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The spins of black holes in merging binaries can reveal information related to the formation and
evolution of these systems. Combining events to infer the astrophysical distribution of black hole spins
allows us to determine the relative contribution from different formation scenarios to the population. Many
previous works have modeled spin population distributions using low-dimensional models with statistical
or astrophysical motivations. While these are valuable approaches when the observed population is small,
they make strong assumptions about the shape of the underlying distribution and are highly susceptible to
biases due to mismodeling. The results obtained with such parametric models are valid only if the allowed
shape of the distribution is well motivated (i.e., for astrophysical reasons). Unless the allowed shape of the
distribution is well motivated (i.e., for astrophysical reasons), results obtained with such models, thus, may
exhibit systematic biases with respect to the true underlying astrophysical distribution, along with resulting
uncertainties not being reflective of our true uncertainty in the astrophysical distribution. In this work, we
relax these prior assumptions and model the spin distributions using a more data-driven approach,
modeling these distributions with flexible cubic spline interpolants in order to allow for capturing structures
that the parametric models cannot. We find that adding this flexibility to the model substantially increases
the uncertainty in the inferred distributions but find a general trend for lower support at high spin magnitude
and a spin tilt distribution consistent with isotropic orientations. We infer that 62%–87% of black holes
have spin magnitudes less than a ¼ 0.5 and 27%–50% (90% credible levels) of black holes exhibit negative
χeff . Using the inferred χeff distribution, we place a conservative upper limit of 37% for the contribution of
hierarchical mergers to the astrophysical binary black hole population. Additionally, we find that artifacts
from unconverged Monte Carlo integrals in the likelihood can manifest as spurious peaks and structures in
inferred distributions, mandating the use of a sufficient number of samples when using Monte Carlo
integration for population inference.
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I. INTRODUCTION

Gravitational waves offer a unique probe into the
properties of merging black holes (BHs) and neutron stars.
Since the first such detection in 2015, the LIGO-Virgo
network [1–3] has reported the detection of ∼90 binary
black hole (BBH) mergers, with each gravitational-wave
(GW) signal encoding physical information about the BHs
involved, such as their masses and angular momenta (spins)
[4,5]. Extracting this information has has enabled the study
of properties of BBH systems on both an individual and
population-level basis. From an astrophysical perspective,
combining GW detections to infer the mass, spin, and

redshift distributions of BBH systems can help answer
questions ranging from binary formation and stellar evo-
lution [6,7] to the expansion rate of the Universe and
possible deviations from general relativity [8,9].
The spin of the BHs in a BBH system offers insight into

the history of the binary. For example, BH spins can help
reveal whether the BHs in a BBH system formed directly
from core collapse of a heavy star or from the previous
merger of two lighter BHs [10–13]. Although the processes
governing the angular momentum transport out of a stellar
core during collapse are not well constrained, recent
modeling work indicates that BHs resulting directly from
core collapse supernovae should have negligible spin
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magnitudes [14–16]. While processes such as tidal inter-
actions and mass transfer can induce higher spins on BHs in
binary systems, it is uncertain how appreciable the resulting
spin-ups can be [17–20]. On the other hand, BHs formed
from the merger of two nonspinning BHs are expected to
form a final BH with a relatively high spin magnitude
[13,21,22], motivating the possibility to use spin magnitude
as a tracer of a BH’s formation history.
The direction of the BH spin vectors also encode

information related to the formation history of a BBH
system. Models suggest that BBH systems formed from
common evolution, in which the component BHs evolve
together from a stellar binary in an isolated environment
free from significant dynamical interactions, should have
component spin vectors nearly aligned with the orbital
angular momentum axis, with any tilt being efficiently
brought into alignment by tidal interactions [23,24]. On the
other hand, BBH systems formed from dynamical encoun-
ters are not expected to have any correlated spins, such that
the BH spin vectors are isotropic with respect to the orbital
angular momentum [11,25,26].
While only a couple of events in the third gravitational-

wave transient catalog individually feature confidently high
spin magnitudes or antialignment (i.e., a spin vector
pointing opposite the angular momentum), hierarchically
combining observations of GW events while folding in
selection effects can reveal the degree to which these parts
of spin parameter space contribute to the astrophysical
distribution of BH spins. Previous work has used these
inferred contributions to estimate the fraction of BBH
systems in the local Universe which may have been formed
hierarchically, dynamically, and by isolated evolution
[6,10,11,27]. However, recent publications have disagree-
ing estimates for the contributions of antialigned and
nonspinning BBHs to the astrophysical population.
In [6,7], the authors conclude that the BBH distribution

must feature antialigned spins at > 90% credibility, in
contrast to the conclusion drawn in [28] that such antialign-
ment is not evident in the population. In addition, [29] finds
evidence for a nonspinning subpopulation of BHs, a con-
clusion which was challenged by [30]. While technical
differences exist between works, a major possible contribu-
tion to some of these differing conclusions is model mis-
specification (see, e.g., [31,32]), that is, different assumptions
being imposed on the functional form of the spin distribution.
The Default model in [6,7] models the distribution of

the magnitude of the BH spin vector and the tilt angle
between the spin vector and the orbital angular momen-
tum. They adopt a Beta distribution for the spin magnitude
model [6,33]:

πða1;2jαχ ; βχÞ ¼ Betaða1;2jαχ ; βχÞ; ð1Þ

where a1 (a2) is the magnitude of the spin vector of the
primary (secondary) BH and αχ and βχ are population

hyperparameters determining the structure of the Beta
distribution. The model for the distribution of tilt angles,
θ, is motivated by two subpopulations: one preferentially
aligned [cosðθÞ ≈ 1] and one isotropic [6,7,34]. The model
is parametrized as

πðcos θ1;2jξ; σtÞ ¼ ξGtðcos θ1jσtÞGtðcos θ2jσtÞ þ
1 − ξ

4
;

ð2Þ

where Gt is a truncated Gaussian centered at cos θ ¼ 1
with standard deviation σt and bounded in ½−1; 1� and ξ is
the relative mixing fraction between the subpopulations.
The second term corresponds to the contribution from the
uniform (isotropic) distribution.
This population model has been extended in other work

to allow for other astrophysically motivated features to help
draw conclusions related to the different formation scenar-
ios present in the astrophysical distribution [28–30,35].
Adopting an astrophysically motivated, strongly parametric
model necessarily limits the possible features resolvable in
the inferred distribution to what the chosen function can
model. Accordingly, in this work, we consider a strongly
parametric model to be one that has a specific, prior-
determined shape as provided by the parameterization (e.g.,
a normal distribution), which is then constrained by the
data. When using such a distribution to draw astrophysical
conclusions from the inferred population, this is a reason-
able and intended consequence, as the model is chosen to
encode prior beliefs on the parameters that should govern
the astrophysical distribution; however, if additional fea-
tures exist in the true astrophysical distribution and a
strongly parametric model cannot account for them, such
features can be missed and a biased result may be obtained.
Previous work has shown that substructures in the BH

mass distribution can be captured by cubic splines acting as
a perturbation on top of a simpler parametric model [6,36].
In Ref. [36], the authors consider an exponentiated spline
perturbation modulating an underlying power law in the
mass distribution. In this work, we model the spin magni-
tude and tilt distributions using exponentiated cubic splines
modulating a flat distribution to obtain a more data-driven
result for the inferred population of BH spins. In doing so,
we limit the potential bias caused by mismodeling the spin
distribution and allow for the possibility of capturing
features not accessible with a strongly parametric model.
The remainder of the paper is organized as follows. In

Sec. II, we detail the functional form and implementation of
the cubic spline model. We provide the background of
hierarchical Bayesian inference in Sec. III, as it applies to
population inference with GW sources. In Sec. IV, we
present the resulting spin distributions we obtain for
various spline models adopted in this work. Finally, we
use these results to draw conclusions related to the
astrophysical distribution of BBH spins and provide a
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relevant discussion in Sec. V. We additionally supply three
appendixes; the first provides additional details about an
efficient caching technique for the cubic spline model, the
second explores the effect of uncertainty in our estimation
of the selection function, and the third describes robustness
of our results to different choices of prior distribution.

II. MODELS

Following the model for the black hole mass distribution
considered in [36], we fit the distribution of spin magni-
tudes and cosine tilts using exponentiated cubic splines:

pðxÞ ∝ efðxÞ: ð3Þ

A spline is a piecewise polynomial function defined
by a set of node positions, the value of the function at
those nodes, and boundary conditions at the end nodes.
We use a cubic spline, as it is the lowest-order spline that
enforces continuity of the function and its first derivative
everywhere.

A. Node positions and amplitudes

In this work, we consider models with four, six, eight,
and ten nodes spaced linearly in the domain of the
parameter space. For the two distributions being modeled
with splines, this gives 16 unique spin models (four
amplitude node placement models × four tilt node place-
ment models). Our choice for the prior on the amplitude of
each node is a unit Gaussian distribution. Comparisons
with other node amplitude prior choices are detailed in
Appendix C.
In order to fully characterize a cubic spline, the first and

second derivatives must be determined at each node. For all
but the end points, these derivatives are specified by
requiring continuity in the spline and its derivative. At
the end points, there is no unique way to determine this, and
a range of boundary conditions are commonly used. For our
implementation, we want the prior distribution of the
derivatives at the end points to match that of the internal
nodes. This requires providing two additional free param-
eters at each end of the spline. In practice, we add two
additional nodes outside each boundary, with amplitudes
that are free to vary according to the prior. Throughout this
work, the number of nodes in a model refers to the number
of nodes within the domain (i.e., not including these outside
nodes). The spacing between these nodes is the same as that
between nodes within the domain.

B. Modeling spins with splines

In this work, we use the spline model detailed above to
model the population of spin magnitudes a and tilt angles
cos θ. Consistent with [6,7], we model these parameters as
independent and identically distributed. The total spin
population model is

πspinðηjΛsÞ ¼ paða1Þpaða2Þptðcos θ1Þptðcos θ2Þ; ð4Þ

where Λs is the set of population hyperparameters con-
trolling the spline node location and amplitudes and η is the
set of single-event parameters. The functions p are deter-
mined from Eq. (3). The domain of the spin magnitude
distribution extends over a∈ ½0; 1� and that of the spin tilt
distribution covers cos θ∈ ½−1; 1�.

III. METHODS

A. Hierarchical Bayesian inference

In order to constrain the spin magnitude and tilt
distribution, we carry out hierarchical Bayesian inference
in which we calculate the likelihood of the entire observed
dataset given a set of population hyperparameters Λ while
marginalizing over the uncertainty in the physical param-
eters of each event. After analytically marginalizing over
the total merger rate Rwith a prior πðRÞ ∝ R−1, we express
the likelihood of the hyperparameters Λ parametrizing the
population is expressed as (e.g., [37])

LðfdgjΛÞ ∝ pdetðΛÞ−N
YN
i

Z
LðdijηiÞπðηijΛÞdηi: ð5Þ

Here, LðdijηiÞ is the likelihood of observing the data d
from the ith event, given physical (i.e., single-event)
parameters ηi. In this work, ηi consists of masses, spins,
and redshift of the ith event. The quantity pdetðΛÞ encodes
the sensitivity of the search algorithm that identified the
signals and is described in more detail in Sec. III B.
Our population model πðηjΛÞ describes the astrophysical

distribution of masses, redshifts, and spins. We model the
primary mass distribution with the power law þ peak
model [38], the mass ratio (q ¼ m2

m1
) distribution with a

power law, and the redshift distribution also with a power
law, with source-frame comoving merger rate density
RðzÞ ∝ ð1þ zÞ3 [6,7,39]. We choose to fix the redshift
distribution, because we use our own injection set to
estimate sensitivity, thresholding on signal-to-noise ratio
(SNR) rather than false alarm rate (FAR) to determine
“found” injections. Since this makes the threshold used to
select real events (FAR < 1 yr) slightly different from that
used to threshold sensitivity injections and the redshift
distribution is particularly sensitive to the near-threshold
events, we fix the redshift distribution in order to avoid
biases (see Ref. [40] for an example of where a similar
approximation was used). See Sec. III B for details on
sensitivity injections. We list the hyperparameters Λ and
their corresponding priors in Table I.
An initial choice that must be made when computing

Eq. (5) is which events to include in the analysis. Typically,
this is done by establishing some detection threshold on the
SNR or FAR and including all events that pass this
threshold. We choose to include the 59 events in the third
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observing run (O3) of the LIGO-Virgo network which have
a false alarm rate of less than 1 yr−1 and are included in the
main BBH analysis of [6]. We limit ourselves to events in
O3 for self-consistency, as the injections we perform to
evaluate selection effects (see Sec. III B) use O3a and O3b
detector sensitivities.
We compute Eq. (5) using the package GWPopulation [41],

which constructs a Monte Carlo approximation of this
integral by reweighting samples from the single-event
posteriors into the population model. We use the nested
sampling package DYNESTY [42] to obtain hyperparameter
samples from the posterior distribution.

B. Selection effects

Since the sensitivity to an event is determined by the
single-event parameters η, the observed population is
biased toward events produced by the astrophysical
population that are preferentially observable. To account
for the bias arising from selection effects, we must
compute the fraction of signals (pdet) that will have a
detection statistic ρ passing our detection threshold ρth by
marginalizing over all possible signals and noise realiza-
tions n (e.g., [43,44]):

pdetðΛÞ ¼
Z

dn
Z

dηpðηjΛÞpðnÞΘðρ − ρthÞ: ð6Þ

Here, Θ is the Heaviside step function. In practice, we use
Monte Carlo importance sampling with respect to some
simulated fiducial reference population Λ0 to estimate
Eq. (6). This method relies on injecting Ninj sources from
this reference population into detector noise and deter-
mining which of these sources pass our detection thresh-
old [45]. This is computed as

pdetðΛÞ ¼
1

Ninj

X
η∼ηfound

πðηjΛÞ
πðηjΛ0Þ

; ð7Þ

where ηfound corresponds to the single-event parameters
of the events from the injection set that pass detection
threshold.
For our sensitivity injection set, we simulate Oð5 × 107Þ

sources and inject them into Gaussian noise corresponding
to O3 detector sensitivity specified by the representative
power spectral densities in [4,46]. This results in ∼900 000
injections passing our detection threshold of network
optimal SNR greater than 10, where the square of the
network optimal SNR is defined as the quadrature sum of
the SNRs in each detector. We choose this threshold to be a
surrogate for the 1 yr−1 FAR threshold used for event
selection. While this is not an exact mapping between the
two detection statistics, the effects of spins on sensitivity is
subdominant, so we expect that this approximation will not
cause biases.

C. Uncertainties in the likelihood

Since we approximate Eqs. (5) and (7) usingMonte Carlo
summation, there exists a resulting statistical uncertainty
associated with the use of finite samples to obtain estimates
for the value of the log-likelihood [45,47–49]. For each
sample of Λ, we compute this associated uncertainty in the
log-likelihood. Considering the computed approximation of
lnLðfdgjΛÞ to be a realization from a distribution that
asymptotically tends to a Gaussian distribution, we approxi-
mate the covariance of this estimate using Eq. (15) in [50].
For uncertainty propagation, we compute the variance
associated with each lnLðdjΛÞ from Eq. (10) in [50].
While we do not enforce any threshold directly on the

variance ðΔ lnLÞ2, we retain this information for all points
in the hyperposterior to investigate correlations between
features in the population and uncertainty in the log-
likelihood (see Appendix B).

D. Uncertainty in the evidence

The evidence, or marginal likelihood, associated with
a particular model is expressed simply as the expectation
value of the likelihood conditioned on the population
prior:

Z ¼
Z

dΛLðfdgjΛÞπðΛÞ: ð8Þ

Comparing this quantity for two different models allows
one to compute a Bayes factor, which is commonly used as
a discriminator between models based on their relative
strength at describing the observed data.
Because Dynesty computes the evidence by iteratively

summing over a finite number of weights, there exists a
statistical uncertainty associated with the estimated evi-
dence. Dynesty reports this uncertainty along with the
computed evidence.
Since there is also an uncertainty in the quantity

lnLðfdgjΛÞ used in computing the evidence, and the

TABLE I. Priors for mass distribution used in hierarchical
inference, consistent with those used in [6]. Priors on the spin
distribution are described in Sec. II. Priors are uniform between
the bounds listed in the third column.

Parameter Description Prior

α Power law index for m1 ð−4; 12Þ
β Power law index for q ð−2; 7Þ
Mmax Maximum mass (60,100)
Mmin Minimum mass (2,7)
λ Fraction of sources in Gaussian peak (0,1)
Mpp Location of Gaussian peak (20,50)
σpp Standard deviation of Gaussian peak (1,10)
δm Minimum mass turn-on length (0,10)
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evidence is the average of a set of lnL values, we take the
contribution of this uncertainty to the total evidence to be
the average uncertainty in lnLðfdgjΛÞ over the draws
from πðΛÞ.
We take these two sources of uncertainty in the evidence

to be independent and compute the total uncertainty inZ by
propagation of errors. As a result, we obtain both the
evidence and its uncertainty for each model of a fixed set of
spline nodes. We note that all of the evidences for the spline
models are consistent within their 1σ uncertainties, and the
Default model has a natural log Bayes factor of ≈ − 1.5
with respect to the overlapping region of uncertainties in
the evidence for the spline models.

IV. RESULTS

In this section, we present the results from analyzing the
population of BBH spin magnitude and tilts using spline
models. We use the standard Gaussian prior on node
amplitudes as described in Sec. II A, with nodes placed
linearly within the domain of parameter space. In Fig. 1, we

show the evidence and their uncertainties for the 16 node
combinations we consider in this work. All models give
similar evidence, with no significant preferences consid-
ering their associated uncertainties. The red shaded region
shows where all of the evidence estimates overlap within
1σ. This indicates that adding more nodes does not tend to
provide a better fit to the distribution and also does not
overfit it. We therefore cite the numbers in this section
using the most flexible model, with ten nodes for both the
magnitude and tilt distributions. Unless otherwise noted,
the plots of the spin magnitude (tilt) distributions assume
ten nodes in the tilt (magnitude) distribution.
As a general trend, we notice that the inferred 90%

region of parameter space exhibits oscillating peaks at the
location of the spline nodes. As shown in Fig. 13, these
oscillations appear for uninformative data. With the obser-
vations of BH spins being weakly informative, we see this
effect from the strong influence of the prior on the posterior
distribution of the spline nodes.

A. The distribution of spin magnitudes

In Fig. 2, we show the inferred distribution of spin
magnitudes for our four choices of node numbers in spin
magnitude, assuming ten nodes in spin tilt. Although each
model involves different positions and numbers of spline
nodes, we note that the uncertainties (solid lines) and the
average line (dot-dashed lines) in the distribution are
comparable between models.
The 90% credible interval of the distribution is relatively

broad, making it difficult to discern obvious trends in spin
magnitude. However, we note the general pattern of a
preference for smaller spin magnitudes in the population
and less support for higher spin magnitudes. Considering
the model with ten magnitude and ten tilt nodes, we infer
that 77.1%þ10.4%

−14.8% of spin magnitudes are below a ¼ 0.5 and
50% of spin magnitudes are below a ¼ 0.25þ0.16

−0.10 (all

FIG. 1. Comparison of evidence obtained from the different
spline node combinations considered, as well as from the Default
model. Uncertainties are computed by adding the average
covariance in the log-likelihood [see Eq. (15) in [50] ] in
quadrature with the uncertainty in the evidence as reported from
Dynesty. The numbers after “a” and “t” are the number of nodes
in the magnitude and tilt models, respectively. All evidences from
the spline models are consistent with lnZ in the red shaded
region at 1σ.

FIG. 2. Distribution of spin magnitudes, with different numbers
of nodes corresponding to different colors. All use ten nodes in
the tilt distribution.
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uncertainties in this work are reported at the 90% sym-
metric credible levels unless otherwise stated).
While the models using fewer spline nodes tend to place

increased support around a ¼ 0.2, the significance is
substantially reduced as we add more spline nodes.
When more spline nodes are added, the model becomes
more flexible and more data are necessary to constrain the
distribution. While this feature may be real, it is not
confident enough to remain present as the flexibility of
the model increases.
Comparing to the Default model (the green shaded

region) used in [6], we observe substantially more uncer-
tainty in the inferred spin magnitude distributions using our
spline models. As a point of comparison, in Figs. 11 and 12
of Appendix C we show the distribution of spin magnitudes
for different numbers of nodes, this time assuming four
nodes in the tilt distribution. We find no significant
differences from the distributions assuming ten nodes in
the tilt distribution, which indicates that the number of
nodes in the tilt distribution has a negligible effect on the
inferred spin magnitude distribution.

B. The distribution of spin tilts

In Fig. 3, we show the inferred distribution of spin tilts.
Similar to the case with spin magnitudes, the uncertainties
in the distribution are wide, but the average distributions for
the different node combinations agree. In general, the
distribution is consistent with being flat and featureless,
but there is a slight trend for an increase in support
for −0.25 < cos θ < 0.75.
As demonstrated by comparing Fig. 12 with Fig. 3, the

inferred distribution of spin tilts is very similar when we
model the spin magnitude distribution with four nodes. We
confirm this invariance for all sets ofmagnitude nodes tested,
suggesting that the number of spinmagnitude nodes does not
meaningfully affect the recovered spin tilt distribution.

We infer that 38.6%þ17.3%
−15.6% of spin tilts are below cos θ ¼

0 and 50% of spin tilts are below cos θ ¼ 0.15þ0.22
−0.22. Notably

there is no trend for an increase in support for cos θ ¼ 1 as
would be predicted by a preferentially aligned-spin pop-
ulation (see Sec. V).

C. The distribution of χ eff
As an alternative to modeling the component spins, it is

common to consider instead the total spin contribution
aligned with the orbital angular momentum, the so-called
“effective” aligned spin parameter. This term is parame-
trized as

χeff ¼
a1 cos θ1 þ qa2 cos θ2

1þ q
: ð9Þ

While we do not directly model the distribution of χeff in
this work, we can use the inferred distributions of a, cosðθÞ,
and q to reconstruct a distribution for χeff (cf. [7,29]).

FIG. 3. Distribution of spin tilts, with different numbers of
nodes corresponding to different colors. All use ten nodes in the
spin magnitude distribution.

FIG. 4. Distribution of effective inspiral spin parameter as
recovered from the distributions in Figs. 2 and 3.
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Figure 4 shows this inferred distribution of χeff as we
vary the number of tilt and magnitude nodes. As a point of
comparison, we show the corresponding reconstruction of
χeff when the distributions of component spin magnitudes
and tilts are inferred using the Default model with the same
catalog of events. In addition, we also plot the χeff
distribution recovered from uniformly sampling in a and
cosðθÞ (solid black curve), assuming mass ratios drawn
from a power law with an index of 2 (q consistent with the
results in [6]). The χeff distribution inferred from the spline
model agrees well with the Default reconstruction but is a
noticeably narrower distribution than a uniform spin
magnitude and tilt distribution would result in. Using the
model with ten magnitude and tilt nodes each, we infer that
38.7%þ12.8%

−11.5% of BBH systems have χeff < 0.

D. The distribution of χ p
Another “effective” spin parameter commonly modeled

in the gravitational wave literature is the effective precess-
ing spin parameter χp, which quantifies the amount of in-
plane spin present in a BBH merger [51]. Here,

χp ¼ max

�
a1 sin θ1;

�
3þ 4q
4þ 3q

�
qa2 sin θ2

�
: ð10Þ

Similar to the previous subsection, we can reconstruct the
distribution of χp using the spline models of a, cosðθÞ, as
well as our inference on the population of q.
Figure 5 shows the inferred distribution of χp as a

function of different magnitude and tilt nodes, respectively.
We also show the inferred distribution recovered from the
Default model [6,7,33,34] analysis using the same event
list, as well as the distribution corresponding to uniform
distributions in a and cos θ. The inferred distribution of χp
is consistent with an isotropic distribution and shows
agreement with the χp distribution reconstructed from
the Default model. An exception to this agreement is the
slightly increased support at high χp that is not present in
the Default reconstruction. The higher support for large a
and cosðθÞ ≈ 0 in the spline model relative to the Default
model explains this increased support at high χp. Similarly,
our result allows for more support at high χp relative to
what is presented in [6], in which it is assumed that the χeff
and χp distributions follow a multivariate normal distribu-
tion [52]. In particular, Fig. 16 in [6] shows vanishing
support for χp > 0.4 in the population, whereas we find
some support in this region is included at the 90%
credibility. We note that varying the number of nodes in
spin magnitude has the largest impact on the averaged
recovered χp distribution (dash-dotted curves), indicating
that this measurement depends on our choice of prior for
the spin magnitude distribution.

V. DISCUSSION

Most previous analyses of the astrophysical distribution
of merging binary black hole systems have focused on
fitting parametric phenomenological models strongly con-
strained by the functional form of the model to the observed
data (e.g., [6] and references therein) or directly compared
with detailed simulations (e.g., [53,54]). However, more
data-driven methods have been employed to infer the
binary black hole mass [36,55–57] and spin distribu-
tions [56].
In this work, we use cubic splines (a model previously

used to fit the black hole mass distribution [36]) to fit the
astrophysical spin magnitude and spin tilt distributions of
black holes as inferred from LIGO-Virgo observations. In
doing so, we limit the influence of prior modeling
assumptions on the inferred distribution and present a
more data-driven result. While the uncertainties in the
inferred distributions are large, we are able to interpret

FIG. 5. Distribution of precession spin parameter as recovered
from the distributions in Fig. 3.
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trends as they relate to astrophysical mechanisms of BBH
formation.
Models of stellar physics suggest that angular momen-

tum transport out of the core of a collapsing star is highly
efficient, indicating that first-generation stellar BHs should
primarily have negligible spin [14]. Based on this, some
models tend to favor nonspinning BHs when born in
isolated environments and not susceptible to tidal spin-up.
Motivated by the work in [14,58], the authors of

[6,29,30,59] search for contributions from a nonspinning
subpopulation of BHs in the distributions of χeff and spin
magnitude. Some of this previous work has found support
for a ¼ 0 when using low-dimensional parametric spin
distribution models that allow for support at that point
[10,29,60–62]. The results of such inference are strongly
model dependent, with the preference for the presence of a
nonspinning component depending on the morphology of
that component. We do not confidently recover such a
feature as demonstrated in Fig. 2. Given the width of the
90% credible interval at low spin magnitudes, we are
unable to rule out the presence of this feature. This is
consistent with what was found in [30,59,63], in which the
authors find that there is insufficient data to resolve such a
nonspinning subpopulation when employing a strongly
parametric spin model with a spike at a ¼ 0.
On the other hand, the merger of equal mass, non-

spinning BBH systems are expected to result in a remnant
BH with a ∼ 0.7. As a result, population simulations
predict that hierarchical mergers resulting from products
of nonspinning first-generation mergers will leave a sig-
nature of a subpopulation of BH spins peaked around
a ∼ 0.7 with tails extending from a ∼ 0.5 to ∼0.9 [13].
Referring back to Fig. 2, we do not see evidence of an
obvious subpopulation in this high-spin region of interest
but rather some preference for low-spin magnitudes,
possibly indicating that hierarchical mergers are not pro-
viding the dominant formation mechanism for the observed
BBHs. The lack of support for a relatively high spin
subpopulation is consistent with the conclusions drawn
in [6,30]. Assuming that BBHs from hierarchical mergers
all have a > 0.5, we infer that no more than 23%þ14%

−11% of the
astrophysical population of merging BBHs form through a
hierarchical merger channel.
A notable feature in our analysis is the increased

uncertainty in the spin magnitude distribution as compared
to that from the Beta distribution in spin magnitude. The
motivation for using a Beta distribution in [6,7,33] is not
physical but is statistical: the Beta distribution has support
only in the interval [0, 1] and offers a flexible, parametric fit
for the mean and variance of a distribution and has an
analytic form. The spline model introduced in this work
offers more flexibility than the Beta distribution, so lacking
a physical motivation for the Beta distribution, we expect
that the uncertainties in the spin magnitude distribution
obtained in this work are more appropriate than those

obtained from the Default model. Furthermore, the Beta
distribution used in [6,7] cannot model structures such as
increased support for nonspinning BHs or a secondary peak
at high spin, making it a suboptimal model for the
astrophysical spin magnitude distribution in the presence
of a nonspinning subpopulation. Comparing to our data-
driven approach, we therefore conclude that the resulting
spin distributions presented in both [6] as well as this work
are partially model driven.
When dynamical encounters take place within dense

environments such as globular clusters, it is likely that
some of the remnant BHs are retained in the cluster and
merge in a subsequent dynamical encounter, contributing to
the hierarchical merger population. The authors of [11] find
that, for a broad range of populations considered, 16% of
mergers in the hierarchical merger population have
χeff < −0.3. Using our inferred χeff distribution, we infer
2.1%þ3.9%

−1.5% of BBH mergers have χeff < −0.3. Using this
interpretation from the χeff distribution, we place a
conservative upper limit on the contribution of hierarchical
mergers to the BBH merger population of 13%þ24%

−9% , which
agrees with the one obtained when using just the spin
magnitude information. This limit broadly agrees with the
upper limit of 26% for the fraction of hierarchical mergers
presented in [11], in which the authors use low-dimensional
parametric models to infer the χeff distribution. This is also
consistent with the results of [10], who found that depend-
ing on the escape velocity of the hierarchical merger
environment up to ≈10% of merging black holes may
come from hierarchical mergers.
Mergers of BBH systems which have spins that are

isotropic in orientation, as is expected from dynamical
formation scenarios, implies a distribution of χeff symmet-
ric about 0 (see the black line in Fig. 4). This prediction
comes from the idea that, during a dynamical capture, there
is no reason to expect that the two BHs should have
correlated spin directions when they randomly encounter
each other. In contrast, spins of BBH systems forming from
common evolution are expected to remain primarily
aligned with the orbital angular momentum, resulting in
exclusively positive values for χeff from this population.
While the distribution of χeff we recover appears symmet-
ric, it is centered at χeff ¼ 0.033þ0.034

−0.038 , favoring a positive
central location but consistent with being centered at χeff ¼
0 at the 90% level. This constraint is similar to that obtained
by [64], using basis splines to model the component spin
distributions. This result, coupled with the result that
38.7%þ12.8%

−11.5% of events have χeff < 0, presents the possibil-
ity that dynamical encounters are a significant contribution
to the formation mechanisms of BBH merger systems. This
is in contrast to the results reported in [6] that the χeff
distribution is centered at 0.06 and rules out being centered
at 0 at the 90% level; this result is obtained by modeling the
χeff distribution as a Gaussian with the mean and standard
deviation as free parameters [6,52]. While we use a largely
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identical event list in our analyses, the modeling assump-
tions for the χeff distribution made in [6] probably explain
some of the differences in our results. While [28,30] also
find a χeff distribution consistent with being centered at
zero, [28] does not find any support for χeff < 0; such a
difference may also be due to different modeling choices
for the population of χeff .
We see increased uncertainty in cos θ with respect to

those obtained from the Default model from [6]. While the
tilt distribution of the Default model is astrophysically
motivated, it is incapable of capturing any possible sub-
structure that may be present at locations other than
cos θ ¼ 1, as it is modeled by a monotonic function.
Given the additional flexibility of the spline model, we
notice a trend in the average line of the cosðθÞ distribution
toward increased support for −0.25 < cos θ < 0.5. This
trend is of low significance given the uncertainties sur-
rounding it in the inferred cos θ parameter space but may
indicate a nontrivial contribution from BBHs with in-plane
spins to the astrophysical population. This trend is con-
sistent with what is found in [35,64], in which the authors
use more flexible models to infer the cos θ distribution. Our
result that 38.6%þ17.3%

−15.6% of BHs exhibit negative spin tilts is
broadly consistent with previous studies that indicate the
need for negative alignment in the astrophysical popula-
tion. The presence of support for cos θ < 0 in the pop-
ulation was reported in [7] and confirmed in subsequent
studies (e.g., [6,30]).
It is generally considered unlikely for BBH systems

formed under common or isolated evolution scenarios to
exhibit spin-orbit misalignment, as any such misalignment
in these systems is expected to be corrected by mass
transfer and tidal effects [23,24]. Lack of confidently
increased support for cos θ ¼ 1 indicates that aligned-spin
BBH systems do not contribute a statistically resolvable
subpopulation of mergers. A possible explanation for this is
a comparable or more significant contribution of BBH
mergers from dynamical encounters in dense environments
to the inferred astrophysical population of BBHmergers, as
this would manifest as a more isotropic distribution in tilts.
Unlike other work which adopts data-driven models but

enforce regularization or smoothing conditions across
parameter space (e.g., [30,64]), we set the correlation
length explicitly by setting the number of spline nodes
and their locations a priori. While smoothing over the scale
of perturbations in parameter space may avoid the biases
noted in Appendix B, it also limits the scale of the features
that can be resolved by the model. By controlling for this
scale limit on a model-by-model basis, we can evaluate if
we need to resolve finer-scaled features in order to get a
better fit to the data, for example, by comparing the model
evidence in Fig. 1. We believe that the averaging or
smoothing adopted in [30,64] is what prevents the spurious
features noted in Appendix B from being recovered in those
works, at the cost of not being able to resolve fine features

in the population distribution. Nonetheless, as we see from
the similar evidence values in Fig. 1, it is not important that
a model need to be able to resolve such narrow features in
the spin distribution, as they do not seem to inform the
posterior to a large extent. We anticipate that this will not be
the case in analyses with future catalogs, as additional data
will become more informative to the structures in the spin
distribution, limiting the outsized influence of the model
prior on the posterior. In this case, data-driven models may
become necessary to best describe the distribution and this
will be reflected by a higher evidence for these models
relative to that of the Default model.
The morphological differences in the recovered spin

distributions between models are a natural outcome of
using different models to infer a distribution given unin-
formative data, as the prior provides much of the informa-
tion to the posterior. We note there are visible differences in
the recovered distribution between spline models and their
credible regions in Figs. 2 and 3, such as the locations of
large oscillations which appear depending on node place-
ment. Because of the comparable evidence values in Fig. 1,
we conclude that none of the spline models do a signifi-
cantly better job describing the data than any of the others.
We anticipate that, in future studies, additional observations
will contribute to resolvable structure (if present) in the spin
distributions; in this case, the spline models which best
describe this structure will have the highest evidence.
Similarly, the Bayes factor between the Default model
and the spline model of the lowest evidence is only ln BF ∼
1.5 in favor of the spline model, indicating that the Default
model does not provide a significantly worse fit to the data
than the spline models. In other words, the additional
flexibility of the spline models presented in this work may
not be necessary to correctly describe the spin distribution,
as the lower-dimensional model provides a fit with similar
evidence. We caution against trusting the recovered fea-
tures in the resulting distributions as different models with
similar evidences can recover fairly different features in the
spin distribution.
The work presented in this paper motivates the need for

more data-driven models for inferring the BBH spin
distribution from GW sources, as there may be features
of astrophysical importance that cannot be captured by
currently used parametric models. While we cannot con-
fidently discern many trends in the spin magnitude and tilt
distributions, we can place constraints on the support in
different parts of spin parameter space by substantially
relaxing modeling assumptions. Using our more flexible
model, we find that substantially increased uncertainties are
a necessary cost to being able to model arbitrary features in
the spin distribution, given current GW data. Data collected
from events in future observing runs may help resolve such
features which may exist in the spin distribution, as well as
motivate a better choice of priors to use on these data-
driven models.
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APPENDIX A: EFFICIENT EVALUATION
OF THE SPLINE MODEL

Our model requires evaluating a different spline model
at many values during each likelihood evaluation. This
process can be divided into three stages: constructing the
spline model, identifying where each of evaluation points
lies in relation to the nodes, and evaluating the appropriate
piece in the spline. The first stage must be performed at
every iteration but does not depend on the number of
points that the spline will be evaluated at. The second
stage is independent of the value of the spline nodes but
must be performed for each of the evaluation points. For a
uniform spacing of spline nodes, this can be efficiently
evaluated; however, for a generic spline, this can be
computationally intensive. At the third stage, we
simply combine the results of the two previous stages.

This can be trivially parallelized using a graphics process-
ing unit (GPU).
For our use case, the locations at which the splines are

evaluated and the node points are the same at every
iteration. We can, therefore, cache the result of the second
stage. We find that for our application the caching method
accelerates the evaluation of the model by a factor of≳100.
Our implementation cached_interpolate is available via
PYPI and CONDA-FORGE.

APPENDIX B: COMPARISON BETWEEN
INJECTION SETS

Sensitivity estimates for Advanced LIGO and Virgo
were released along with [4,6] for the first three observing
runs [4,65,66]. These sensitivity estimates consist of
injections of simulated sources into detector noise, along
with the SNRs and FARs of these injections as reported by
the detection pipelines used in the LIGO-Virgo observing
runs. In this section, we compare the use these injections to
compute the pdet term as written in Eq. (7) to the use of our
own injections to compute the same term.
Using a set of injections, we include those which pass a

detection threshold in the summation over the found
injections. For the injections provided in [4], we use a
threshold of FAR < 1 yr−1, consistent with the choice
made in [6]. We do not run the detection pipelines to
assign a FAR to each of the injections from our custom
injection set in this paper, so we threshold these on an
optimal SNR > 10. We visually check that the distribution
of found injections is not biased by our approximation of
the detection threshold in the selection function, such that
the distribution of detection probabilities across parameter
space are qualitatively similar for the different injection
sets. Since importance sampling Monte Carlo integration
relies on drawing enough samples from the fiducial

FIG. 7. Distribution of spin tilt using six nodes. Different colors
correspond to different sensitivity injection sets. Injection sets use
events from their corresponding observing runs.

FIG. 6. Distribution of spin magnitude using ten nodes. Differ-
ent colors correspond to different sensitivity injection sets.
Injection sets use events from their corresponding observing
runs. Note that the peak at around a ¼ 0.2 is most pronounced
with using the O1þ O2þ O3 set and least with our custom
O3 set.
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distribution that cover the support of the target distribution,
using Eq. (7) as a reliable estimator for Eq. (6) requires a
suitable number of “found” injections to get a well-
converged estimate (i.e., see Ref. [45]). With too few
samples being used to compute the Monte Carlo approxi-
mation, the variance of our estimator is large and the
resulting estimate may be a poor approximation of the
true log-likelihood. The statistical uncertainty in the log-
likelihood estimates at each point in parameter space can
cause a systematic bias to appear in the resulting posterior
distribution for the population.
The injection sets provided in [4,6] for the combined

O1þ O2þ O3 sensitivity and O3 sensitivity, respectively,
contain 41 972 and 81 117 simulated events which pass our
detection threshold. As expected, the use of more samples
reduces the uncertainty in the computedpdet estimate and is
reflected by the distribution of variances in lnL, as shown
in Fig. 10. We drastically reduce the variances in the log-
likelihood estimates by using our own injection set which
contains 911 386 injections passing our detection thresh-
old. See Figs. 6 and 7 for comparisons between inferred
spin distributions when using these different injection sets.
In order to validate that the number of samples used to

compute pdet is a cause of systematic bias in the inferred
population (as opposed to the difference in detection
statistic used for the threshold), we repeat the above spin
distribution inference but using injection sets that have
been downsampled to have ∼40 000 and ∼80 000 found
injections. In Figs. 8 and 9, we note recovery of strongly
peaked features in the spin magnitude and tilt distributions,
respectively. The significance of these features becomes
drastically reduced as the number of found injections
increases, indicating that a lower number of effective
samples used to compute Eq. (7) can lead to biases that
propagate into spurious features in the spin distribution. We

therefore infer that a sufficient number of injections is
necessary to recover an unbiased spin distribution using our
spline model implementation, motivating our use of the
custom injection set with substantially more found injec-
tions than what was released in [66].
We quantify the uncertainty in the log-likelihood across

the parameter space by calculating the uncertainty in the
difference in log-likelihoods for all of Λ. In Fig. 10, we
quantify this uncertainty as the covariance in the log-
likelihood between each point Λ and Λ0, the value of Λ that
has the lowest variance.
We see in Fig. 10 that the amplitude of the node at a ¼

0.22 is correlated with higher statistical variance; as the
amplitude of this node increases, the uncertainty in the log-
likelihood increases as well, making the log-likelihoods
computed in this part of parameter space less trustworthy.
As we decrease the variance by using injection sets with
higher Ninj, the uncertainty in the log-likelihood estimates
decreases. With better estimates of the log-likelihood, the
support for the high amplitude of the node at a ¼ 0.22
decreases, indicating that this feature in the spin magni-
tude distribution may be an artifact of poorly converged
Monte Carlo integrals. If this peak were a true feature in
the astrophysical population, we would expect the inferred
distribution computed with the custom injections would
maintain support for high amplitude at this node, along
with reduced uncertainty. We confirm that this uncertainty
is associated with the selection function rather than
associated with reweighting posterior samples in the
population model by comparing the contributions of the
uncertainties in both these Monte Carlo summations to
the total propagated uncertainty in the log-likelihood;
for the models tested in this paper, we consistently find
that the uncertainty associated with the contribution from
Eq. (7) dominates.

FIG. 8. Distribution of spin tilt using six nodes. Different colors
correspond to a different number of found injections: the 900 000
from the custom injection set, ∼80 000, and ∼40 000, where the
latter two are close to the number of found injections in the LVK
O3-only and O1þ O2þ O3 injection sets, respectively.

FIG. 9. Distribution of spin tilt using six nodes. Different colors
correspond to a different number of found injections: the 900 000
from the custom injection set, ∼80 000, and ∼40 000, where the
latter two are close to the number of found injections in the LVK
O3-only and O1þ O2þ O3 injection sets, respectively.
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We note that we have noticed several other examples of
similar behavior in our analyses, notably manifesting as
spurious peaks in the spin distribution. This demonstrates
the need for sufficient coverage of injections when using
importance sampling to compute sensitivity estimates
especially when evaluating a population distribution that
can model narrow peaks.

APPENDIX C: EFFECT OF PRIORS ON
INFERRED DISTRIBUTION

In thiswork,we adopt a prior on the splinenode amplitudes
that is a standard normal distribution. In this appendix, we
show the results obtained using different choices of prior on
the node amplitudes and different positions.
In Fig. 13, we show the distribution of spin magnitudes

and tilts from prior draws only. We note that the average of
the distribution is flat, reflecting the lack of any further
structure imposed by the prior on the mean of the
distribution. On the other hand, the upper limit of the

90% credible regions shows considerable oscillations.
These are coincident with the node locations and, thus,
correspond to where the distribution is informed directly by
the spline amplitude sample. These oscillations are, thus, an
expected feature of the spline model. The regions in
between these oscillations correspond to where the spline
provides an interpolation between node locations.
Figure 14 shows the inferred distribution for the four tilt

node and four magnitude node model for three different
choices of prior on the node amplitude and placement: a
broader Gaussian (yellow), a narrower Gaussian (magenta),
a uniform distribution in ½−3; 3�, and the unit Gaussian
without the additional end nodes (see Sec. II A). They each
result in comparable distributions within the statistical
uncertainties; however, we note that the wider prior dis-
tributions lead to wider uncertainty bands, with the
N ð0; 0.5Þ prior giving the tightest constraints. We expect
this to also hold for the other node configurations.

FIG. 12. Distribution of spin tilts, with different numbers of
nodes corresponding to different colors. All use four nodes in the
spin magnitude distribution.

FIG. 10. Posterior samples for the amplitude of the spline node
at a ¼ 0.22 and their associated variances in the log-likelihood.
Note the positive correlation between spline amplitude and
variance. The results obtained using the injection set from all
three observing runs, which has the least number of found
injections, exhibits the highest variance in the log-likelihood.

FIG. 11. Distribution of spin magnitudes, with different num-
bers of nodes corresponding to different colors. All use four
nodes in the tilt distribution.
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and J. Veitch, Model-independent inference on compact-
binary observations, Mon. Not. R. Astron. Soc. 465, 3254
(2017).

[56] V. Tiwari, VAMANA: Modeling binary black hole popu-
lation with minimal assumptions, Classical Quantum Grav-
ity 38, 155007 (2021).

[57] S. Rinaldi and W. Del Pozzo, (H)DPGMM: A hierarchy of
Dirichlet process Gaussian mixture models for the inference
of the black hole mass function, Mon. Not. R. Astron. Soc.
509, 5454 (2022).

[58] K. Belczynski et al., Evolutionary roads leading to low
effective spins, high black hole masses, and O1/O2 rates for
LIGO/Virgo binary black holes, Astron. Astrophys. 636,
A104 (2020).

[59] H. Tong, S. Galaudage, and E. Thrane, The population
properties of spinning black holes using gravitational-
wave transient catalog 3, Phys. Rev. D 106, 103019
(2022).

[60] C. Talbot and E. Thrane, Fast, flexible, and accurate
evaluation of gravitational-wave Malmquist bias with ma-
chine learning, Astrophys. J. 927, 76 (2022).

[61] Y.-Z. Wang, Y.-J. Li, J. S. Vink, Y.-Z. Fan, S.-P. Tang, Y.
Qin, and D.-M. Wei, Tight constraint on the maximum mass
of stellar-origin binary black holes and evidence for hier-
archical mergers in gravitational wave observations, As-
trophys. J. Lett. 941, L39 (2022).

[62] C. Kimball, C. Talbot, C. P. L. Berry, M. Carney, M. Zevin,
E. Thrane, and V. Kalogera, Black hole genealogy: Iden-
tifying hierarchical mergers with gravitational waves, As-
trophys. J. 900, 177 (2020).

[63] M. Mould, D. Gerosa, F. S. Broekgaarden, and N. Steinle,
Which black hole formed first? Mass-ratio reversal in
massive binary stars from gravitational-wave data, Mon.
Not. R. Astron. Soc. 517, 2738 (2022).

[64] B. Edelman, B. Farr, and Z. Doctor, Cover your basis:
Comprehensive data-driven characterization of the binary
black hole population, Astrophys. J. 946, 16 (2023).

[65] LIGO Scientific Collaboration, Virgo Collaboration, and
KAGRA Collaboration, GWTC-3: Compact binary coales-
cences observed by LIGO and Virgo during the second part
of the third observing run—O1þ O2þ O3 search sensi-
tivity estimates, 10.5281/zenodo.5636815.

[66] LIGO Scientific Collaboration, Virgo Collaboration, and
KAGRA Collaboration, GWTC-3: Compact binary coales-
cences observed by LIGO and Virgo during the second part
of the third observing run—O3 search sensitivity estimates,
10.5281/zenodo.5546675.

SEARCHING FOR STRUCTURE IN THE BINARY BLACK HOLE … PHYS. REV. D 108, 103009 (2023)

103009-15

https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.1103/PhysRevD.100.043030
https://doi.org/10.1103/PhysRevD.100.043030
https://doi.org/10.1093/mnras/staa278
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.3847/2515-5172/ab1d5f
https://doi.org/10.3847/2515-5172/ab1d5f
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.3847/1538-4357/ac43bc
https://arXiv.org/abs/1602.03572
https://arXiv.org/abs/2204.00461
https://doi.org/10.1093/mnras/stad2968
https://doi.org/10.1093/mnras/stad2968
https://doi.org/10.1103/PhysRevD.91.024043
https://doi.org/10.3847/1538-4357/ab80c0
https://doi.org/10.3847/1538-4357/abe40e
https://doi.org/10.3847/1538-4357/abe40e
https://doi.org/10.1103/PhysRevD.103.083021
https://doi.org/10.1093/mnras/stw2883
https://doi.org/10.1093/mnras/stw2883
https://doi.org/10.1088/1361-6382/ac0b54
https://doi.org/10.1088/1361-6382/ac0b54
https://doi.org/10.1093/mnras/stab3224
https://doi.org/10.1093/mnras/stab3224
https://doi.org/10.1051/0004-6361/201936528
https://doi.org/10.1051/0004-6361/201936528
https://doi.org/10.1103/PhysRevD.106.103019
https://doi.org/10.1103/PhysRevD.106.103019
https://doi.org/10.3847/1538-4357/ac4bc0
https://doi.org/10.3847/2041-8213/aca89f
https://doi.org/10.3847/2041-8213/aca89f
https://doi.org/10.3847/1538-4357/aba518
https://doi.org/10.3847/1538-4357/aba518
https://doi.org/10.1093/mnras/stac2859
https://doi.org/10.1093/mnras/stac2859
https://doi.org/10.3847/1538-4357/acb5ed
https://doi.org/10.5281/zenodo.5636815
https://doi.org/10.5281/zenodo.5546675

