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1. Introduction	
	
Current	state-of-the-art	sports	statistics	compare	players	and	teams	to	league	average	performance.	
For	 example,	metrics	 such	 as	 “Wins-above-Replacement”	 (WAR)	 in	 baseball	 [1],	 “Expected	 Point	
Value”	(EPV)	in	basketball	[2]	and	“Expected	Goal	Value”	(EGV)	in	soccer	[3]	and	hockey	[4]	are	now	
commonplace	in	performance	analysis.	Such	measures	allow	us	to	answer	the	question	“how	does	
this	player	or	team	compare	to	the	league	average?”	Even	“personalized	metrics”	which	can	answer	
how	a	“player’s	or	team’s	current	performance	compares	to	its	expected	performance”	have	been	used	
to	better	analyze	and	improve	prediction	of	future	outcomes	[5].	

These	measures	have	enhanced	our	ability	to	analyze,	compare	and	value	performance	in	sport.		But	
they	 are	 inherently	 limited	 because	 they	 are	 tied	 to	 a	 discrete	 outcome	 of	 a	 specific	 event.	 For	
example,	EPV	for	basketball	focuses	on	estimating	the	probability	of	a	player	making	a	shot	based	on	
the	current	situation,	and	is	learnt	off	enormous	amounts	of	historical	data.	The	general	use	case	is	
then	to	aggregate	these	outcomes,	and	compare	and	rank	them	to	see	how	various	players	and	teams	
compare	to	each	other.		In	contrast,	what	we’d	really	like	to	know	is	how	teams	create	time	and	space	
for	scoring	opportunities	at	the	fine-grain	level.		

With	the	widespread	(and	growing)	availability	of	player	and	ball	tracking	data	comes	the	potential	
to	quantitatively	analyze	and	compare	fine-grain	movement	patterns.	An	excellent	example	of	this	
was	the	2013	ESPN	article	written	by	Zach	Lowe,	which	described	how	the	Toronto	Raptors	were	
using	“ghosting”	to	analyze	player	decision-making	in	STATS	SportVU	tracking	data	[6].	Specifically,	
the	Raptors	created	software	to	predict	what	a	defensive	player	should	have	done	instead	of	what	
they	actually	did.	 	Developing	the	computer	program	required	substantial	manual	annotation,	but	
the	 insight	gained	turned	heads	because	 it	made	the	effectiveness	of	defensive	positioning	both	a	
measurable	and	viewable	quantity	for	the	first	time.		

Motivated	by	the	original	“ghosting”	work,	we	showcase	an	automatic	“data-driven	ghosting”	method	
using	advanced	machine	learning	methodologies	applied	to	a	season’s	worth	of	tracking	data	from	a	
recent	 professional	 league	 in	 soccer.	 An	 example	 of	 our	 approach	 is	 depicted	 in	 Figure	 1	which	
illustrates	 a	 scoring	 chance	 that	 Fulham	 (red)	 created	 against	 Swansea	 (blue).	 	 Suppose	 we	 are	
interested	in	analyzing	the	defensive	movements	of	Swansea.	It	might	be	useful	to	visualize	what	the	
team	actually	did	compared	to	what	a	typical	team	in	the	league	might	have	done.	Using	our	approach,	
we	 are	 able	 to	 generate	 the	 defensive	 motion	 pattern	 of	 the	 “league	 average”	 team,	 which	
interestingly	results	in	a	similar	expected	goal	value	(69.1%	for	Swansea	and	71.8%	for	the	“league	
average”	 ghosts	 --	 to	 fully	 appreciate	 the	 insights	 revealed	 by	 data-driven	 ghosting,	we	 urge	 the	
readers	 to	 view	 the	 supplemental	 video	 at	 http://www.disneyresearch.com/publication/data-
driven-ghosting.)		
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Figure	1	Our	data-driven	ghosting	method	can	be	applied	to	various	game	contexts	to	better	understand	defensive	strategies.		
In	the	depicted	scenario,	Fulham	(red)	scores	a	goal	on	Swansea	(blue).		Ghosts	(white)	represent	where	Swansea	defenders	
should	have	been	according	to	a	league	average	model	(LAG)	and	Manchester	City	model	(MUG).		

However	in	practice,	a	coach	or	analyst	may	not	want	to	compare	their	defense	to	the	league	average,	
but	to	another	specific	team.	By	“fine-tuning”	our	league	average	model	to	the	tracking	data	from	a	
particular	 team,	 our	 data-driven	 ghosting	 technique	 can	 estimate	 how	 each	 team	 might	 have	
approached	 the	situation.	 	For	example,	 the	coach/analyst	may	want	 to	 see	how	Manchester	City	
would	defend	the	same	attacking	play.		Using	our	approach,	we	can	now	see	how	they	would	defend	
differently	(Figure	1(right)),	and	how	much	it	changes	the	EGV	(69.1%	to	41.7%).	The	other	benefit	
of	using	our	ghosting	approach	is	that	is	saves	the	coach/analyst	from	searching	for	similar	plays	in	
other	matches	(which	may	not	even	exist).			

To	 achieve	 automatic	 ghosting,	 we	 leverage	 a	 machine	 learning	 method	 called	 “deep	 imitation	
learning”.	Our	methodology	resembles	techniques	used	to	teach	computers	to	play	Atari	[7]	and	Go	
[8].	 We	 modify	 standard	 recurrent	 neural	 network	 training	 to	 consider	 both	 instantaneous	 and	
future	 losses,	which	enables	ghosted	players	to	anticipate	movements	of	their	teammates	and	the	
opposition.	More	 importantly,	our	approach	avoids	the	need	for	man-years	of	manual	annotation.	
Our	ghosting	model	can	be	trained	in	several	hours,	after	which	it	can	ghost	every	play	in	real-time.	

In	the	next	sections,	we	describe	the	methodology	behind	our	ghosting	system,	and	showcase	how	
automated	ghosting	can	provide	 insightful	analyses	and	comparisons	of	 team	defensive	behavior.		
We	also	emphasize	that	our	approach	is	general,	and	can	be	applied	to	a	wide	range	of	sports	such	as	
basketball	and	football.		

2.		Deep	Imitation	Learning	for	Modeling	Defensive	Situations	
	
While	the	mathematical	background	required	to	implement	our	deep	imitation	learning	method	can	
seem	complicated	(see	Appendix	A	for	full	details),	the	high-level	intuition	is	quite	simple.	 	In	this	
section	we	 provide	 an	 overview	 of	 deep	 imitation	 learning,	 and	 how	 it	 can	 be	 applied	 to	 soccer	
tracking	data.			
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For	this	paper,	we	used	100	games	of	player	tracking	and	event	data	from	a	recent	professional	soccer	
league.	As	we	are	interested	in	modeling	defensive	situations,	we	only	focused	on	sequences	of	play	
where	 the	 opposition	 had	 control	 of	 the	 ball.	 A	 defensive	 sequence	 is	 terminated	when	 a	 goal	 is	
scored	against	the	defending	team,	the	ball	gets	out	of	the	pitch,	dead-ball	events	occur	(e.g.	foul,	off-
side),	or	the	defensive	team	regains	possession	of	the	ball.	In	total,	there	were	approximately	17400	
sequences	 of	 attacking-defending	 situations	 (~3	 million	 frames	 at	 10	 frames	 per	 second).	 The	
average	length	of	all	sequences	is	approximately	170	frames,	or	17	seconds.			

2.1.	What	is	“Deep	Imitation	Learning?”	
Before	explaining	what	“deep	imitation	learning”	is,	we	first	explain	what	“imitation	learning”	is.	In	
many	complex	situations,	it	can	be	very	challenging	for	a	human	expert	to	describe	and	codify	the	
policy	or	strategy	due	to	the	granularity	or	fidelity	of	the	situation.	For	such	tasks,	we	can	use	machine	
learning	to	automatically	learn	a	good	policy	from	observed	expert	behavior,	also	known	as	imitation	
learning	 or	 learning	 from	 demonstrations,	 which	 has	 proven	 tremendously	 useful	 in	 control	 and	
robotics	applications	[9-14].	

Due	to	the	dynamic,	continuous	and	highly	strategic	nature	of	sports	 like	soccer,	hand-crafting	or	
manually	describing	strategy	at	a	 fine-grain	 level	 is	equally	problematic.	For	example	 in	Figure	1,	
getting	a	human	to	describe	the	location,	velocity	and	acceleration	of	every	player	at	the	frame-level	
would	be	prohibitively	time-consuming	and	error-riddled.	Even	if	a	human	were	able	to	describe	the	
play	via	rules,	it	is	highly	unlikely	that	another	human	would	be	able	to	learn	from	such	rules	as	it	
would	surely	miss	 some	 important	context	or	other	 information.	 In	practice,	a	human	would	 just	
observe	many	examples	until	 they	could	understand	what	 to	do	at	a	conceptual	 level.	Teaching	a	
computer	 is	no	different.	The	key	 is	 to	 first	obtain	 the	 right	 representation	which	can	enable	 the	
computer	to	learn	from	the	observations.		In	recent	years,	deep	learning	has	proven	to	be	a	powerful	
tool	capable	of	learning	a	multi-layer	representation	hidden	in	the	data,	enabling	automatic	feature	
discovery	 that	 saves	 tremendous	 amount	 of	 human	 engineering	 effort.	 In	 this	 work,	 we	 bring	
together	elements	from	automatic	formation	discovery	[16],	imitation	learning	combined	with	deep	
learning	methods	to	learn	complex	relationships	from	high-dimensional	spatiotempotal	sport	data	
domains	such	as	soccer.		

2.2.	Formation	Discovery	and	Deep	Imitation	Learning	Application	
	
As	the	data	comes	from	different	teams	and	players,	
one	key	component	of	the	pre-processing	step	is	role-
alignment	(or	ordering	the	players	 in	a	 form	where	
the	 computer	 can	 quickly	 compare	 strategically	
similar	plays).	We	extract	the	dominant	role	for	each	
player	 from	both	 the	defending	 and	attacking	 team	
based	 on	 the	 centroid	 positions	 throughout	 the	
segment	of	play,	regardless	of	the	nominal	position	of	
such	 player.	 For	 example,	 a	 player	 whose	 nominal	
role	is	central	defender	may		find	himself	occupying	
the	dominant	role	of	a	midfielder	in	certain	sequence	
of	 play.	 Instead	 of	 enforcing	 a	 pre-determined	

formation	onto	the	teams,	the	centroid	positions	for		
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each	sequence	are	automatically	discovered	from	data	by	clustering	each	role,	via	a	linear	assignment	
algorithm,	 to	 a	 role	 centroid	 represented	 by	 a	 mixture	 of	 Gaussian	 distributions,	 in	 a	 way	 that	
maximizes	 the	 self-consistency	 within	 role	 from	 one	 segment	 of	 play	 to	 another	 (resembles	 the	
method	from	[16]).	The	result	is	an	average	formation	across	the	season	closely	resembling	a	4-4-2	
formation.		

As	 soccer	 is	 fundamentally	 a	 spatial	 game,	 one	 would	 expect	 the	 geometric	 relationship	 among	
players	and	the	ball	to	contain	important	semantic	and	strategic	values.	We	form	the	full	input	vector	
to	our	model	by	including	not	only	the	absolute	coordinates	of	players	and	ball,	but	also	the	relative	
polar	coordinates	(distance	and	angle)	of	each	player	towards	the	ball,	goal,	and	the	role	that	we	try	
to	model.	The	 full	 feature	vector	at	each	time	step	contains	geometric	 features	 for	all	 roles	 in	 the	
formation	in	the	form	of	one	mini-block	for	each	role.	These	mini-blocks	are	then	stacked	in	a	fixed	
order	 consistent	with	 role	 alignment.	 In	 order	 for	 the	model	 to	 identify	 one-on-one	 versus	 zone	
coverage,	 we	 also	 indicate	 which	 mini-block	 of	 input	 features	 correspond	 to	 the	 closest	 three	
positions	to	the	role	being	modeled	at	each	time	step.	In	addition,	an	extra	input	vector	indicating	the	
team	identity	is	added	to	the	input.	This	identity	vector	is	useful	for	learning	particular	structural	and	
stylistic	elements	associated	with	different	 teams,	allowing	us	 the	study	 the	 impact	of	 tuning	our	
ghosting	model	to	different	team	styles.		

We	use	recurrent	neural	networks,	a	popular	deep-learning	tool,	to	learn	the	fine-grained	behavior	
model	for	each	role	in	the	formation	in	each	time	step.	A	particular	type	of	recurrent	neural	networks	
called	Long	Short-Term	Memory	(LSTM)	was	used	due	to	its	powerful	ability	to	capture	long-range	
dependencies	in	sequential	data.	The	model	takes	in	a	sequence	of	input	feature	vectors	as	described	
above	and	 the	 corresponding	 sequence	of	 each	player’s	positions	as	output	 labels.	Each	player	 is	
modeled	by	an	LSTM,	which	consists	of	two	hidden	layers	of	networks	with	512	hidden	units	in	each	
layer.	The	role	of	these	hidden	units	is	to	capture	the	information	from	the	recent	history	of	actions	
from	all	players	and	map	the	information	to	the	position	of	the	next	time	step,	in	a	manner	analogous	
to	how	an	AI	program	was	trained	from	data	to	map	the	history	of	the	game	to	the	next	 frame	of	
action	in	Atari	and	Go.		

Using	the	standard	deep	learning	approach,	however,	proves	insufficient	to	learn	a	robust	behavior	
model,	due	to	the	typically	long	temporal	span	of	sequences	of	play	and	sheer	high-dimensionality	of	
the	learning	problem.	Intuitively,	as	with	any	regression	method,	the	model’s	predictions	can	deviate	
from	the	groundtruth	labels.	In	sequential	modeling	settings,	this	deviation	can	compound	over	time	
and	can	lead	to	serious	modeling	errors.	To	address	this	issue,	we	leverage	techniques	from	imitation	
learning.	 The	main	 idea	 is	 that	we	want	 to	 train	 a	model	 that	 can	 learn	 to	 recover	 from	 its	 own	
prediction	mistakes	so	 that	 the	model	can	be	robust	over	 long	sequences	of	decisions.	We	use	an	
imitation	learning	algorithm	that	learns	to	capture	not	only	the	behavior	of	each	role	in	the	team,	but	
also	how	multiple	players	in	each	team	jointly	behave	from	one	frame	to	the	next.	A	full	description	
of	our	machine	learning	approach	is	given	in	the	appendix.	
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3.	Characterization	of	The	Average	Ghosting	Team	

As	a	first	check	to	see	if	our	league-average	model	passes	the	eye-test,	we	deploy	the	trained	model	
on	 held	 out	 sequences	 to	 inspect	 whether	 the	 trained	model	 behaves	 in	 a	 sensible	manner.	We	
observe	 that	 our	 model	 learned	 to	 maintain	 solid	 defensive	 formation	 and	 structure,	 with	 the	
modeled	players	moving	in	a	manner	that	exhibits	spatial	and	formational	awareness.	To	illustrate	
this,	we	show	three	examples	of	play	in	Figure	3.		

In	the	first	example,	the	ghosting	players	(white)	from	Liverpool	move	together	with	the	rest	of	the	
teammates	 (blue)	 in	 pressing	 higher	 up	 the	 pitch	 in	 a	 situation	when	Manchester	 City	 (red)	 just	
regained	 possession	 in	 the	 middle	 of	 the	 field.	 To	 avoid	 clutter,	 we	 display	 only	 the	 ghosting	
trajectories	(in	white)	of	the	five	left	positions	of	the	team.		

	

Figure	3	Examples	of	ghosting	behavior	for	our	“league	average”	model.	

Because	 our	 algorithm	models	 the	 interactions	 between	 teammates,	 our	 ghosted	 players	 exhibit	
high-level	 coherent	 team	 behaviors.	 In	 the	 middle	 panel	 of	 Figure	 3,	 ghost	 player	 number	 5	 of	
Sunderland	broke	from	formation	to	challenge	the	ball	carrier	number	7	of	Aston	Villa	(red).	Ghost	
player	 number	 9	 of	 Sunderland	 swaps	 roles	 with	 ghost	 number	 5	 and	 drops	 back	 to	 mark	 the	
attacking	number	6.		

In	many	situations,	the	behavior	of	the	“league	average”	team	may	be	substantially	different	from	the	
actual	play	such	that	the	outcome	could	be	different.	In	the	right	pane	of	Figure	3,	the	ghosting	player	
number	8	more	proactively	closed	the	passing	lane	that	could	have	prevented	the	shot	on	goal	by	
attacking	number	6	(red),	which	happened	in	reality	due	to	the	fact	that	both	number	5	and	8	from	
QPR	(blue)	drop	more	deeply	and	yielded	open	space.		

3.1	Variance	from	The	Average	Ghosting	by	Positions	and	Team	

We	 can	quantify	how	 the	players	 and	 teams	differ	 from	 the	 “average”	 team.	The	average	 level	 of	
deviation	across	all	players	and	teams	is	about	~4	meters.	To	put	this	number	in	context,	note	that		
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this	is	a	highly	accurate	average	level	of	precision,	as	the	model	has	to	take	into	account	the	arbitrarily	
long	sequence	of	play.		In	contrast,	more	naive	machine	learning	approaches	(that	do	not	account	for	
error	propagation	through	time)	would	suffer	from	very	high	levels	of	prediction	error	(frequently	
in	the	20-30	meters	range).	We	can	further	break	down	the	deviation	into	groups	of	position.	For	the	
defender	positions,	the	majority	of	the	deviations	are	less	than	3	meters	apart	from	the	actual	player	
positions.	The	deviation	increases	as	the	dominant	positions	move	further	up	the	field.	This	reflects	
increasing	level	of	variation	in	how	attack-oriented	players	would	defend.	The	defensive	behavior	of	
a	 striker,	 for	 example,	 could	 change	 significantly	 from	 team	 to	 team	 and	 among	 specific	 players,	
leading	 to	 a	higher	 level	 of	 variance	by	 the	 “average”	 ghosting	positions.	We	 show	 this	deviation	
according	to	position	in	Figure	4.		

	
Figure	4:	Deviation	from	the	average	ghosting	model	by	positions	
(Central	 Defenders	 (green),	 Central	 Midfielders	 (blue)	 and	
Forwards	(red)	

For	our	team	analysis,	we	used	all	20	teams	in	our	
dataset.	 As	 we	 can	 not	 disclose	 the	 specific	
performance	 of	 these	 teams,	 we	 denote	 them	 as	
teams	 A-T.	 At	 the	 team	 level,	 this	 variance	 can	
indicate	which	 team	differs	 the	most	 from	average	
behavior	 in	 terms	 of	 defensive	 positioning.	 We	
quantify	this	out	of	position	ratio	by	using	an	80-20	
rule:	a	player	at	any	given	moment	is	considered	out	
of	position	if	his	deviation	from	his	ghost	is	in	excess	
of	the	80th	percentile	of	the	entire	league	average.	A	
breakdown	 of	 this	 tendency	 gives	 us	 a	 sense	 of	

which	teams	use	non-conventional	formations.	In	Figure	5,	the	teams	are	sorted	by	the	total	number	
of	goals	conceded	over	the	season	in	an	increasing	order.	We	analyzed	each	team’s	behavior	via	two	
groups:	 i)	 “back	 line”	 positions	 (backs),	 and	 ii)	 “front	 line”	 positions	 (midfielders	 and	 forwards).	
While	 this	 positioning	 variance	 is	 only	 one	part	 of	 the	whole	picture,	 note	 that	 both	 the	 top	 and	
bottom	teams	in	the	league	in	terms	of	the	goal	conceded	were	the	two	outliers.	For	the	top	team,	the	

deviation	 may	 come	 in	 part	 from	 the	 attack-
oriented	 positions	 (wingers	 and	 forwards)	
exhibiting	 a	wider	 range	 of	movement	 relative	 to	
other	 teams.	 In	 the	 case	of	 the	bottom	 team,	who	
ended	 the	 season	 with	 a	 relegation,	 both	
dominantly	defensive	and	offensive	players	tend	to	
drift	far	from	the	league	average.			

	

Figure	 5:	 The	 out	 of	 position	 frequency	 (large	 deviations)	 by	
team	for	both	the	back	and	forward	positions.	Teams	are	ordered	
from	 left	 to	 right	 sorted	 by	 the	 overall	 goals	 conceded	 in	 the	
entire	season		
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3.2	Expected	Goal	Value	of	Ghosting	Team	

A	natural	use	case	for	ghosting	is	to	study	how	hypothetical	scenarios	may	unfold,	i.e.,	counterfactual	
reasoning.	In	addition	to	qualitative	assessments	of	ghosting,	we	also	wish	to	quantitatively	assess	
the	effect	of	alternative	defensive	reactions	to	the	same	situation.	As	a	case	study,		we	analyzed	safety-
critical	play	sequences,	such	as	goal	scoring	opportunities,	to	see	how	the	play	may	be	altered	via	
ghosting	to	improve	the	defensive	positioning.		
	
To	 analyze	 the	 goal	 scoring	 opportunities,	 we	 extracted	 shot	 events	 from	 the	 entire	 season.	
Concretely,	we	focussed	on	the	10-second	segments	leading	up	to	an	open-play	shot	event,	either	on	
or	off	target	(we	did	not	use	penalties,	free-kicks,	set	pieces,	and	game	sequences	with	less	than		
11	players	from	either	side).	We	quantified	the	performance	of	each	model	using	the	Expected	Goal	
Value	(EGV)	metric	[3],	which	can	estimate	the	goal	scoring	probability	of	each	shot	based	on	the	
recent	player	and	ball	positions	and	events.	Similar	to	the	setup	in	Figure	1,	for	each	shot	sequence,	
the	average	ghost	is	initialized	by	the	current	positions	of	the	defensive	players	only	for	the	very	first	
frame,	and	the	sequence	is	unfolded	thereafter	by	running	the	ghosting	model	across	the	remaining	
time	steps.	Note	that	all	other	factors	of	the	given	sequence	remained	unchanged	(attacking	player	
positions	and	ball	movement).	At	the	end	of	the	sequence,	the	expected	goal	probability	is	calculated	
based	on	the	collective	behavior	of	the	ghosting	team.	The	overall	EGV	is	the	sum	of	expected	goal	

values	over	all	sequences.		
	
The	expected	performance	of	the	league	average	team	versus	the	
actual	outcomes	are	shown	in	Table	1.	The	EGV	from	open-plays	
shot	 events	 improved	 compared	 to	 the	 total	 numbers	 of	 goals	
conceded	from	all	20	teams	(EGV	of	474	on	actual	goal	count	of	
494	from	open-plays),	primarily	due	to	the	“league	average”	team	
able	to	lower	the	scoring	chance	against	several	of	the	weakest	
teams	in	the	league	(team	I,	J,	K,	L	and	T).	
	
4.	Quantifying	the	Effect	of	Team	Style	
	
Analysts	and	coaches	often	want	to	compare	team	performance	
with	not	just	the	league	average,	but	also	with	specific	teams	and	
certain	 characteristics	 (attack-oriented,	 possession-based	 etc.).	
Doing	so	at	a	fine-grained	level,	however,	 is	difficult	and	nearly	
impossible	with	discrete	statistics.	Our	ghosting	system	provides	
a	way	to	not	only	model	the	expected	trajectory	of	each	player,	
but	 also	 incorporate	 the	 ability	 to	 impose	 stylistic	 elements	 of	
specific	 teams	 in	 order	 to	 answer	 the	 question:	 how	 would	
different	teams	react	to	the	same	situation?		
	
To	address	this	question,	we	employed	techniques	from	machine	
learning	 for	 domain	 adaptation.	 Intuitively,	 by	 taking	 an	 extra	
vector	indicating	the	identity	of	the	team	as	input	to	the	model,	
our	deep-learning	based	model	can	extract	elements		
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relevant	to	each	team’s	playing	style	(such	as	spatial	arrangement,	aggressiveness	etc.).	In	any	given	
ghosting	scenario,	the	“average”	team	model	can	then	be	adapted	to	the	playing	style	of	any	team	in	
the	league	by	changing	the	team	identity	vector,	thus	allows	simulating	how	the	ghost	team	playing	
with	a	different	team	style	would	fare	under	the	same	scenarios.	This	is	analogous	to	recent	deep	
learning	advances	in	style	transfer,	where	the	stylistic	elements	from	paintings	and	pictures	can	be	
extracted	with	a	data	set	consisting	of,	for	example,	Van	Gogh’s	works,	so	that	Van	Gogh’s	painting	
style	can	be	transferred	to	other	images	[15].		
	
We	study	how	different	styles	can	impact	the	defensive	performance,	compared	to	the	average	model.	
With	domain	adaptation,	 the	average	model	 can	 take	on	 the	 identities	of	each	of	20	 teams	 in	 the	
league,	on	all	6020	open-play	shot	events	across	the	entire	season.	We	then	compare	how	the	average	
ghosting	team	and	team-specific	ghosts	perform	relative	to	the	actual	outcomes,	and	to	each	other.		
	

	
Figure	6	The	effect	of	assigning	different	team	styles	to	average	ghosting	model	in	terms	of	total	expected	goal	values	over	
season’s	open-play	shots	(green)	vs.	total	actual	number	of	goals	conceded	by	each	team	(blue)	

Our	results	are	summarized	in	Figure	6.		Interestingly,	notice	the	difference	in	defensive	performance	
of	 each	 team	 style.	 Since	 all	 other	 factors	 are	 controlled,	 the	 difference	 in	 overall	 expected	 goals	
conceded	can	be	attributed	to	different	defending	styles.		We	observe	a	61.8%	correlation	between	
the	total	EGV	coming	 from	different	ghosting	styles	with	the	overall	number	of	goals	conceded	 in	
reality.	While	luck	and	individual	skills	matter	for	any	team,	team	F’s	defensive	performance	seems	
attributable	 to	 an	 efficient	 defensive	 formation	 (4-5-1	 pressing	 system	 under	 a	 new	 coach.	 The	
formation	discovery	method	of	Section	2.2	applied	to	team	F	also	indicates	they	frequently	play	with	
5	midfielders,	with	the	variance	of	midfielders’	movements	higher	than	the	rest	of	the	league).	During	
the	actual	season,	team	F	also	possessed	the	second-lowest	goal	conceded	per	open-play	opportunity	
in	the	league	(calculated	from	Table	1),	a	statistic	consistent	with	the	efficiency	of	team	F’s	ghost.	Of	
course,	this	is	only	one	piece	of	the	defensive	equation,	since	shot	events	in	isolation	do	not	reflect	
how	teams	organize	their	defense	long	prior	to	the	shot	opportunity.		In	addition,	EGV	for	this	type	
of	situation	is	not	perfect,	since	it	does	not	capture	the	possibility	of	defensive	ghosts	terminating	the	
shot	 opportunity	 altogether.	 Nonetheless,	 ghosting	 to	 different	 teams	 in	 this	manner	 is	 a	 still	 an	
interesting	and	novel	way	to	compare	defensive	behaviors	across	teams	on	an	equal	footing,	without	
relying	on	disparate	statistics	coming	from	different	games	and	scenarios.		
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The	 approach	 we	 described	 thus	 far	 is	 a	 data-efficient	 way	 to	 extract	 “personalized”	 strategic	
elements	 from	different	 teams	 to	 facilitate	both	modeling	and	evaluation.	We	emphasize	 that	our	
approach	is	general	and	can	be	applied	to	modeling	not	just	the	average	team	in	the	league,	but	also	
team-specific	models	(assuming	sufficient	tracking	data).		
	
5.		Example	of	The	Dynamics	of	Ghosting	
	
Now	that	we	have	a	better	idea	of	how	our	ghosting	method	works,	and	how	the	“league	average”	
model	varies	to	a	specific	team’s	model,	we	can	revisit	the	example	shown	in	Figure	1	and	break-
down	this	play	in	greater	detail		(a	separate	video	highlighting	many	different	scenarios	is	available	
at	http://www.disneyresearch.com/publication/data-driven-ghosting).	
	
As	before,	we	consider	the	sequence	of	play	between	Fulham	(Red,	attacking	from	left)	and	Swansea	
(Blue,	defending	on	right).	We	compare	what	Swansea	actually	did	with	that	of	the	league	average	
ghosts	(LAG	-	white,	top)	and	the	Manchester	City	ghosts	(MCG	-	white,	bottom).	The	ball	trajectories	
are	in	yellow.	Note	that	we	do	not	model	goal-keeper	positions,	which	are	highlighted	(number	1).	
To	avoid	clutter,	we	suppress	irrelevant	trajectories	to	highlight	key	players	and	dynamics.	

 
Figure	7	Example	of	the	dynamics	of	ghosting	across	a	play	sequence	by	two	different	ghosting	styles.	 
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The	actual	scenario	resulted	in	a	goal	scored	against	Swansea	after	a	rebound	from	a	counter-attack	
by	Fulham.	As	mentioned	in	the	previous	section,	both	ghosting	models	were	initialized	with	the	
actual	positions	of	Swansea	players	in	the	first	frame.	The	ghosting	system	takes	over	and	makes	
decision	in	real-time	about	how	each	player	should	position	himself	for	every	frame	thereafter.	 
	
Red#6	 and	 Red#7	 open	 the	 counter-attack	 with	 a	 “give-and-go	 pass”	 to	 get	 behind	 Blue#4	 and	
Blue#7.	In	stage	1(left	column),	both	LAG	and	MCG	behave	similarly	as	the	play	unfolds,	and	closely	
resemble	the	actual	Swansea	defense.	The	only	exception	is	LAG#8.	Compared	to	Blue#8	and	
MCG#8,	 LAG#8	 proactively	 challenges	 the	 dribble	 by	 Red#6,	who	 in	 reality	 drew	 in	 Blue#5	 and	
created	a	wide-open	pass	to	Red#10,	leading	into	stage	2	(middle	column).	This	is	the	key	moment	
in	 the	 play.	 In	 the	 actual	 sequence,	 Red#10	 is	 left	 unmarked	 and	 gets	 an	 uncontested	 shot	 on	
goalkeeper	Blue#1.	Here	both	MCG#5	and	LAG#5	positioned	themselves	further	back	and	were	able	
to	get	to	Red#10	in	time	to	contest	the	shot.	Such	attempt	hypothetically	could	have	prevented	the	
rebound	that	led	to	the	goal.	As	the	sequence	of	events	unfold	to	stage	3,	the	rebound	found	Red#9,	
who	is	left	uncovered	by	actual	Blue#9,	leading	to	the	goal	(right	column).	The	nuanced	difference	in	
positioning	by	MCG#2	and	LAG#2	ended	up	making	a	major	difference	in	the	scoring	chance.	Similar	
to	Blue#2,	LAG#2	failed	to	cover	Red#9.	MCG#2,	however,	rushed	back	deeper	into	the	backline	from	
earlier	moments	of	the	attack	and	was	in	a	position	to	contest	the	shot	on	the	open	net,	and	could	
have	 covered	 for	 an	 attempt	 by	 both	 Red#7	 and	 Red#9.	 The	 end	 result	was	 a	 reduction	 in	 goal	
probability	from	~70%	(both	actual	sequence	and	LAG	sequence)	to	~40%	by	MCG.		
	
The	fine-grained	simulation	and	evaluation	of	defensive	scenarios	presented	here	would	not	have	
been	possible	using	only	discrete	statistics	as	popularly	used	in	sport	analytics.	Our	method	is	also	
general	 and	 has	 a	 rich	 potential	 to	 enable	 team-specific	 modeling	 for	 both	 coaching	 and	 media	
analysis	purposes.		
	
6.		Summary	
	
The	ongoing	explosion	of	tracking	data	has	now	made	it	possible	to	apply	powerful	modern	machine	
learning	 techniques	 to	build	 increasingly	 fine-grained	models	of	player	and	 team	behavior.	 	With	
data-driven	ghosting,	we	 can	now,	 for	 the	 first	 time,	 scalably	quantify,	 analyze	and	 compare	 fine-
grained	defensive	behavior.		In	this	paper,	we	have	demonstrated	the	value	of	our	approach	in	a	range	
of	case	studies.		We	emphasize	that	our	approach	is	also	applicable	to	sports	beyond	soccer,	such	as	
basketball	and	football.	
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Appendix	
	
Data	Preparation	
	
Due	to	the	lack	of	high	quality	annotated	data,	we	focused	on	a	third	of	the	season	worth	of	matches	
(~100	games).	For	the	purpose	of	modeling	soccer	defense,	we	further	segment	the	game	events	
into	possession	sequences.	A	team	is	defined	to	be	in	a	defensive	situation	when	it	is	not	in	control	
of	the	ball.	A	defensive	sequence	is	terminated	when	a	goal	is	scored	against	the	defending	team,	
the	ball	gets	out	of	the	pitch,	dead-ball	events	occur	(e.g.	foul,	off-side),	or	the	defensive	team	
regains	possession	of	the	ball	after	having	2	consecutive	touches.	This	pre-processing	step	results	
in	approximately	17400	sequences	of	attacking-defending	situations	(~3	million	frames	at	10	
frames	per	second).		

One	key	component	of	the	pre-processing	of	the	data	is	role-alignment.	Role-alignment	is	necessary	
for	reducing	the	dimensionality	of	the	learning	problem,	essentially	providing	additional	context	to	
impose	ordering	on	the	training	input.	At	the	simplest	level,	one	can	view	the	learning	problem	as	a	
mapping	from	the	previous	positions	of	22	players	and	the	ball,	to	the	position	of	a	particular	player	
at	the	current	time	step.	One	key	issue	with	learning	this	kind	of	mapping	without	imposing	an	
ordering	is	that	the	data	requirement	to	learn	a	“permutation-invariant”	behavior	will	need	to	
increase	by	a	factor	of	billions	((10!)2	specifically).	To	reduce	this	data	burden,	we	first	extract	the	
dominant	role	for	each	player	from	both	the	defending	and	attacking	team	based	on	the	centroid	
position	throughout	the	segment	of	play,	regardless	of	the	nominal	position	of	such	player.	As	such,	
a	player	whose	nominal	role	is	central	defender	may	find	himself	occupy	the	dominant	role	of	a	
midfielder	in	certain	sequence	of	play.	The	league	average	approximates	a	4-4-2	formation.	In	each	
segment	of	possession,	we	order	the	training	data	based	on	the	dominant	roles,	where	the	
assignment	of	role	attempts	to	match	this	average	4-4-2	formation,	using	the	Hungarian	algorithm	
(for	minimum	cost	assignment,	where	cost	measure	the	distance	of	each	role	to	each	of	the	10	
possible	Gaussian	distributions	of	spatial	coverage	learned	from	data).			

	

Figure	8	State	feature	vector	extracted	from	an	ordered	list	of	player	position	at	each	time	step	
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As	soccer	is	a	spatial	game,	one	would	expect	the	geometric	relationship	among	players	and	the	ball	
to	contain	important	semantic	and	strategic	values.	We	form	the	full	input	vector	for	the	purpose	of	
training	by	including	not	only	the	absolute	coordinates	of	players	and	ball,	but	also	the	relative	
polar	coordinates	of	each	player	towards	the	ball,	goal,	and	the	role	that	we	try	to	model.	Figure	1	
describes	the	structure	of	a	full	input	vector	at	each	time	step.	Here	the	role	being	model	is	the	left	
back	position.	The	full	input	feature	vector	representing	the	left	back	position	consist	of	mini-blocks	
of	features	for	each	role	from	the	defending	and	attacking	team,	sorted	by	a	fixed	order.	The	mini-
block	for	the	goal-keeper,	for	example,	contains	absolute	position	and	velocity,	the	distance	and	
angle	relative	to	the	left-back	position,	the	distance	and	angle	of	the	goal-keeper	to	the	defending	
goal,	and	the	distance	and	angle	to	the	ball	at	the	current	time	step.	In	addition	to	stacking	the	mini-
blocks	of	features	together,	we	also	duplicate	the	features	from	the	mini-blocks	corresponding	to	
the	closest	3	positions	to	the	left-back	at	each	time	steps.	This	results	in	a	full	input	feature	of	
dimension	399	for	each	role	at	each	frame.	We	call	this	input	vector	the	state	feature	vector	for	each	
role.		

Deep	Multi-agent	Imitation	Learning	
The	imitation	learning	task	is	to	map	the	state	feature	vector	at	each	time	step	to	the	corresponding	
action	of	the	player	being	model,	where	action	is	defined	as	the	player	position	at	the	following	time	
steps.	In	principle,	this	is	an	online	sequence	prediction	problem,	where	the	model	outputs	action	of	
a	player	conditioned	on	the	state	of	such	player,	as	represented	by	the	recent	history	of	actions	of	
the	modeled	player,	as	well	as	other	players.	A	natural	candidate	to	address	such	online	sequence	
prediction	problem	is	recurrent	neural	networks	(RNN).	A	particularly	popular	class	of	RNNs,	Long	
Short-Term	Memory	(LSTM)	has	been	successfully	used	in	recent	deep	learning	applications	such	
as	machine	translation,	speech	recognition,	handwriting	synthesis,	etc.	Two	major	differences	
between	our	setting	and	previous	applications	of	LSTM	are	(i)	players	need	to	make	decision	in	
real-time,	rendering	the	popular	encoder-decoder	approach	to	sequence-to-sequence	modeling	
impractical	(ii)	our	learning	set-up	belongs	to	the	class	of	dynamical	system	learning	where	action	
could	alter	subsequent	state	distribution,	potentially	causing	a	mismatch	between	training	and	
inference	that	could	severely	limit	the	performance	of	traditional	LSTM	models.		

	
Figure	9	Example	of	phase	1	of	algorithm	with	k=2	
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Our	proposed	method	jointly	combines	training	and	inference	to	address	both	of	these	issues.	This	
method	simulates	online	prediction	in	an	offline	fashion,	while	allowing	the	model	to	gradually	
learn	longer-range	prediction.	Phase	1	of	the	algorithm	learns	a	model	for	each	of	the	10	roles	of	the	
“average”	defending	team	(see	figure	9	for	an	illustration).	In	phase	2,	we	used	these	pre-trained	
models	learned	from	phase	1	to	scale	up	the	training	of	single	player	into	joint	training	of	multiple	
players	to	model	collaborative	multi-agent	learning	(figure	10	showcases	the	joint	training	of	2	
players).	

Deep	Imitation	Learning	Algorithm:	
To	describe	our	learning	algorithm	in	more	details,	we	generically	denote	a	sequence	of	state-action	
pairs	as	{(s0,a0),	(s1,a1),…,(sT,aT)}.	We	use	T=50	in	for	our	ghosting	application	to	soccer	defense.		

Phase	1:	Learn	single	player	model	for	each	role	j	in	{1,2,..,10}	
o Initialize	a	recurrent	network	model	given	the	ground-truth	data	set	{(s0,a0),	

(s1,a1),…,(sT,aT)}	for	a	few	iterations	
o For	k	=	1,2,…,T:	

▪ For	t	=	0,	k,	2k,..,	T:	
● For	i	=	0,1,..,k-1:	

o Apply	the	model	to	st+i	to	obtain	action	a’t+i	
o Use	the	action	a’t+i	to	update	the	next	state	st+i+1	(similar	to	

structure	in	figure	1	with	the	new	action	a’t+i)	
● For	i	=	0,1,…,k-1:	

o Use	the	loss	between	prediction	a’t+i	and	ground	truth	action	at+i	
to	update	the	recurrent	network	model	using	stochastic	gradient	
descent	

Phase	2:	Learn	multi	player	model	simultaneously	for	all	role	j	in	{1,2,..,10}	
o For	k	=	1,2,…,T:	

▪ For	t	=	0,k,2k,…,T:	
● For	i	=	0,1,…,k-1:	

o Apply	the	previously	trained	models	for	each	role	j	to	state	
vector	s(j)t+i	to	obtain	action	a’(j)t+i	

o Using	predicted	action	a’(j)t+i	to	update	state	feature	vector	for	the	
next	time	step	s(j)t+i+1	for	role	j	and	s(j’)t+i+1	for	all	other	role	j’	

● For	i	=	0,1,…,k-1:	
o Use	the	loss	between	prediction	a’(j)t+i	and	ground	truth	action	

a(j)t+i	to	update	the	recurrent	network	model	for	role	j	using	
stochastic	gradient	descent	
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Figure	10	Illustration	of	phase	2	of	algorithm	with	2	players	and	k=1	

	

	


