Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2011 | Published
Journal Article Open

In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin


Microcirculation is an important component of the cardiovascular system and can be used to assess systemic cardiovascular health. Numerous studies have investigated cutaneous microcirculation as an indicator of cardiovascular related diseases. Such research has shown promising results; however, there are many limitations regarding the employed measurement techniques, such as poor depth and spatial resolution and measurement versatility. Here we show the results of functional cutaneous microvascular experiments measured with photoacoustic microscopy, which provides high spatial resolution and multiparameter measurements. In a set of experiments, microvascular networks located in the palms of volunteers were perturbed by periodic ischemic events, and the subsequent hemodynamic response to the stimulus was recorded. Results indicate that during periods of arterial occlusion, the relative oxygen saturation of the capillary vessels decreased below resting levels, and temporarily increased above resting levels immediately following the occlusion. Furthermore, a hyperemic reaction to the occlusions was measured, and the observation agreed well with similar measurements using more conventional imaging techniques. Due to its exceptional capability to functionally image vascular networks with high spatial resolution, photoacoustic microscopy could be a beneficial biomedical tool to assess microvascular functioning and applied to patients with diseases that affect cardiovascular health.

Additional Information

© 2011 SPIE. Paper 10470R received Aug. 24, 2010; revised manuscript received Nov. 11, 2010; accepted for publication Dec. 7, 2010; published online Feb. 7, 2011. This research was sponsored by National Institutes of Health Grant Nos. 5 T32 AR07284, R01 EB000712, R01 EB008085, R01 CA134539, and U54CA136398. All of the experiments were conducted in accordance with the human studies protocols approved by the Institutional Review Board at Washington University in St. Louis. The Declaration of Helsinki protocols were followed and all volunteers freely submitted their written informed consent.

Attached Files

Published - 026004_1.pdf


Files (405.2 kB)
Name Size Download all
405.2 kB Preview Download

Additional details

August 22, 2023
October 20, 2023