prior branch-
ing fraction measurements of baryonic
B
decays, we use the
current value for
B
ð
Λ
þ
c
→
pK
−
π
þ
Þ
[1]
and do not incor-
porate the recent measurement by Belle
[16]
.
Only additive systematic uncertainties, i.e., uncertainties
influencing the signal and background yields differently,
affect the significance of the signal. The significance of the
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
signal taking into account the additive
systematic uncertainties is 5.0 standard deviations.
To determine the branching fraction, we use the follow-
ing relation:
B
ð
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
Þ
¼
1
B
ð
Λ
þ
c
→
pK
−
π
þ
Þ
·
1
N
B
·
N
sigI
ε
I
þ
N
sigII
ε
II
:
ð
4
Þ
)
2
(GeV/c
ES
m
5.2
5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29
5.3
)
2
Events / ( 0.002 GeV/c
0
5
10
15
20
25
30
35
40
(a)
)
2
(GeV/c
B
m
5.2
5.25
5.3
5.35
5.4
5.45
5.5
5.55
)
2
Events / ( 7 MeV/c
0
10
20
30
40
50
(b)
FIG. 2 (color online). Data (points with statistical uncertain-
ties) and projections of the maximum likelihood fit (solid
curves) for
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
candidates. The dashed curves
show the projections of the PDF for background events.
(a) Results for
m
ES
, with the requirement
5
.
26
GeV
=c
2
≤
m
B
≤
5
.
30
GeV
=c
2
. (b) Results for
m
B
, with the requirement
5
.
275
GeV
=c
2
≤
m
ES
≤
5
.
285
GeV
=c
2
.
TABLE I. Number of observed signal events,
N
sig
, and signal
efficiency,
ε
,for
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
decays. The regions
are defined by the following invariant mass ranges
—
I:
3
.
225
GeV
=c
2
<m
Λ
þ
c
̄
p
≤
3
.
475
GeV
=c
2
, II:
3
.
475
GeV
=c
2
<
m
Λ
þ
c
̄
p
≤
4
.
225
GeV
=c
2
.
Region
N
sig
ε
I
37
.
7
8
.
0
ð
10
.
93
0
.
08
Þ
%
II
28
.
2
8
.
4
ð
11
.
47
0
.
07
Þ
%
TABLE II. Summary of the systematic uncertainties for
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
.
Source
Relative uncertainty
Multiplicative uncertainties:
B
̄
B
counting
0.6%
Track reconstruction
1.3%
Charged particle ID
5.6%
MC sample size
0.4%
Additive uncertainties:
Background description
7.0%
Signal description
3.1%
Total
9.6%
OBSERVATION OF THE BARYONIC DECAY
...
PHYSICAL REVIEW D
91,
031102(R) (2015)
031102-5
RAPID COMMUNICATIONS
Here,
N
B
¼ð
471
3
Þ
×
10
6
is the initial number of
B
̄
B
events
[9]
. We assume equal production of
B
0
̄
B
0
and
B
þ
B
−
pairs. The
Λ
þ
c
branching fraction is
B
ð
Λ
þ
c
→
pK
−
π
þ
Þ¼
ð
5
.
0
1
.
3
Þ
%
[1]
, and
N
sigI
,
N
sigII
, and
ε
I
,
ε
II
are the
numbers of signal events and the efficiencies in the two
regions of the baryon-antibaryon invariant mass. We obtain
B
ð
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
Þ
¼ð
2
.
5
0
.
4
ð
stat
Þ
0
.
2
ð
syst
Þ
0
.
6
ð
Λ
þ
c
Þ
Þ
×
10
−
5
:
ð
5
Þ
Eliminating the uncertainty of the
Λ
þ
c
branching fraction,
the result is
B
ð
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
Þ¼ð
2
.
5
0
.
4
ð
stat
Þ
0
.
2
ð
syst
Þ
Þ
×
10
−
5
×
0
.
050
B
ð
Λ
þ
c
→
pK
−
π
þ
Þ
:
ð
6
Þ
This result is a factor of 47 smaller than the
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
branching fraction.
All Feynman diagram contributions for
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
lead to Feynman diagram contributions for
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
through replacement of the
s
̄
s
pair in the
final state with a
d
̄
d
pair. The expectation from hadroniza-
tion models for these common processes is that the
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
and
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
branching fractions
should differ by a factor of 3. The expected
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
branching fraction arising from these common
processes is about
7
.
5
×
10
−
5
, representing only 6.4% of
the observed
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
branching fraction
[1]
. The
remaining contributions arise from other Feynman dia-
grams, notably diagrams with external
W
boson emission
(operator product expansion operator 1
[17]
), which are not
allowed for
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
. Moreover,
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
decays receive a large contribution from resonant sub-
channels. These differences likely explain why we find the
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
and
̄
B
0
→
Λ
þ
c
̄
p
π
−
π
þ
branching fractions
to differ more than the naive factor of 3.
We perform a fit in intervals of
m
ð
Λ
þ
c
̄
p
Þ
to determine the
dependence of the number of signal events on the baryon-
antibaryon invariant mass. The lower limit of the mass
range is given by the kinematic threshold for
Λ
þ
c
̄
p
production, while the upper limit corresponds to the
threshold
K
−
K
þ
mass with the
K
−
K
þ
system at rest in
the
̄
B
0
rest frame. The results are shown in Fig.
3(a)
. The
trend of the data is consistent with a small threshold
enhancement, but the result is not statistically significant.
The fit results for the intervals I and II in
m
Λ
þ
c
̄
p
and the
detection efficiencies for these regions are shown in Table
I
.
We also perform fits in intervals of
m
ð
K
−
K
þ
Þ
. As can be
seen in Fig.
3(b)
, the data deviate from the phase space
expectation near threshold, in the region of the
φ
meson
resonance. The events, in region III, include contributions
from
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
and
̄
B
0
→
Λ
þ
c
̄
p
φ
. The number of
events in region III is used to determine a Bayesian
upper limit at 90% confidence level for the decay
̄
B
0
→
Λ
þ
c
̄
p
φ
by integrating the likelihood function. This upper
limit is estimated to be 17 events. The efficiency for
̄
B
0
→
Λ
þ
c
̄
p
φ
decays is
ð
12
.
04
0
.
06
Þ
%
. Using the result
B
ð
φ
→
K
þ
K
−
Þ¼ð
48
.
9
0
.
5
Þ
%
[1]
, we obtain
B
ð
̄
B
0
→
Λ
þ
c
̄
p
φ
Þ
<
1
.
2
×
10
−
5
:
ð
7
Þ
In summary, we observe the baryonic decay
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
with a significance of 5.0 standard deviations
including statistical and systematic uncertainties and deter-
mine the branching fraction to be
ð
2
.
5
0
.
4
ð
stat
Þ
0
.
2
ð
syst
Þ
0
.
6
B
ð
Λ
þ
c
Þ
Þ
×
10
−
5
. The uncertainties are statisti-
cal, systematic, and due to the uncertainty in the
Λ
þ
c
→
pK
−
π
þ
branching fraction, respectively. We obtain an
upper limit of
1
.
2
×
10
−
5
at 90% confidence level for
the resonant decay
̄
B
0
→
Λ
þ
c
̄
p
φ
.
)
2
(GeV/c
)
p
+
c
Λ
m(
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
4.1
4.2
)
2
Events / (1 GeV/c
0
50
100
150
200
250
(a)
I
II
)
2
(GeV/c
)
+
K
-
m(K
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
)
2
Events / (1 GeV/c
0
50
100
150
200
250
300
350
400
(b)
III
FIG. 3 (color online). (a) Baryon-antibaryon invariant mass
signal distribution and (b) kaon-kaon invariant mass signal
distribution for data (points with statistical uncertainties) com-
pared to distributions for simulated
̄
B
0
→
Λ
þ
c
̄
pK
−
K
þ
decays
generated according to four-body phase space (shaded histo-
gram), scaled to the same number of events as in data. Regions I,
II, and III are indicated in the figure and described in the text.
J. P. LEES
et al.
PHYSICAL REVIEW D
91,
031102(R) (2015)
031102-6
RAPID COMMUNICATIONS
We are grateful for the extraordinary contributions of our
PEP-II colleagues in achieving the excellent luminosity and
machine conditions that have made this work possible. The
success of this project also relies critically on the expertise
and dedication of the computing organizations that support
BABAR
. The collaborating institutions wish to thank SLAC
for its support and the kind hospitality extended to them.
This work is supported by the U.S. Department of Energy
and National Science Foundation, the Natural Sciences and
Engineering Research Council (Canada), the Commissariat
àl
’
Energie Atomique and Institut National de Physique
Nucléaire et de Physique des Particules (France), the
Bundesministerium für Bildung und Forschung and
Deutsche Forschungsgemeinschaft (Germany), the
Istituto Nazionale di Fisica Nucleare (Italy), the
Foundation for Fundamental Research on Matter
(Netherlands), the Research Council of Norway, the
Ministry of Education and Science of the Russian
Federation, Ministerio de Ciencia e Innovación (Spain),
and the Science and Technology Facilities Council (United
Kingdom). Individuals have received support from the
Marie-Curie IEF program (European Union), the A. P.
Sloan Foundation (USA), and the Binational Science
Foundation (USA-Israel).
[1] J. Beringer
et al.
(Particle Data Group),
Phys. Rev. D
86
,
010001 (2012)
and 2013 partial update for the 2014 edition.
[2] P. del Amo Sanchez
et al.
(
BABAR
Collaboration),
Phys.
Rev. D
85
, 092017 (2012)
.
[3] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. D
82
,
031102 (2010)
.
[4] D. S. Carlstone, S. P. Rosen, and S. Pakvasa,
Phys. Rev.
174
,
1877 (1968)
.
[5] J. L. Rosner,
Phys. Rev. D
68
, 014004 (2003)
.
[6] M. Suzuki,
J. Phys. G
34
, 283 (2007)
.
[7] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjöstrand,
Phys. Rep.
97
, 31 (1983)
.
[8] J. P. Lees
et al.
(
BABAR
Collaboration),
Phys. Rev. D
89
,
112002 (2014)
.
[9] J. P. Lees
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
726
, 203 (2013)
.
[10] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. Lett.
99
,
021603 (2007)
.
[11] B. Aubert
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
.
[12] B. Aubert
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
729
, 615 (2013)
.
[13] D. J. Lange,
Nucl. Instrum. Methods Phys. Res., Sect. A
462
, 152 (2001)
.
[14] S. Agostinelli
et al.
(Geant4 Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
506
, 250 (2003)
.
[15] H. Albrecht
et al.
(ARGUS Collaboration),
Phys. Lett. B
241
, 278 (1990)
.
[16] A. Zupanc
et al.
(Belle Collaboration),
Phys. Rev. Lett.
113
,
042002 (2014)
.
[17] K. G. Wilson,
Phys. Rev.
179
, 1499 (1969)
.
OBSERVATION OF THE BARYONIC DECAY
...
PHYSICAL REVIEW D
91,
031102(R) (2015)
031102-7
RAPID COMMUNICATIONS