Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2015 | metadata_only
Book Section - Chapter

Hybrid Scheduling/Signal-Level Coordination in the Downlink of Multi-Cloud Radio-Access Networks


In the context of resource allocation in cloud- radio access networks, recent studies assume either signal-level or scheduling-level coordination. This paper, instead, considers a hybrid level of coordination for the scheduling problem in the downlink of a multi-cloud radio- access network, so as to benefit from both scheduling policies. Consider a multi-cloud radio access network, where each cloud is connected to several base-stations (BSs) via high capacity links, and therefore allows joint signal processing between them. Across the multiple clouds, however, only scheduling-level coordination is permitted, as it requires a lower level of backhaul communication. The frame structure of every BS is composed of various time/frequency blocks, called power- zones (PZs), and kept at fixed power level. The paper addresses the problem of maximizing a network-wide utility by associating users to clouds and scheduling them to the PZs, under the practical constraints that each user is scheduled, at most, to a single cloud, but possibly to many BSs within the cloud, and can be served by one or more distinct PZs within the BSs' frame. The paper solves the problem using graph theory techniques by constructing the conflict graph. The scheduling problem is, then, shown to be equivalent to a maximum- weight independent set problem in the constructed graph, in which each vertex symbolizes an association of cloud, user, BS and PZ, with a weight representing the utility of that association. Simulation results suggest that the proposed hybrid scheduling strategy provides appreciable gain as compared to the scheduling-level coordinated networks, with a negligible degradation to signal-level coordination.

Additional Information

© 2015 IEEE. Hayssam Dahrouj would like to thank Effat University in Jeddah Saudi Arabia, for funding the research reported in this paper through the Research and Consultancy Institute. The work of M.-S. Alouini was supported by the Qatar National Research Fund (a member of Qatar Foundation) under NPRP Grant NPRP 5-250-2-087. The statements made herein are solely the responsibility of the authors. The authors would like to acknowledge the support provided by King Fahd University of Petroleum and Minerals (KFUPM) and King Abdullah University of Science and Technology (KAUST) for funding this work through the Research Institute project number EE002355.

Additional details

August 20, 2023
August 20, 2023