Improved Limits on Lepton-Flavor-Violating
Decays to
‘
,
‘
,
‘K
, and
‘
K
B. Aubert,
1
Y. Karyotakis,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
X. Prudent,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
M. Martinelli,
3a,3b
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
M. Battaglia,
5
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
K. Tackmann,
5
T. Tanabe,
5
C. M. Hawkes,
6
N. Soni,
6
A. T. Watson,
6
H. Koch,
7
T. Schroeder,
7
D. J. Asgeirsson,
8
B. G. Fulsom,
8
C. Hearty,
8
T. S. Mattison,
8
J. A. McKenna,
8
M. Barrett,
9
A. Khan,
9
A. Randle-Conde,
9
V. E. Blinov,
10
A. D. Bukin,
10,
*
A. R. Buzykaev,
10
V. P. Druzhinin,
10
V. B. Golubev,
10
A. P. Onuchin,
10
S. I. Serednyakov,
10
Yu. I. Skovpen,
10
E. P. Solodov,
10
K. Yu. Todyshev,
10
M. Bondioli,
11
S. Curry,
11
I. Eschrich,
11
D. Kirkby,
11
A. J. Lankford,
11
P. Lund,
11
M. Mandelkern,
11
E. C. Martin,
11
D. P. Stoker,
11
S. Abachi,
12
C. Buchanan,
12
H. Atmacan,
13
J. W. Gary,
13
F. Liu,
13
O. Long,
13
G. M. Vitug,
13
Z. Yasin,
13
L. Zhang,
13
V. Sharma,
14
C. Campagnari,
15
T. M. Hong,
15
D. Kovalskyi,
15
M. A. Mazur,
15
J. D. Richman,
15
T. W. Beck,
16
A. M. Eisner,
16
C. A. Heusch,
16
J. Kroseberg,
16
W. S. Lockman,
16
A. J. Martinez,
16
T. Schalk,
16
B. A. Schumm,
16
A. Seiden,
16
L. O. Winstrom,
16
C. H. Cheng,
17
D. A. Doll,
17
B. Echenard,
17
F. Fang,
17
D. G. Hitlin,
17
I. Narsky,
17
T. Piatenko,
17
F. C. Porter,
17
R. Andreassen,
18
G. Mancinelli,
18
B. T. Meadows,
18
K. Mishra,
18
M. D. Sokoloff,
18
P. C. Bloom,
19
W. T. Ford,
19
A. Gaz,
19
J. F. Hirschauer,
19
M. Nagel,
19
U. Nauenberg,
19
J. G. Smith,
19
S. R. Wagner,
19
R. Ayad,
20,
†
A. Soffer,
20,
‡
W. H. Toki,
20
R. J. Wilson,
20
E. Feltresi,
21
A. Hauke,
21
H. Jasper,
21
T. M. Karbach,
21
J. Merkel,
21
A. Petzold,
21
B. Spaan,
21
K. Wacker,
21
M. J. Kobel,
22
R. Nogowski,
22
K. R. Schubert,
22
R. Schwierz,
22
A. Volk,
22
D. Bernard,
23
G. R. Bonneaud,
23
E. Latour,
23
M. Verderi,
23
P. J. Clark,
24
S. Playfer,
24
J. E. Watson,
24
M. Andreotti,
25a,25b
D. Bettoni,
25a
C. Bozzi,
25a
R. Calabrese,
25a,25b
A. Cecchi,
25a,25b
G. Cibinetto,
25a,25b
E. Fioravanti,
25a,25b
P. Franchini,
25a,25b
E. Luppi,
25a,25b
M. Munerato,
25a,25b
M. Negrini,
25a,25b
A. Petrella,
25a,25b
L. Piemontese,
25a
V. Santoro,
25a,25b
R. Baldini-Ferroli,
26
A. Calcaterra,
26
R. de Sangro,
26
G. Finocchiaro,
26
S. Pacetti,
26
P. Patteri,
26
I. M. Peruzzi,
26,
x
M. Piccolo,
26
M. Rama,
26
A. Zallo,
26
R. Contri,
27a,27b
E. Guido,
27a
M. Lo Vetere,
27a,27b
M. R. Monge,
27a,27b
S. Passaggio,
27a
C. Patrignani,
27a,27b
E. Robutti,
27a
S. Tosi,
27a,27b
K. S. Chaisanguanthum,
28
M. Morii,
28
A. Adametz,
29
J. Marks,
29
S. Schenk,
29
U. Uwer,
29
F. U. Bernlochner,
30
V. Klose,
30
H. M. Lacker,
30
D. J. Bard,
31
P. D. Dauncey,
31
M. Tibbetts,
31
P. K. Behera,
32
M. J. Charles,
32
U. Mallik,
32
J. Cochran,
33
H. B. Crawley,
33
L. Dong,
33
V. Eyges,
33
W. T. Meyer,
33
S. Prell,
33
E. I. Rosenberg,
33
A. E. Rubin,
33
Y. Y. Gao,
34
A. V. Gritsan,
34
Z. J. Guo,
34
N. Arnaud,
35
J. Be
́
quilleux,
35
A. D’Orazio,
35
M. Davier,
35
D. Derkach,
35
J. Firmino da Costa,
35
G. Grosdidier,
35
F. Le Diberder,
35
V. Lepeltier,
35
A. M. Lutz,
35
B. Malaescu,
35
S. Pruvot,
35
P. Roudeau,
35
M. H. Schune,
35
J. Serrano,
35
V. Sordini,
35,
k
A. Stocchi,
35
G. Wormser,
35
D. J. Lange,
36
D. M. Wright,
36
I. Bingham,
37
J. P. Burke,
37
C. A. Chavez,
37
J. R. Fry,
37
E. Gabathuler,
37
R. Gamet,
37
D. E. Hutchcroft,
37
D. J. Payne,
37
C. Touramanis,
37
A. J. Bevan,
38
C. K. Clarke,
38
F. Di Lodovico,
38
R. Sacco,
38
M. Sigamani,
38
G. Cowan,
39
S. Paramesvaran,
39
A. C. Wren,
39
D. N. Brown,
40
C. L. Davis,
40
A. G. Denig,
41
M. Fritsch,
41
W. Gradl,
41
A. Hafner,
41
K. E. Alwyn,
42
D. Bailey,
42
R. J. Barlow,
42
G. Jackson,
42
G. D. Lafferty,
42
T. J. West,
42
J. I. Yi,
42
J. Anderson,
43
C. Chen,
43
A. Jawahery,
43
D. A. Roberts,
43
G. Simi,
43
J. M. Tuggle,
43
C. Dallapiccola,
44
E. Salvati,
44
S. Saremi,
44
R. Cowan,
45
D. Dujmic,
45
P. H. Fisher,
45
S. W. Henderson,
45
G. Sciolla,
45
M. Spitznagel,
45
R. K. Yamamoto,
45
M. Zhao,
45
P. M. Patel,
46
S. H. Robertson,
46
M. Schram,
46
A. Lazzaro,
47a,47b
V. Lombardo,
47a
F. Palombo,
47a,47b
S. Stracka,
47a,47b
J. M. Bauer,
48
L. Cremaldi,
48
R. Godang,
48,
{
R. Kroeger,
48
D. J. Summers,
48
H. W. Zhao,
48
M. Simard,
49
P. Taras,
49
H. Nicholson,
50
G. De Nardo,
51a,51b
L. Lista,
51a
D. Monorchio,
51a,51b
G. Onorato,
51a,51b
C. Sciacca,
51a,51b
G. Raven,
52
H. L. Snoek,
52
C. P. Jessop,
53
K. J. Knoepfel,
53
J. M. LoSecco,
53
W. F. Wang,
53
L. A. Corwin,
54
K. Honscheid,
54
H. Kagan,
54
R. Kass,
54
J. P. Morris,
54
A. M. Rahimi,
54
J. J. Regensburger,
54
S. J. Sekula,
54
Q. K. Wong,
54
N. L. Blount,
55
J. Brau,
55
R. Frey,
55
O. Igonkina,
55
J. A. Kolb,
55
M. Lu,
55
R. Rahmat,
55
N. B. Sinev,
55
D. Strom,
55
J. Strube,
55
E. Torrence,
55
G. Castelli,
56a,56b
N. Gagliardi,
56a,56b
M. Margoni,
56a,56b
M. Morandin,
56a
M. Posocco,
56a
M. Rotondo,
56a
F. Simonetto,
56a,56b
R. Stroili,
56a,56b
C. Voci,
56a,56b
P. del Amo Sanchez,
57
E. Ben-Haim,
57
H. Briand,
57
J. Chauveau,
57
O. Hamon,
57
Ph. Leruste,
57
G. Marchiori,
57
J. Ocariz,
57
A. Perez,
57
J. Prendki,
57
S. Sitt,
57
L. Gladney,
58
M. Biasini,
59a,59b
E. Manoni,
59a,59b
C. Angelini,
60a,60b
G. Batignani,
60a,60b
S. Bettarini,
60a,60b
G. Calderini,
60a,60b,
**
M. Carpinelli,
60a,60b,
††
A. Cervelli,
60a,60b
F. Forti,
60a,60b
M. A. Giorgi,
60a,60b
A. Lusiani,
60a,60c
M. Morganti,
60a,60b
N. Neri,
60a,60b
E. Paoloni,
60a,60b
G. Rizzo,
60a,60b
J. J. Walsh,
60a
D. Lopes Pegna,
61
C. Lu,
61
J. Olsen,
61
A. J. S. Smith,
61
A. V. Telnov,
61
F. Anulli,
62a
E. Baracchini,
62a,62b
G. Cavoto,
62a
R. Faccini,
62a,62b
F. Ferrarotto,
62a
F. Ferroni,
62a,62b
M. Gaspero,
62a,62b
P. D. Jackson,
62a
L. Li Gioi,
62a
M. A. Mazzoni,
62a
S. Morganti,
62a
G. Piredda,
62a
F. Renga,
62a,62b
C. Voena,
62a
M. Ebert,
63
T. Hartmann,
63
H. Schro
̈
der,
63
R. Waldi,
63
T. Adye,
64
B. Franek,
64
E. O. Olaiya,
64
F. F. Wilson,
64
S. Emery,
65
L. Esteve,
65
G. Hamel de Monchenault,
65
W. Kozanecki,
65
G. Vasseur,
65
PRL
103,
021801 (2009)
PHYSICAL REVIEW LETTERS
week ending
10 JULY 2009
0031-9007
=
09
=
103(2)
=
021801(7)
021801-1
Ó
2009 The American Physical Society
Ch. Ye
`
che,
65
M. Zito,
65
M. T. Allen,
66
D. Aston,
66
R. Bartoldus,
66
J. F. Benitez,
66
R. Cenci,
66
J. P. Coleman,
66
M. R. Convery,
66
J. C. Dingfelder,
66
J. Dorfan,
66
G. P. Dubois-Felsmann,
66
W. Dunwoodie,
66
R. C. Field,
66
A. M. Gabareen,
66
M. T. Graham,
66
P. Grenier,
66
C. Hast,
66
W. R. Innes,
66
J. Kaminski,
66
M. H. Kelsey,
66
H. Kim,
66
P. Kim,
66
M. L. Kocian,
66
D. W. G. S. Leith,
66
S. Li,
66
B. Lindquist,
66
S. Luitz,
66
V. Luth,
66
H. L. Lynch,
66
D. B. MacFarlane,
66
H. Marsiske,
66
R. Messner,
66,
*
D. R. Muller,
66
H. Neal,
66
S. Nelson,
66
C. P. O’Grady,
66
I. Ofte,
66
M. Perl,
66
B. N. Ratcliff,
66
A. Roodman,
66
A. A. Salnikov,
66
R. H. Schindler,
66
J. Schwiening,
66
A. Snyder,
66
D. Su,
66
M. K. Sullivan,
66
K. Suzuki,
66
S. K. Swain,
66
J. M. Thompson,
66
J. Va’vra,
66
A. P. Wagner,
66
M. Weaver,
66
C. A. West,
66
W. J. Wisniewski,
66
M. Wittgen,
66
D. H. Wright,
66
H. W. Wulsin,
66
A. K. Yarritu,
66
K. Yi,
66
C. C. Young,
66
V. Ziegler,
66
X. R. Chen,
67
H. Liu,
67
W. Park,
67
M. V. Purohit,
67
R. M. White,
67
J. R. Wilson,
67
P. R. Burchat,
68
A. J. Edwards,
68
T. S. Miyashita,
68
S. Ahmed,
69
M. S. Alam,
69
J. A. Ernst,
69
B. Pan,
69
M. A. Saeed,
69
S. B. Zain,
69
S. M. Spanier,
70
B. J. Wogsland,
70
R. Eckmann,
70
J. L. Ritchie,
70
A. M. Ruland,
71
C. J. Schilling,
71
R. F. Schwitters,
71
B. C. Wray,
71
B. W. Drummond,
72
J. M. Izen,
72
X. C. Lou,
72
F. Bianchi,
73a,73b
D. Gamba,
73a,73b
M. Pelliccioni,
73a,73b
M. Bomben,
74a,74b
L. Bosisio,
47a,47b
C. Cartaro,
47a,47b
G. Della Ricca,
47a,47b
L. Lanceri,
47a,47b
L. Vitale,
47a,47b
V. Azzolini,
75
N. Lopez-March,
75
F. Martinez-Vidal,
75
D. A. Milanes,
75
A. Oyanguren,
75
J. Albert,
76
Sw. Banerjee,
76
B. Bhuyan,
76
H. H. F. Choi,
76
K. Hamano,
76
G. J. King,
76
R. Kowalewski,
76
M. J. Lewczuk,
76
I. M. Nugent,
76
J. M. Roney,
76
R. J. Sobie,
76
T. J. Gershon,
77
P. F. Harrison,
77
J. Ilic,
77
T. E. Latham,
77
G. B. Mohanty,
77
E. M. T. Puccio,
77
H. R. Band,
78
X. Chen,
78
S. Dasu,
78
K. T. Flood,
78
Y. Pan,
78
R. Prepost,
78
C. O. Vuosalo,
78
and S. L. Wu
78
(
BABAR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie, CNRS/IN2P3,
F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
University of Birmingham, Birmingham, B15 2TT, United Kingdom
7
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
8
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11
University of California at Irvine, Irvine, California 92697, USA
12
University of California at Los Angeles, Los Angeles, California 90024, USA
13
University of California at Riverside, Riverside, California 92521, USA
14
University of California at San Diego, La Jolla, California 92093, USA
15
University of California at Santa Barbara, Santa Barbara, California 93106, USA
16
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
17
California Institute of Technology, Pasadena, California 91125, USA
18
University of Cincinnati, Cincinnati, Ohio 45221, USA
19
University of Colorado, Boulder, Colorado 80309, USA
20
Colorado State University, Fort Collins, Colorado 80523, USA
21
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
22
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
23
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
24
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
25a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy
25b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
26
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
27a
INFN Sezione di Genova, I-16146 Genova, Italy
27b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
28
Harvard University, Cambridge, Massachusetts 02138, USA
29
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
30
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
31
Imperial College London, London, SW7 2AZ, United Kingdom
32
University of Iowa, Iowa City, Iowa 52242, USA
33
Iowa State University, Ames, Iowa 50011-3160, USA
PRL
103,
021801 (2009)
PHYSICAL REVIEW LETTERS
week ending
10 JULY 2009
021801-2
34
Johns Hopkins University, Baltimore, Maryland 21218, USA
35
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11, Centre Scientifique d’Orsay,
B. P. 34, F-91898 Orsay Cedex, France
36
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37
University of Liverpool, Liverpool L69 7ZE, United Kingdom
38
Queen Mary, University of London, London, E1 4NS, United Kingdom
39
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
40
University of Louisville, Louisville, Kentucky 40292, USA
41
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
42
University of Manchester, Manchester M13 9PL, United Kingdom
43
University of Maryland, College Park, Maryland 20742, USA
44
University of Massachusetts, Amherst, Massachusetts 01003, USA
45
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
47a
INFN Sezione di Milano, I-20133 Milano, Italy
47b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
48
University of Mississippi, University, Mississippi 38677, USA
49
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
50
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51a
INFN Sezione di Napoli, I-80126 Napoli, Italy
51b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
52
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53
University of Notre Dame, Notre Dame, Indiana 46556, USA
54
Ohio State University, Columbus, Ohio 43210, USA
55
University of Oregon, Eugene, Oregon 97403, USA
56a
INFN Sezione di Padova, I-35131 Padova, Italy
56b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
57
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
58
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59a
INFN Sezione di Perugia, I-06100 Perugia, Italy
59b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
60a
INFN Sezione di Pisa, I-56127 Pisa, Italy
60b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
60c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
61
Princeton University, Princeton, New Jersey 08544, USA
62a
INFN Sezione di Roma, I-00185 Roma, Italy
62b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
63
Universita
̈
t Rostock, D-18051 Rostock, Germany
64
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
65
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
66
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
67
University of South Carolina, Columbia, South Carolina 29208, USA
68
Stanford University, Stanford, California 94305-4060, USA
69
State University of New York, Albany, New York 12222, USA
70
University of Tennessee, Knoxville, Tennessee 37996, USA
71
University of Texas at Austin, Austin, Texas 78712, USA
72
University of Texas at Dallas, Richardson, Texas 75083, USA
73a
INFN Sezione di Torino, I-10125 Torino, Italy
73b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
74a
INFN Sezione di Trieste, I-34127 Trieste, Italy
74b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
75
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
77
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
78
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 2 April 2009; published 10 July 2009)
We search for the neutrinoless, lepton-flavor-violating tau decays
!
‘
V
0
, where
‘
is an electron or
muon and
V
0
is a vector meson reconstructed as
!
K
þ
K
,
!
þ
,
K
!
K
þ
,
K
!
K
þ
.
The analysis has been performed using
451 fb
1
of data collected at an
e
þ
e
center-of-mass energy near
PRL
103,
021801 (2009)
PHYSICAL REVIEW LETTERS
week ending
10 JULY 2009
021801-3
10.58 GeV with the
BABAR
detector at the PEP-II storage rings. The number of events found in the data is
compatible with the background expectation, and upper limits on the branching fractions are set in the
range
ð
2
:
6
–
19
Þ
10
8
at the 90% confidence level.
DOI:
10.1103/PhysRevLett.103.021801
PACS numbers: 13.35.Dx, 14.60.Fg, 11.30.Hv
Lepton-flavor violation (LFV) involving tau leptons has
never been observed, and recent experimental results have
placed stringent limits on the branching fractions for two-
and three-body neutrinoless tau decays [
1
–
3
]. Many de-
scriptions of physics beyond the standard model (SM)
predict such decays [
4
,
5
]; and certain models [
6
,
7
] specifi-
cally predict semileptonic tau decays such as
!
‘
,
‘
,
‘K
,
‘
K
(
!
‘
V
0
), with rates as high as the current
experimental limits [
3
]. An observation of these decays
would be a clear signature of physics beyond the SM, while
improved limits will further constrain models of new
physics.
This Letter presents a search for LFV in a set of eight
neutrinoless decay modes
!
‘
V
0
[
8
], where
‘
is an
electron or muon and
V
0
is a neutral vector meson decay-
ing to two charged hadrons (
V
0
!
h
þ
h
) via one of the
following four decay modes:
!
K
þ
K
,
!
þ
,
K
!
K
þ
,
K
!
þ
K
. This analysis is based on
data recorded by the
BABAR
detector at the PEP-II
asymmetric-energy
e
þ
e
storage rings operated at the
SLAC National Accelerator Laboratory. The
BABAR
de-
tector is described in detail in Ref. [
9
]. The data sample
consists of
410 fb
1
recorded at an
e
þ
e
center-of-mass
(c.m.) energy
ffiffiffi
s
p
¼
10
:
58 GeV
, and
40
:
8fb
1
recorded at
ffiffiffi
s
p
¼
10
:
54 GeV
. With a calculated cross section for tau
pairs of
¼
0
:
919
0
:
003 nb
[
10
,
11
] at the stated
luminosity-weighted
ffiffiffi
s
p
, this data set corresponds to the
production of about
830
10
6
tau decays.
We use a Monte Carlo (MC) simulation of lepton-flavor-
violating tau decays to optimize the search. Tau-pair events
including higher-order radiative corrections are generated
using
KK2F
[
11
]. One tau decays via two-body phase space
to a lepton and a vector meson, with the meson decaying
according to the measured branching fractions [
12
]. The
other tau decays via SM processes simulated with
TAUOLA
[
13
]. Final-state radiative effects are simulated for all
decays using
PHOTOS
[
14
]. The detector response is mod-
eled with
GEANT4
[
15
], and the simulated events are then
reconstructed in the same manner as data. SM background
processes are modeled with a similar software framework.
We search for the signal decay
!
‘
V
0
!
‘
h
þ
h
by reconstructing
e
þ
e
!
þ
candidates in which three
charged particles, each identified as the appropriate lepton
or hadron, have an invariant mass and energy close to that
of the parent tau lepton. Candidate signal events are first
required to have a ‘‘3-1 topology’’, where one tau decay
yields three charged particles, while the second tau decay
yields one charged particle. This requirement on the sec-
ond tau decay greatly reduces the background from con-
tinuum multihadron events. Events with four well-
reconstructed tracks and zero net charge are selected, and
the tracks are required to point toward a common region
consistent with
þ
production and decay. The polar
angle of all four tracks in the laboratory frame is required
to be within the calorimeter acceptance. Pairs of oppositely
charged tracks are ignored if their invariant mass, assuming
electron mass hypotheses, is less than
30 MeV
=c
2
. Such
tracks are likely to be from photon conversions in the
traversed material. The event is divided into hemispheres
in the
e
þ
e
c.m. frame using the plane perpendicular to the
thrust axis, as calculated from the observed tracks and
neutral energy deposits. The signal (three-prong) hemi-
sphere must contain exactly three tracks while the other
(one-prong) hemisphere must contain exactly one. Each of
the charged particles found in the three-prong hemisphere
must be identified as a lepton or hadron candidate appro-
priate to the search channel. The relevant particle identi-
fication capabilities of the
BABAR
detector are described in
Ref. [
2
].
To further suppress backgrounds from quark pair pro-
duction, Bhabha scattering events, and SM tau-pair pro-
duction, we apply additional selection criteria separately in
the eight different search channels. Specific cut values are
shown in Table
I
. All selection criteria are optimized to
provide the smallest expected upper limit on the branching
fraction in the background-only hypothesis. Resonant de-
cays are selected with cuts on the invariant mass of the two
hadrons in the three-prong hemisphere (
m
hh
). The invariant
mass of the one-prong hemisphere (
m
1pr
) is calculated
from the charged and neutral particles in that hemisphere
and the total missing momentum in the event. As the
missing momentum in signal events results from one or
TABLE I. Values of the cuts on the selection variables de-
scribed in the text. Masses are in units of
GeV
=c
2
, and momenta
in units of
GeV
=c
.
Channel
eeeK
K
e
K
K
m
hh
min 1.000 1.005 0.6 0.6 0.8 0.82 0.80 0.78
m
hh
max 1.040 1.035 0.92 0.96 1.0 0.98 1.04 1.00
m
1
pr
min 0.3 0.4 0.3 0.3 0.3 0.2 0.3
m
1
pr
max 2.5 2.5 2.5 2.5 2.5 2.5 2.5
p
miss
T
min 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4
p
c
:
m
:s
T
min 0.5
0.6
0.3
n
1pr
max 4
3
3 1
3
2
n
3pr
max 3
1
2 1
2
1
PRL
103,
021801 (2009)
PHYSICAL REVIEW LETTERS
week ending
10 JULY 2009
021801-4
more neutrinos in the one-prong hemisphere, this mass is
required to be near the tau mass. Background events from
quark pair production are suppressed with cuts on the
missing transverse momentum in the event (
p
miss
T
), the
scalar sum of all transverse momenta in the c.m. frame
(
p
c
:
m
:s
T
), and the number of photons in the one-prong (1 pr)
and three-prong (3 pr) hemispheres (
n
1pr
,
n
3pr
). To reduce
the background contribution from radiative Bhabha and
dimuon events, the one-prong and three-prong momentum
vectors must not be collinear in the c.m. frame. For the
same reason, the one-prong track must not be identified as
an electron for the
!
e
search.
As a final discriminant, we require candidate signal
events to have an invariant mass and total energy in the
three-prong hemisphere consistent with a parent tau lepton.
These quantities are calculated from the measured track
momenta, assuming lepton and hadron masses that corre-
spond to the neutrinoless tau decay in each search channel.
The energy difference is defined as
E
E
?
rec
E
?
beam
,
where
E
?
rec
is the total energy of the tracks observed in the
three-prong hemisphere and
E
?
beam
is the beam energy, with
both quantities calculated in the c.m. frame. The mass
difference is defined as
M
M
EC
m
where
M
EC
is
calculated from a kinematic fit to the three-prong track
momenta with the energy constrained to be
ffiffiffiffiffiffiffiffi
s=
2
p
in the
c.m. frame, and
m
¼
1
:
777 GeV
=c
2
is the tau mass [
12
].
While the energy constraint significantly reduces the
spread of
M
values, it also introduces a correlation
between
M
and
E
, which must be taken into account
when fitting distributions in this two-dimensional space.
Detector resolution and radiative effects broaden the
signal distributions in the (
M
,
E
) plane. Because of
the correlation between
M
and
E
, the radiation of
photons from the incoming
e
þ
e
particles produces a
tail at positive values of
M
and negative values of
E
.
Radiation from the final-state leptons, which is more likely
for electrons than muons, leads to a tail at low values of
E
. Rectangular signal boxes (SB) in the (
M
,
E
) plane
are defined separately for each search channel. As with
previous selection criteria, the SB boundaries are chosen to
provide the smallest expected upper limit on the branching
fraction. The expected upper limit is estimated using only
MC simulations and data events in the sideband region, as
described below. Figure
1
shows the observed data in the
large box (LB) of the (
M
,
E
) plane, along with the SB
boundaries and the expected signal distributions. Table
II
lists the channel-specific dimensions of the SB. While a
small fraction of the signal events lie outside the SB, the
effect on the final result is negligible. To avoid bias, we use
a blinded analysis procedure with the number of data
events in the SB remaining unknown until the selection
criteria are finalized and all cross-checks are performed.
There are three main classes of background events re-
maining after the selection criteria are applied: charm
quark production (
c
c
), low-multiplicity continuum
e
þ
e
!
u
u=d
d=s
s
events (
uds
), and SM
þ
pair
events. The background from two-photon production is
negligible. These three background classes have distinctive
distributions in the (
M
,
E
) plane. The
uds
events tend
to populate the plane evenly, with a fall-off at positive
values of
E
. Events in the
c
c
sample exhibit peaks at
positive values of
M
due to
D
and
D
s
mesons, and are
generally restricted to negative values of
E
. The
þ
background events are restricted to negative values of both
E
and
M
.
The expected background rates in the SB are determined
by fitting a set of two-dimensional probability density
φ
-
e
→
-
τ
*
K
-
e
→
-
τ
φ
-
μ
→
-
τ
*
K
-
μ
→
-
τ
ρ
-
e
→
-
τ
*
K
-
e
→
-
τ
ρ
-
μ
→
-
τ
*
K
-
μ
→
-
τ
-0.3
-0.1
0.1
0.3
E (GeV)
∆
-0.3
-0.1
0.1
0.3
-0.2 -0.1 0 0.1 0.2
-0.2 -0.1 0 0.1 0.2
-0.2 -0.1 0 0.1 0.2
)
2
M (GeV/c
∆
-0.2 -0.1 0 0.1 0.2
FIG. 1. Observed data shown as dots in the large box of the (
M
,
E
) plane and the boundaries of the signal box. The dark and light
shading indicates contours containing 50% and 90% of the selected MC signal events, respectively.
PRL
103,
021801 (2009)
PHYSICAL REVIEW LETTERS
week ending
10 JULY 2009
021801-5
functions (PDFs) to the observed data in the grand side-
band (GS) region of the (
M
,
E
) plane. The GS region is
defined as the LB minus the SB. The shapes of the PDFs
are determined by fits to the (
M
,
E
) distributions of
background MC samples in the LB, as described in
Ref. [
1
]. The present analysis makes use of the same
parameterization as Ref. [
1
] for the
E
spectra, except
for the case of the
c
c
spectrum in some search channels. In
these cases, combinations of polynomial and Gaussian
functions are used. The choice of PDF for the
M
spec-
trum of the
uds
samples is the same as used in Ref. [
1
],
while the
þ
and
c
c
M
spectra are modeled with
Gaussian and polynomial functions, or the Crystal Ball
function [
16
]. All shape parameters, including a rotation
angle accounting for the correlation between
E
and
M
,
are determined from the fits to MC samples.
Once the shapes of the three background PDFs are
determined, an unbinned extended maximum likelihood
fit to the data in the GS region is used to find the expected
background count in the SB. The fits to the background
MC samples and to data are performed separately for each
of the eight search channels.
We estimate the signal event selection efficiency with a
MC simulation of lepton-flavor violating tau decays.
Between 20% and 40% of the MC signal events pass the
3-1 topology requirement. The efficiency for identification
of the three final-state particles ranges from 42% for
!
K
to 82% for
!
e
. The total efficiency for
signal events to be found in the SB is shown in Table
III
,
and ranges from 4.1% to 8.0%. This efficiency includes the
branching fraction for the vector meson decay to charged
daughters, as well as the branching fraction for one-prong
tau decays.
The particle identification efficiencies and misidentifi-
cation probabilities have been measured with control
samples both for data and MC events, as a function of
particle momentum, polar angle, and azimuthal angle in
the laboratory frame. The systematic uncertainties related
to the particle identification have been estimated from the
statistical uncertainty of the efficiency measurements and
from the difference between data and MC efficiencies.
These uncertainties range from 1.7% for
!
e
to
9.0% for
!
[
17
]. The modeling of the tracking
efficiency and the uncertainty from the one-prong tau
branching fraction each contribute an additional 1% un-
certainty. Furthermore, the uncertainty on the intermediate
branching fractions
B
ð
;K
;
K
!
h
þ
h
Þ
contributes a
1% uncertainty. All other sources of uncertainty in the
signal efficiency are found to be negligible, including the
statistical limitations of the MC signal samples, modeling
of radiative effects by the generator, track momentum
resolution, trigger performance, and the choice of observ-
ables used for event selection.
Since the background levels are extracted directly from
the data, systematic uncertainties on the background esti-
mation are directly related to the background parameteri-
zation and the fit technique used. Uncertainties related to
the fits to the background samples are estimated by varying
the background shape parameters according to the covari-
ance matrix and repeating the fits, and range from 3.8% to
10%. Uncertainties related to the fits for the background
yields in the GS are estimated by varying the yields within
their errors, and range from 4.1% to 16%. The total uncer-
tainty on the background estimates is shown in Table
III
.
Cross-checks of the background estimation are performed
by comparing the number of events expected and observed
in sideband regions immediately neighboring the SB for
each search channel. No major discrepancies are observed.
The number of events observed (
N
obs
) and the number of
background events expected (
N
bgd
) are shown in Table
III
.
The POLE calculator [
18
], based on the method of
Feldman and Cousins [
19
], is used to place 90% CL upper
limits on the number of signal events (
N
90
UL
), which include
uncertainties on
N
bgd
and on the selection efficiency (
"
).
For the
!
search, the POLE calculation results in
a two-sided interval at 90% CL for the number of signal
TABLE III. Efficiency estimate, number of expected back-
ground events (
N
bgd
), number of observed events (
N
obs
), ob-
served upper limit at 90% C.L. on the number of signal events
(
N
90
UL
), expected branching fraction upper limit at 90% C.L.
(
B
90
exp
), and observed branching fraction upper limit at
90% C.L. (
B
90
UL
).
B
90
exp
and
B
90
UL
are in units of
10
8
.
Mode
"
[%]
N
bgd
N
obs
N
90
UL
B
90
exp
B
90
UL
e
6
:
43
0
:
16 0
:
68
0
:
12
0 1.8 5.0 3.1
5
:
18
0
:
27 2
:
76
0
:
16
6
8.7 8.2 19
e
7
:
31
0
:
18 1
:
32
0
:
17
1
3.1 4.9 4.6
4
:
52
0
:
41 2
:
04
0
:
19
0 1.1 8.9 2.6
eK
8
:
00
0
:
19 1
:
65
0
:
23
2
4.3 4.8 5.9
K
4
:
57
0
:
36 1
:
79
0
:
21
4
7.1 8.5 17
e
K
7
:
76
0
:
18 2
:
76
0
:
28
2
3.2 5.4 4.6
K
4
:
11
0
:
32 1
:
72
0
:
17
1
2.7 9.3 7.3
TABLE II. Signal Box boundaries;
M
is in units of
GeV
=c
2
and
E
in units of GeV.
Mode
eeeK
e
K
K
K
M
min
0
:
02
0
:
02
0
:
02
0
:
015
0
:
008
0
:
01
0
:
01
0
:
008
M
max
0.015
0.02
0.02
0.02
0.01
0.015
0.01
0.01
E
min
0
:
13
0
:
10
0
:
15
0
:
125
0
:
09
0
:
06
0
:
08
0
:
08
E
max
0.10
0.06
0.08
0.06
0.06
0.04
0.04
0.06
PRL
103,
021801 (2009)
PHYSICAL REVIEW LETTERS
week ending
10 JULY 2009
021801-6
events:
½
0
:
39
–
8
:
65
. Upper limits on the branching frac-
tions are calculated according to
B
90
UL
¼
N
90
UL
=
ð
2
"
L
Þ
,
where the values
L
and
are the integrated luminosity
and
þ
cross section, respectively. The uncertainty on
the product
L
is 1.0%. Table
III
lists the upper limits on
the branching fractions, as well as the expected upper limit
B
90
exp
, defined as the mean upper limit expected in the
background-only hypothesis. The 90% CL upper limits
on the
!
‘
,
‘
,
‘K
,
‘
K
branching fractions are in
the range
ð
2
:
6
–
19
Þ
10
8
, and these limits represent im-
provements over the previous experimental bounds [
3
]in
almost all search channels.
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MEC (Spain), and STFC
(United Kingdom). Individuals have received support from
the Marie Curie EIF (European Union) and the A. P. Sloan
Foundation.
*
Deceased.
†
Present address: Temple University, Philadelphia, PA
19122, USA.
‡
Present address: Tel Aviv University, Tel Aviv, 69978,
Israel.
x
Also with Universita
`
di Perugia, Dipartimento di Fisica,
Perugia, Italy.
k
Also with Universita
`
di Roma La Sapienza, I-00185
Roma, Italy.
{
Now at University of South Alabama, Mobile, AL 36688,
USA.
**
Also with Laboratoire de Physique Nucle
́
aire et de Hautes
Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-
Paris6, Universite
́
Denis Diderot-Paris7, F-75252 Paris,
France.
††
Also with Universita
`
di Sassari, Sassari, Italy.
[1] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
99
, 251803 (2007).
[2] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
95
, 191801 (2005).
[3] Y. Nishio
et al.
(Belle Collaboration), Phys. Lett. B
664
,
35 (2008).
[4] P. Paradisi, J. High Energy Phys. 10 (2005) 006.
[5] A. Brignole and A. Rossi, Phys. Lett. B
566
, 217
(2003).
[6] A. Brignole and A. Rossi, Nucl. Phys.
B701
, 3 (2004).
[7] E. Arganda, J. M. Herrero, and J. Portoles, J. High Energy
Phys. 06 (2008) 079.
[8] Throughout this Letter, charge conjugate decay modes are
implied.
[9] B. Aubert
et al.
(
BABAR
Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002).
[10] S. Banerjee
et al.
, Phys. Rev. D
77
, 054021 (2008).
[11] S. Jadach, B. F. L. Ward, and Z. Wa
̧
s, Comput. Phys.
Commun.
130
, 260 (2000).
[12] Y.-M. Yao
et al.
(Particle Data Group), J. Phys. G
33
,1
(2006).
[13] S. Jadach
et al.
, Comput. Phys. Commun.
76
, 361
(1993).
[14] E. Barberio and Z. Wa
̧
s, Comput. Phys. Commun.
79
, 291
(1994).
[15] S. Agostinelli
et al.
(GEANT4 Collaboration), Nucl.
Instrum. Methods Phys. Res., Sect. A
506
, 250 (2003).
[16] M. J. Oreglia, Ph.D. thesis [SLAC-236, 1980,
Appendix D]; J. E. Gaiser, Ph.D. thesis [SLAC-255,
1982, Appendix F]; T. Skwarnicki, Ph.D. thesis [DESY
F31-86-02, 1986, Appendix E].
[17] All uncertainties quoted in the text are relative.
[18] J. Conrad
et al.
, Phys. Rev. D
67
, 012002 (2003).
[19] G. J. Feldman and R. D. Cousins, Phys. Rev. D
57
, 3873
(1998).
PRL
103,
021801 (2009)
PHYSICAL REVIEW LETTERS
week ending
10 JULY 2009
021801-7