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Effect of Atmospheric Contamination
To explore the effect of exposing these small-scale Li samples to
atmosphere, we placed a representative 4.80-μm-diameter pillar
in air for 30 s and then compressed it. Fig. S2A shows the yield
strength to be ∼200 MPa, after which the sample catastrophi-
cally failed, which is approximately four times higher than the
∼50-MPa yield strength of a typical unoxidized Li sample of
similar size. The initial loading stiffness is also much higher in
the oxidized sample. This is likely due to the immediate forma-
tion of LiOH, Li2O, and Li3N, which would have greater strength
compared with Li. Postcompression image shown in Fig. S2B
clearly reveals charging of the pillar, consistent with the formation
of insulating oxides through a significant portion of the pillar.
Under our careful transfer protocol involving the Vacushut
device, the surface contamination is kept to a minimum to the
point that it does not significantly influence the mechanical
properties of the pillars. This can be seen from the elastic
modulus values we obtained from our unloading data. Based on
our calculations, the expected range for the elastic modulus is
3–21.1 GPa, and the average elastic modulus obtained from
our unloading data, across all pillar sizes, is 5.28 GPa. We
found the average elastic modulus of pillars with diameters below
2 μm to be 5.48 GPa, and that for the samples with diameters larger
than 4 μm is 5.15 GPa. This suggests that the average elastic
modulus that we measured remains virtually equivalent for small
and large pillars.

Identifying the Crystal Orientation of Pillars
After compression, we transferred the Li sample to another SEM
(Zeiss; 1550VP FESEM) to determine the crystallographic ori-
entations of each pillar using electron backscatter diffraction
(EBSD). This was done postcompression because the Vacushut is
not compatible with the Zeiss SEM, and therefore the sample
must be removed from the Vacushut and temporarily exposed to
air before doing EBSD. From the previous discussion, we know
that exposing Li to atmosphere even for 30 s caused significant
oxidation, and therefore identifying the crystal orientation before
the fabrication of pillars using FIB is not an option. We show the
grain structure of melted and then subsequently cooled down Li
metal in Fig. S3 A and B. EBSD was conducted on a blade-cut
surface showing a mirror finish. Chemical polishing has been
unsuccessful in further smoothing the surface. Nash and Smith
(42) found that methanol was the best etchant for Li metal, and
that repeated actions of etching in methanol for a few seconds,
and then rinsing in xylene, would allow for visual observation of
grain boundaries. However, this process must be done in the
open air. If the same procedure was followed in an Ar atmo-
sphere, a white crust forms on the surface of Li as soon it is
removed from methanol. This is exactly what we have found in
our studies. Ethanol and isopropanol was also used to no avail.
Preparation of Li metal outside the glovebox, although it may
allow for visual observation of grain boundaries, introduces an
oxide layer that makes it impossible to characterize the un-
derlying Li using EBSD. Therefore, EBSD was conducted on an
as-cut lithium metal surface, where the roughness prohibited
indexing of certain regions. Regardless, the indexed points are
sufficient in indicating the average grain size of our lithium
sample, around 250 ± 86 μm, as shown in Fig. S3 A and B. The
fact that our pillars, with diameters less than 10 μm, are much
smaller than the average grain size leads us to conclude that our
pillars are single crystalline. This assumption is often used in the
nanomechanical community when studying polycrystalline ma-

terial (43). An instance of this is shown in Fig. S3C. In some
instances, however, it is difficult to identify which particular grain
the pillars belong to, as shown in Fig. S3D. In these cases, to
obtain the crystal orientation of pillars to calculate the Schmidt
factor, we used the relation between the elastic modulus of a
particular grain and its Miller indices as given below (44):
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where h, k, and l are the miller indices of the respective grain;
S11, S12, and S44 are the elements of the compliance matrix; and
Ehkl is the orientation-dependent elastic modulus. Ehkl is
obtained from the uniaxial compliance measured from unload-
ing. The top one-third of the unloading curve, starting at the
point of maximum depth, is linearly fitted and the slope is taken
to be E. Elements of the compliance matrix are calculated from
the elastic constants (17, 18, 42). The symmetry of Eq. S1 pre-
vents us from uniquely identifying the exact sequence and sign of
the h, k, and l values; however, the maximum Schmidt factor is
the same for every permutation.

Effect of Ga+ Implantation
Indentations are performed on FIB’d and as-cut Li surfaces. Ion
beam with a 30-nA current was used to polish the surface of as-
cut Li at a grazing angle. We performed nanoindentations to a
depth of up to 3 μm to match the deforming indentation volume
to that of the pillars. The load vs. displacement data are for the
FIB-polished and as-cleaved Li surfaces is shown in Fig. S4 and
reveals that these surface treatments lead to statistically indis-
tinguishable mechanical properties. These results are consistent
with multiple previous reports, which demonstrated that FIB
irradiation did not significantly affect the strength and de-
formation of metallic micropillars and nanopillars (34, 45).

Calculating the Average Shear Modulus of a Single Crystal
Turley and Sines (46) gave the general expression for the shear
modulus of a single crystal below:
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where s11, s12, and s44 are elements of the compliance matrix, and
Ω is the angle dependence as defined below:

Ω= a+ b sin 2θ+ c cos 2θ, [S3]

where a, b, and c are linear combinations of the directional
cosines of (hkl). It is clear that when Eq. S3 is averaged over
2π with respect to Θ, the sinusoidal terms disappear. The expres-
sion for a is given as follows:

a=A2B2 +C2D2, [S4]

where

A= cos α cos β
B= sin α cos β
C= sin β
D= cos β,

[S5]
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A schematic is provided in Fig. S5.

Density Functional Theory Calculations
The lattice constant at each temperature was calculated by free-
energy minimization and the vibrational contribution to free
energy was calculated at each of the temperatures using the
method described below.
We express the free energy F in terms of the strain state at a

constant volume as follows (47, 48):
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where F0 denotes the free energy at zero strain. We used volume-
conserving orthorhombic strain and monoclinic strains for cubic
crystals (47). The volume-conserving orthorhombic strain is
given by the following:
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In this case, the free-energy change is an even function of the
strain and is given by the following:
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This allows the determination of the elastic constant C11 −C12. In
a similar fashion, volume-conserving monoclinic strain is given
by the following:
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In this case, the resulting free-energy change is again an even
function of the strain given by the following:
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This allows us to calculate the elastic constant C44.
To isolate the individual elastic constants, C11 and C12, we used

the relationship B= ðC11 + 2C12Þ=3, where B is the bulk modulus,
calculated by fitting Birch–Murnaghan equation of state to the
free-energy variation with volume obtained from the density
functional theory calculations (49).
We account for the free-energy contribution due to lattice

vibrations using the quasiharmonic approximation, where the
total free energy for a cubic crystal can be written as follows
(35, 50):

FðV ,TÞ=EðV Þ− kBT lnZðV ,TÞ, [S12]

where E is the energy of the frozen lattice at volume V, kB is the
Boltzmann constant, and Z is the partition function associated
with the vibrations at temperature T (35). We consider only the
phonon vibrational contributions, which can be expressed in
terms of the phonon vibrational frequencies ω and density of
states gðω,V Þ, given by the following:
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Fig. S1. Schematic of SEMentor. Based on Lee et al. (22). Modifications were made to his original system to achieve above room temperature testing.
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Fig. S2. Compression results of oxidized an unoxidized pillar. (A) Engineering stress vs. engineering strain data of the compression of a 4.8-μm oxidized pillar,
comparing with the data of a 4.17-μm unoxidized pillar. The first strain burst during loading is due to cracks formed via oxidation. (B) Postcompression image
of the oxidized pillar. White parts due to the charging effective of nonconductive material.

Fig. S3. Crystal grain map of Li substrate with pillars postcompression. (A and B) Orientation imaging microscopy map generated by EBSD showing the
annealed and as-cut surface of the Li sample, with grain size 250 ± 86 μm. (C and D) SEM image of pillars postcompression overlaid with orientation mapping.
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Fig. S4. Load-controlled indentation of Li metal with a cleaved surface (red) and FIB-polished surface (blue). The conditions for the FIB are 30-keV acceleration
voltage and 30-nA current.

Fig. S5. A single-crystalline pillar situated within a crystal grain with normal in the direction of <hkl>. The different colored regions indicate different crystal
grains imbedded in a polycrystalline Li metal foil. <h′k′l′> is a transverse direction in the (hkl) plane. Θ is the angle between <h′k′l′> and the meridional
tangent (indicated by the dashed line). For the definition, please refer to Turley and Sines (46).
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Fig. S6. In-plane directional dependence of the elastic modulus of Li in (100) plane (A), (111) plane (B), and (110) plane (C). The same dependence is plotted
for the shear modulus in (100) plane (D), (111) plane (E), and (110) plane (F).

Xu et al. www.pnas.org/cgi/content/short/1615733114 5 of 5

www.pnas.org/cgi/content/short/1615733114

