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These appendices provide detailed proofs of the statements in the main text. We discuss our main
contribution that Tr(Op) can be approximated by a machine learning model given training data scaling
logarithmically in system size, where O is an unknown observable and p is the ground state of a Hamilto-
nian. The proof of this result has three main parts. The first two parts yield important results necessary
for the design of the ML algorithm and its sample complexity.

We recommend that readers start with Section I, which derives a simpler form for the ground state
property Tr(Op(z)) that we wish to predict. In Section II, we give a norm inequality characterizing the
Pauli coefficients of any observable that can be written as a sum of geometrically local observables. The
norm inequality reveals a structure of the ground state property Tr(Op(z)) that we can use to design an
ML algorithm that uses very few training data. In Section III, we present our ML algorithm and prove
its sample complexity using standard tools in ML theory, including known guarantees on the LASSO
(least absolute shrinkage and selection operator) algorithm’s performance. Finally, in Section IV, we
describe numerical experiments performed to assess the performance of the algorithm in practice.
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I. SIMPLE FORM FOR GROUND STATE PROPERTY

This section is dedicated to deriving a simpler form for the ground state property Tr(Op(x)) as a
function of x. Note that throughout this section, log denotes the natural logarithm. We consider the
assumptions (a)-(d) from Appendix F.5 of [1], with (b) and (d) adjusted for our setting, which we
reproduce here for convenience:

(a) Physical system: We consider n finite-dimensional quantum systems that are arranged at locations,
or sites, in a d-dimensional space, e.g., a spin chain (d = 1), a square lattice (d = 2), or a cubic lattice
(d = 3). Unless specified otherwise, our big-O, 2, © notation is with respect to the thermodynamic
limit n — oo.

(b) Hamiltonian: H(x) decomposes into a sum of geometrically local terms H(x) = Zle h;j(Z;), each
of which only acts on an O(1) number of sites in a ball of O(1) radius. Here, &; € R?, ¢ = O(1)
and x is the concatenation of L vectors 21, ...,Z with dimension m = Lg = O(n). Individual
terms h;(Z;) obey ||h;(Z;)||,, <1 and also have bounded directional derivative: ||0h;/0ul <1,

where 4 is a unit vector in parameter space.

(¢) Ground-state subspace: We consider the ground state p(z) for the Hamiltonian H () to be defined as
p(z) = limg_,oo e PH@) / Tr(e=PH @) This is equivalent to a uniform mixture over the eigenspace
of H(x) with the minimum eigenvalue.

(d) Observable: O can be written as a sum of few-body observables O = >, O;, where each O;
only acts on an O(1) number of sites. Hence, we can also write O = }_ pc g(eo) ap P, Where
P c {I,X,Y,Z}®" and S is the set of geometrically local Pauli observables (defined more
precisely in Def. 6). The results in this section hold for any O of the above form. However, we only
focus on O given as a sum of geometrically local observables > j Oj;, where each O; only acts on
an O(1) number of sites in a ball of O(1) radius.

Under these assumptions, we can prove that Tr(Op(z)) can be approximated by a sum of weighted
indicator functions, where the weights satisfy a #;-norm bound. A precise statement of this result is
found in Section 1C.

We first show that Tr(Op(z)) can be approximated by a sum of smooth local functions in Section I A.
Then, we prove that this sum of smooth local functions can be approximated by simple functions in
Section IB. Finally, we put everything together in Section I C. Several technical lemmas for bounding
integrals are needed throughout these proofs, which are compiled in Section ID.

A. Approximation by a sum of smooth functions

The key intermediate step is to approximate Tr(Op(z)) by a sum of smooth local functions. The proof
of this relies on the spectral flow formalism [2] and Lieb-Robinson bounds [3].

First, we review the tools necessary from spectral flow [2, 4, 5]. Let the spectral gap of H(z) be lower
bounded by a constant vy over [—1,1]™. Then, the directional derivative of an associated ground state in
the direction defined by the parameter unit vector @ is given by

O, \_ .
55 (@) = ~ilDa(2), p(2)], (S1)
where Dy (x) is given by
+oo
Dg(x) = W,Y(t)e”H(m)aa—I?(:r)e*”H(m) dt. (S2)
o U

Here, W, (t) is defined by

3 0<~t] <0,

W, ()] < {2 N (S3)

_2
35€2(y|t])te Tle(I?  A[t] > 6,

where 6 is chosen to be the largest real solution of 35¢%6* exp(—% 10g§(6)) = 1/2. Notice that W, (t) has
the property that sup, |W, ()| = 1/2.



Next, we review the Lieb-Robinson bounds [3, 6]. Let the distance dops(X7,X2) between any two
operators X7, Xo be defined as the minimum distance between all pairs of sites acted on by X7 and Xs,
respectively, in the d-dimensional space. Formally, this is defined as

dosX;X £ i dui.7.la S4
(X1 Xa) 2 min oo (i) (54)
i’ €dom(X2)

where dom(O) contains the qubits that the observable O acts on and dqunit(Z,¢') is the distance between
two qubits ¢ and +/. Furthermore, notice that for any operator X acting on a single site, a ball of radius
r around X contains O(r?) local terms in d-dimensional space:

> 1< bgtcar, (S5)

Jidobs (X hy)<r

where h; is an interaction term of the Hamiltonian H = Zle h;. Here, this bound implies the existence
of a Lieb-Robinson bound [6, 7] such that for any two operators X, X5 and any ¢ € R,

l[exp(itH (z)) X1 exp(—itH (z)), X2]|[

S6
< 0| X0 o Xl [dom (X1)] exp(—au (dovs (X1, X2) — v1e]t]). (56)

where ay;, ¢y, v, = O(1) are constants. Having reviewed these tools, before stating our result formally,
we need to define a quantity that we use throughout the proof.

Definition 1. Let 1/e > ¢ > 0. Consider a family of Hamiltonians {H(x) : = € [-1,1]™} in a d-
dimensional space. Suppose that the spectral gap of H(x) is lower bounded by a constant v over [—1,1]™.
Define 61 as

(S7)

81 £ max <Cmax logQ(l/e), Cy, Cs, max (5900, 042)7(51 +11), 0)) ,

where we denote b = ~v/2uy, for convenience, and vy, is the constant from the Lieb-Robinson bound in
Eq. (S6). Here, Cinax = max(Cy,Cs,C3), where C1,C5,C3 are constants defined in Lemmas 6, 7, 8.
Also, we define Cy as a constant such that for all §' > Cy,

1

1_ 771og?(b(8’+1)) <2
CESY)

(S8)

Similarly, define Cs as a constant such that for all 6’ > Cs,

1

1— 7(2d+22) log?(b(8'+1)) =2
2b(8"+1)

(59)

Moreover, « is defined such that for all x > b(aw + 1), 35 log?z < z —b. Finally, 0 is chosen to be the
largest real solution of

2 0 1
35¢20* s ) == S10
‘ exp( 7log2(9)> 2 (510)

The existence of Cy, Cs is guaranteed by noting that as ¢’ goes to infinity, the inequalities become less
than or equal to 2. Similarly, the existence of « is guaranteed by considering  — co. Using the quantity
01 defined above, we also define the parameters “close to” a given Pauli term P.

Definition 2. Given 6, from Definition 1 and an observable O = ) pcgaeo) @p P, for each Pauli term
P € 5 we define

Ipé{CE{1,...,m}:dobs<hj(c),P)S(sl}, (S11)
as in Eq. (II.1) in the main text.

Now, we are ready to present the precise statement that the ground state property Tr(Op(x)) can
be approximated by a sum of smooth local functions. First, we consider the simpler case where our
observable O = apP is a single Pauli term, which easily generalizes to the general case via triangle
inequality.
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Figure S1: Intuition behind Lemma 2. The qubits (blue circles) are arranged in a two-dimensional lattice
with local Hamiltonian terms (light gray shading) acting between all pairs of neighboring qubits. A Pauli term P
acts on a subset of these qubits indicated by the light blue region. The dark blue circle represents a neighborhood
around the region on which P acts. The idea of Lemma 2 is that when changing the parameters x, only Z; such
that h;(Z;) within the neighborhood around the region that P acts on should significantly change Tr(Pp(x)).
Hence, fp depends only on those parameters. It is implicit in the figure that h; depends on Z; for all j. Hence,
fp depends only on the variables included in the vectors 14, ¥19, Z20, T25. In particular, Ip in Def. 2 contains
exactly those indices ¢ of the variables z. that are included in F14, Z19, Z20, Z25-

Lemma 2 (Approximation using smooth local functions; simple case). Consider a class of local Hamil-
tonians {H(x) : © € [—1,1]™} satisfying assumptions (a)-(c), and an observable O = apP, where P acts
on at most O(1) qubits. Then, there exists a constant C > 0 such that for any 1/e > € >0,

lap Tr(Pp(x)) — fp(z)| < Claple, (512)
where fp(x) 2 ap Tr(Pp(xp(z))) is a smooth function that only depends on parameters x. € [—1,1] for
coordinates ¢ € Ip, the restriction function xp : [—1,1]™ +— [=1,1]™ is defined as

(@)e =% C€IP g my (S13)
XP c — 0’ C€1p7 PR )

and the set Ip of coordinates is given in Definition 2. The function fp(x) is smooth in the sense that
IVefe(@)l; < lap*C’ (514)

for some constant C' > 0.

Corollary 2 (Approximation using smooth local functions; general case). Consider a class of local

Hamiltondans {H(z) : « € [-1,1]™} and an observable O = Y pe(; x vy, zyon apP satisfying assump-
tions (a)-(d). There exists a constant C > 0 such that for any 1/e > e > 0,

| Te(Op(x)) = f(z)| < Ce (Z IaP|> ; (S15)
P

where f(x) = Y pegen [P(T) for fp(x) given in Lemma 2.

We illustrate the intuition for Lemma 2 in Figure S1. The proof of Lemma 2 requires several steps.
The main idea is that the function fp(x) is simply ap Tr(Pp(xp(x))) such that xp(x). = z. for c € Ip
and xp(z). = 0 for coordinates ¢ ¢ Ip. Thus, we need to show that changing coordinates outside of
Ip does not change ap Tr(Pp(z)) by much. First, we change one coordinate outside of Ip at a time
and show that the directional derivative of ap Tr(Pp(x)) in the direction changing this coordinate is
bounded. Next, we use this to prove that |ap Tr(Pp(z)) — ap Tr(Pp(z’))| is bounded, where z and a’



differ in this one coordinate. Finally, we show that the difference is bounded for the case where z and z’
differ for all coordinates outside of Ip, which concludes the proof of Lemma 2. We separate these results
into lemmas. Throughout the proofs of these lemmas, we also need several technical lemmas for showing
the existence of certain constants and bounding integrals, proofs of which we relegate to Section I D. In
the rest of this section, and in Section ID, we use the notation b £ ~/(2vy,) and A(j, P) £ dobs(hj(c), P)
for convenience.

Lemma 3 (Change one coordinate; directional derivative). Consider a class of local Hamiltonians
{H(x) : x € [-1,1]™} satisfying assumptions (a)-(c), and an observable O = apP, where P acts on at
most O(1) qubits. Suppose that some x,x’ € [—1,1]"™ only differ in one coordinate, say the coordinate
c* such that ¢* ¢ Ip and only one h; depends on x.~. Let 4 be a unit vector in the direction that moves
from x to &' along the c*th coordinate. Then, there exist constants ¢y, ca such that

lap| |- Vs Tr(Pp(x))|

_anAGP) 1 ‘ 2 bA(j, P) (S16)
<lap| [ cre” ™= 4+ = : A(j P)wexp<— .
2(bA (5, P)) ’ 2(bA(j
1 2log Ol.P) Tlog?(bA(j, P))

Proof. For the direction 4, we can write the directional derivative of p(x) in two ways. First, we have
the standard definition:

Ip
di

Then, from spectral flow, we also have Eq. (S1). When evaluated on an observable O = apP, this
establishes the following correspondence:

ap(it- V, Te(Pp(x))) = iap Te(P[Da(x), p()]) = iap Tr([P, Da()]p(x))- (S18)

() = @ Vap(z). (S17)

Expanding D;(z) according to Eq. (S2) and applying the triangle inequality to

L
=2 (@), (819)

we have

OO

lap|| Te([P, Da()]p(x))| < Jap| [ Wi Z

[P itH( )8h3 —th(:c):|H dt. (520)

Here, since x.- only affects h; for one j and @ is in the direction where only the coordinate c* changes,
then

oh;

5 = 0 (S21)
for all j/ # j. Thus, we are left with
+oo ) oh: .
ap||Tr(|P, Dy(z)]p(x))| < |ap W, (||| P, eitH () 221 o —itH (x) dt. S22
K ot
oo o

We bound this integral using Lieb-Robinson bounds and the inequality on W, (t) that
sup |W, ()] =1/2. (523)
t

We first need to split the integral into cases. This is because Lieb-Robinson bounds only apply outside of
the lightcone, i.e., when A(j, P) > vy |t|. Then, when A(j, P) < vy, |t|, we can instead use the commutator
norm bound ||[4, B]|| ., < 2[|A]|||B|l«- Thus, we define t* = A(j, P)/(2v1:) and split up the integration
into two parts: t € [—t*,t*] and ¢ ¢ [—t*,¢*] so that we have

t* h
arl| (P Da(olp(a))] < fael [ w0 [P ] | oy
)
Hoeo ; oh; _,
+ |ap| Wv(t)‘ [P,eztﬂ(@je—”f’(x) H dt (S24)
. ou |
—t*
+ |ap| W’y(t)‘ {P G %hﬂ ~itH(z) H dt.
— 0o u 1lloo




Notice that the first integral corresponds to the case when we are outside of the lightcone, i.e., A(j, P) >
2u1,|t] while the other two integrals correspond to the case when we are inside of the light cone.

First, we bound the first integral using the Lieb-Robinson bound. Applying Eq. (S6) to the commutator
norm, we have

|dom(hj)|e—a1r(A(j,P)—v1r|t\) (S25a)

Oh;
ot
< clrche_alr(A(j7P)_“1f‘tl), (S25b)

3 Oh; —1 x
H [R eth(a:)éTlJe tH ( )} H < Clr||P||oo

oo

where in the last inequality, we are using assumption (b) that [|0h;/0u| <1 and |dom(h;)| < ¢, for a
constant cp. Plugging this into the integral, we have

" -
) h: . .
lap| Ww(t)H[P,e”H(I)%fe_”H(w)”’ dt < |ap|epcpe”xA0P) / (W, (1) [e@ el gt (S26a)
g U oo g

s

1 , t
< §|ap|clrche_a“A(]’P)/ et gp (S26b)
—*
= |ap|clrche_““A(J’P)/ et gy (S26¢)

0
7‘1er(ij) .
— |ap| xR (eamt - 1) (S264)
A1y Uy
= |aP|M6*a1rA(J}P) erAGP)/2 _ 1) (S26e)
A1y Vly
= Jap| X (efaqusP)/z _ efaeru',P)) (S26f)
A1y Vly
< |ap|we_aer(jaP)/2’ (S26g)
A1y Vly

where in the second line, we used the fact that sup, |W,(¢)| = 1/2, and in the fifth line, we substituted
back in t* = A(j, P)/(2uy).
We can also bound the other integrals using the commutator norm bound

114, Bl <2041l (s27)
to obtain:
+oo . +oo )
el [ w0 [Remn D | < ziapl [ oiPL G2 @ sos
. oG o " 0 ||
<2lar| [ W (0] at (528b)
5

where in the second line, we used assumption (b) that [|0h;/d4|| < 1. To bound the resulting integral,
we use the definition of W, (¢) in Eq. (S3). Note that by our definition of t*, yt* > 6, so we only need to
consider this case in the upper bound on W, (¢). This is because we chose

5900, a, 7(d + 11),6
8 = max (C’max log2(1/e), Cu, C5, X ’O‘;) (d+11), )) : (S29)
and here we consider A(j, P) > §;. Thus, we have
Ay, P ]
At = % > ;jl > max(5900, o, 7(d + 11), 6) > 6. (S30)
Ir Ir
Hence, we can bound the integral:
oo 400 o ot +oo 2
/ W, (t)] dt < 3562/ (yt)te” Tie2 () dt = 3562’)/_1/ xle” T d. (S31)
t* t* T=nyt*

In the inequality, we used the definition of W, (¢) and in the equality, we used the substitution z = ~t.
We can bound this integral using Lemma 9. Set a = 2/7 and k¥ = 4. We have chosen t* and §;
such that all of the assumptions of Lemma 9 are satisfied. In particular, from Eq. (S30), we see that



t = yt* > max(5900, a, 7(d 4 11),0) > 5900. Furthermore, we have at/log®(t) > 2k + 2, because if
t > 5900, then it is clear that at/log?(t) > 10. Now, applying Lemma 9, we have

400 *

245 , _ 1 o gt

/t* Wy (O dt < ==y | ——ggieapey | (117)Pe TR0, (832)
t*

The last integral can be bounded in exactly the same way. Plugging these bounds into Eq. (S24), we
have

lap|| Tr([P, Da(x)]p(z))] (S33a)
CirCh  _a), A(4,P)/2 245 5 4 1 #\10 —%#jm
<lap| | orte 4| S gy | (1) (S33b)
tr
ENUN? 1 . 2 bA(j,P)
= |aP| cie a A5, P)/2 + cy 5 i A(J7P)10 exp (_ ) (833(:)
1 — Blg¢AGP) 7log®(bA(j, P))

where in the second line, we defined constants

ClrCh, 245e2p?
—, = .
Q1 V)r Vlr

(S34)

Cc1 =

Thus, we have proven that if we only change one coordinate outside of Ip, then the directional derivative
changing this coordinate is small. This is exactly the claim of the lemma. O

An immediate consequence of this is that we can integrate the directional derivative to obtain a bound
on the distance between Tr(Pp(x)) and Tr(Pp(z')).

Lemma 4 (Change one coordinate; distance). Consider a class of local Hamiltonians {H(z) : x €
[—1,1]™} satisfying assumptions (a)-(c), and an observable O = apP, where P acts on at most O(1)
qubits. Suppose that some x,z' € [—1,1]"™ only differ in one coordinate, say the coordinate c* such that
c* ¢ Ip and only one h; depends on z.-. Let G be a unit vector in the direction that moves from x to x’
along the c*th coordinate. Then, there exist constants ¢y, chy such that

||| Te(Pp(x)) — Te(Pp(a’))]

_awAG.P) 1 , 2 bA(j,P) (835)
<lap| (e +4 TOAT A(j, P)"? exp (_. :
' “\1 - Ble Py Tlog?(bA(j, P))

Proof. By Lemma 3, we have a bound on the directional derivative of ap Tr(Pp(x)) in the direction of
w. In this lemma, we want a bound on the distance

lap|| Tr(Pp(x))—Tr(Pp(z'))| = |ap|| Te(Pp(z1, . ..y Tery ooy @) = Tr(Pp(x1, oo Ty ooy 2im))|. (S36)

To this end, we can obtain the distance by integrating the directional derivative:

jap|| Tx(Pp(x)) — Tr(Pp(a')) (5372)

~ lop] / c 8T‘r(Pp(x17..A.7t,...,xm)) gt (S37D)
- ot

- \ap|/ c GTr(Pp(:cl,..A.,t,...,xm))’ it ($37¢)
91

:\ap|/ VTP, Daa1, ot i) p(@s e )| (S37d)

where in the last line, we used the correspondence from Eq. (S18). Now, the integrand is exactly what
we bounded in Lemma 3, so we have

lap|| Te(Pp(x)) = Te(Pp(a’) (538)



< |ozp\/ cre”wAUP)/2 4 ) TP y A(j, P) exp (— dt
og?(bA(4,P)) ’ 2 ;
Ter 1 — Blog PELP) Tlog™(bA(j, P))
(S38b)
A 1 , 2 bA(j, P)
< 2ap| | cremmAGP/2 ¢y _ A(j, P)" exp (—’ , (S38c)
1_ W 7log?(bdy)

where in the last line, we can bound this integral because x.«, 2. € [—1,1], so their difference is at most
2. Taking ¢] = 2¢; and ¢, = 2¢y, we arrive at the claim. O

With these two results, we can prove Lemma 2.

Proof of Lemma 2. It remains to show that if we change multiple coordinates outside of Ip, the difference
| Tr(Pp(x)) — Tr(Pp(x'))]| is still bounded. Then, taking fp(z) to be ap Tr(Pp(xp(x))) with xp(x) €
[—1,1]™ equal to z. for coordinates ¢ € Ip and 0 for coordinates outside of Ip gives the desired result.
Thus, we want to bound

apl| Te(Pp(x) = Te(Pp(@)| = [apl| Te(Pp(er, ... wm)) = Te(Pp(al, ... aly))l, (S39)
where 2/, = z if and only if ¢ € Ip. We can bound this using the triangle inequality
lap || Te(Pp(2)) — Te(Pp(a'))] < lapl| Ti(Pp(@1, @, .. m)) — Te(Pp(ah, @2, ., 20n))|
T apll Te(Pp(ah, @2, . 2m)) — Te(Pp(eh, T ., 5m))
+ |ap|| Tr(Pp(xh, ... 21, m)) — Te(Pp(al, ..., z),))]

(S40)

Here, recall that we are only changing coordinates outside of Ip, i.e., z. such that h; depends on z. and
A(j, P) > 6, for ¢; in Definition 1. Moreover, by assumption (b), each local term h; depends on at most
a constant number ¢ of parameters. Then, we can upper bound this sum by

lap|| Te(Pp(x)) — Te(Pp(a’)| < glap| > [ Te(Pplys-)) — Te(Pp(yi-)), (S41a)
J:A(G,P)>01

where k* is defined as

k" 2 arg max| Te(Pp(y)) — Tr(Pp(yh), (542)

1<k<m

and yi,y;, € [—1,1]™ denote parameter vectors that only differ in the kth coordinate. Each of these
terms in the summand can be bounded using Lemma 4:

e | Te(Pp(a)) — Te(Pp(a)| (S430)
< qla i . . , A(j, P)%ex (_2 T )
sierl e NI g | 40P e (Cgat ey
(S43b)
> a1 A(j,P)
< dqlap]) > (0'16_ N
r=0 j:A(j,P)€[01+7,01+7r+1]
(S43c¢)

’
+cy

1 2 bA(j, P) )

; A(jvp)loexp ( .
1 — BlgGAGP) 7log?(bA(j, P))

Now, we want to upper bound this inner sum over j such that A(j,P) € [6; + r,01 + r + 1]. Using
Eq. (S5), we see that there are at most [dom(P)|(bg + ca(61 + r + 1)?) interaction terms h; such that
A(4, P) € [61+7,61+7r+1]. Moreover, because P acts on only a constant number of sites (by assumption),
then

|dom(P)|(bg + ca(d61 +7 + 1)) < cp(bg + ca(dy + 7+ 1)9), (S44)



for some constant cp. Using this as well as upper bounding the sum over r by an integral, we have

||| Te(Pp(x)) = Tr(Pp(a’))] (S45a)
+oo
< qCp|ap|/ (ba + cald1 + 1 + 1)) (S45b)
r=0
/-t , 1 10 _g b(dy + 1)
c€e + Co 1— 35 1Ogigg(€::§r+1)) (51 +r—+ 1) exp < 7 IOgQ(b((sl +r+ 1)) dr.
(S45¢)

It remains to integrate this to obtain our desired bound. Distributing, we can split this integral into four
terms. We bound each of these individually.
First, we have

+o0 +oo 2 bd
/ bac e C1tr)/2 g — ¢ pgenrd1/2 / e~ /2 gy = Z10 pmandn/2, (S46)
r=0 r=0 ar
We also have
+o0 +oo
/ cacy () + 1 4 1)lean1Fm)/2 g — o ¢ jemr01/2 / (61 + 7+ 1)de"am/2 gy (S47a)
r=0 r=0
d
! 2d—k+1

7 —a01/2 k

— & cgem 0/ I;W(él 1)k, (S47b)

where in the last equality we used integration by parts. For the other two integrals, we use Lemma 11
to obtain

+oo
/ bach ! (61 +7+1)Yexp ( 2 b(o1 +7) > dr < ce, (548)

=0 1 - Sleepltrtl) Tl (b6 +r+ 1))

for some constant c. Similarly, for the last integral, by Lemma 12, we have

+oo
/ cqch ! (61 + 7+ 1) 0 exp (—2 boL £ 1) > dr <cde,  (S49)

» |- BlEG0ET) T10g? (b3 + 7+ 1))

for some constant ¢’. Putting everything together, we have

lapl| TH(Pp(x)) — Te(Pp(a’))| (S502)

Ir

< qcplapl Te*‘“f /2 4 ¢heqem 0/ Z W(dl + 1) +ce+ce. (S50Db)
k=0 """"Ir
Combining constants and simplifying, we have

d
lapl| TH(Pp(x)) - Te(Pp(a’))] < lap] (‘” S st + ) . ($51)
k=0

To obtain the final bound, we can use our choice of §; to write this bound in terms of e:

d d d
e~ ar01/2 Z cgéf = Z c?c’e_a“‘sl/%‘klog < <Z c%) €, (S52)

k=0 k=0 k=0
where the last inequality follows from our choice of d; in Definition 1 and C; in Lemma 6. Thus, we have

lapl| T(Pp(x)) - Te(Pp(a))| < Clarle, (353)

where we take

d
C=> i+ (S54)
k=0
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(@) m=1 (b) m=2

Ip={1} Ip = {2}
Xp={0,+15,£1} Xp =1{(0,0),(0,+3),(0,£1)}
. ' - Xp T
T, -1 1 -1 1
- ———— — —

Figure S2: Example of Definition 3. Illustration of the set T,/ p (light blue shading) for specific z’ € Xp
(blue circle), fixing d2 = 1/2 for simplicity. a Example for m = 1. Ip is fixed to {1} so that Xp = {0,£1/2, £1}
according to Def. 3. T,/ p is depicted for the chosen ' = 1/2. b Example for m = 2. Ip is fixed to {2}, and
T,/ p is depicted for the chosen 2’ = (0, —1/2).

To complete the proof, recall that fp(z) = ap Tr(Pp(xp(z))), where xp is defined in Eq. (S13). The func-
tion fp only depends on parameters in Ip by definition. By the previous analysis, since x p(z) and z only
differs in the coordinates outside of the set Ip, the function fp(z) should be close to ap Tr(Pp(xp(z)))
in absolute value as required. Moreover, Tr(Pp(z)) is smooth by Lemma 4 in [1] in that

IVa Tr(Po(@))ll; < C'IIPIE, = € (855)
for some constant C’ > 0. Then, because fp is defined as ap Tr(Pp(xp(z))), we have
IVefe@ll; < lapl*C’, (856)

so fp is smooth as claimed. O

B. Simplification using discretization

Now, we want to show that the sum of smooth local functions f(z) = ) pc g(seo) fp(2) from Corollary 2
can be approximated by simple functions, i.e., linear combinations of indicator functions. In order to do
so, we discretize our parameter space and map each x € [—1,1]™ to some 2z’ with discrete values. Our
simple function is then f evaluated on this discretized x’. To state this more precisely, we first require
some definitions. An illustrative example of how each set is defined is given in Figure S2.

Definition 3 (Discretization). Let € > 0. Let

A 1

€

(S57)

where Ip is defined in Definition 2 and C' is as in Lemma 2. Define the discretized parameter space as

Xp 2 x € [-1,1] :zfc¢Ip,xC:0 . ($58)
if ce Ip,x. € {0,102, +209,...,+1}

Moreover, for each x € Xp, define the thickened affine subspace close to the vector x for coordinates in
Ip as

C

5 5
T,p2 {x’e[—171]m:—22 <ze—x < ;,vcelp}. (S59)



11

With these definitions, the simple function that approximates f is defined by

g2 Y | Y fe@)lzeTopl |2 Y gr(@). (560)

PecS(geo) Lax'eXp PeS(geo)

In what follows, we prove that g indeed approximates f well. As in Section [ A, we first consider the
simpler case where our observable O = apP is a single Pauli term, which easily generalizes to the general
case via triangle inequality.

Lemma 5 (Approximation using simple functions; simple case). Let € > 0. Given this € in Definition 3,

lgp(x) = fP(x)| < €|ap] (S61)
for any x, where fp is as in Lemma 2 and gp is defined in Eq. (S60).

Corollary 3 (Approximation using simple functions; general case). Let € > 0. Given this € in Defini-
tion 3, then

lg(@) = f@) <e| D lapl (562)

PeS(geo)
for any x, where f is as in Corollary 2 and g is defined in Eq. (S60).

Proof of Lemma 5. Consider some input € [—1,1]™. First, we want to argue that x € T,+ p for exactly
one ' € Xp. Counsider some variable z. € [—1,1] of = for ¢ € Ip. It suffices to show that there exists
xl, € {0,£09,+2ds,...,%1} such that —d2/2 < af, — z, < d2/2. This is clear because d2 is defined as
a fraction of the form 1/n for an integer n. Moreover, there is at most one z. such that this is true
because each possible discrete value of 2/, is separated by intervals of size d; while . is within d3/2 of
x!, so there cannot be overlap for different values of z,. Also, since z. is in a half-open interval of z/,,
this prevents points on the boundary (i.e., exactly d2/2 away from z’) from being associated with two
... Finally, this half-open interval does not prevent the boundary case of z. = —1 from being associated
with an z/ because —1 is always a possible discrete value for z,. This occurs again because of our choice
of 02 as a fraction of the form 1/n for an integer n. Thus, z € Ty p for exactly one 2’ € Xp.
With this, our goal is to show that

lgp(z) = fp(z)| = |fp(2’) — fr(z)| < lap]. (S63)

There are two parts to proving this. By definition of T, p in Definition 3, this means that ' and x are
close for coordinates in Ip. However, for coordinates not in Ip, ' and = can be far away. Nevertheless,
from our results in Lemma 2, we know that fp does not change much when its input only differs for
coordinates not in Ip. Thus, we can use this to obtain our bound.

To make this more clear, we introduce the notation

fP(-T) = fp(xin;xout)7 (864)

where z;, denotes the variables . € [—1,1] such that ¢ € Ip and 2., denotes the variables z. € [—1, 1]
such that ¢ ¢ Ip. With this, we can use the triangle inequality to treat the two cases separately:

|fp(a') = fr(2)] = [P (%ini Tou) — FP(Tin; Tout )| (S65a)
< |fP(‘r;n;‘r/0ut) - fp(l'{n; xout)|

S65b
1P (@ Tout) — Fp(Tin: Fout). (S65b)

Here, in the first term, only the coordinates not in Ip change while in the second term, only coordinates
in Ip change. To bound the first term, we can use Lemma 2 with € set to €/(2C), where C' is the constant
defined in Lemma 2, to obtain

€
|fP (@i Zout) = P (Thni Tow)| < lap|5 (S66)

For the second term in Eq. (S65), we bound this using the fact that ' and z are separated by at most
09 for coordinates in Ip and the smoothness condition on fp from Lemma 2. The key step here is that
we can write this difference as the integral of the directional derivative of fp along the direction from
Zin to x}, given by a line. In particular, we can parameterize this line by zin(t) = in + (2f, — Zin)?.
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Notice that at ¢t = 0, this is equal to z;, while at ¢ = 1, this is equal to a{,. Thus, suppressing the Zoyut

parameters in our notation, we have
1
0 in(t
/ 91p(zn(t) dt‘ (S67a)
0

I (al) = fp(am)| = =

1 .
0 ot
Yofp(zin(t)  Ozin(t)

= /O () ot ‘dt (S67¢)
1

= [ |Vanfr(@m) - (2h, — zin)| dt (S67d)
0
1

< [ 19 e lolll, - aulde (S670)
0

S \/@|O[P|||$In - xinllz (S67f)

<V ap |V Ip||2h — Tinll o, (S67g)
1)

< VClaplVIpl5 (S67h)

< Slarl. (S67i)

Here, in the third line, we use the chain rule. In the fifth line, we use the Cauchy-Schwarz inequality. In
the sixth line, we use the smoothness condition from Lemma 2 to bound the ¢5-norm of the gradient. In
the seventh line, we use the fact that ||y||, < v/n|ly||,, where n is the number of elements in y. In the
eighth line, we use the definition of T} p. Finally, in the last line, we use our choice of §5 as
1
5y = < (S68)

e VO

Combining this bound with Eq. (S66) and plugging into Eq. (S65), we have
€ €
[fp(a’) = fp(2)] < larl+ glap| = eapl, (569)

as required. O

C. Simple form for ground state property

We can combine the results of the previous two sections to obtain the final result giving a simpler
form for the ground state property Tr(Op(x)). The proof of this statement is simple given the previous
results.

Theorem 3 (Simple form for Tr(Op(x))). Let 1/e > € > 0. Given €, we define 61 according to Def-
inition 1 with € set to €/(2C) for the constant C defined in Corollary 2, and define 6o according to
Definition 3 with € set to €/2. The ground state property Tr(Op(x)) can be approzimated by a simple
function, i.e.,

| e (Op(@)) —g(@)l <e| D larl], (S70)

PeS(geo)
where g is defined in Eq. (S60).
Proof. By the triangle inequality, we have
| Tr(Op(x)) — g(2)| < [Tx(Op(x)) — f(2)] + |f(x) — g(z)]. (S71)
Here, the first term can be bounded by Corollary 2 to obtain

T (Op() = F@I < 5 | D larl | (S72)

PeS(geo)
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Meanwhile, the second term in Eq. (S71) can be bounded by Corollary 3 to obtain

@) —g@l <3| X larl]. (s73)

Pes(ee)

Combining Eq. (S72) and Eq. (S73) in Eq. (S71), we have

| Tr(Op(a) —g(x)| <e| D lap] (S74)

Pes(zeo)

This concludes the proof. O

D. Technical lemmas for finding constants and bounding integrals

In this section, we state and prove several technical lemmas for showing the existence of certain
constants and bounding integrals of specific forms needed throughout Section I. Throughout this section,
we use the notation b £ v/(2v),). First, we show the existence of the constants utilized in Definition 1.

Lemma 6. Given ap,b > 0 and d > 1, there exists a constant Ci large enough such that for all
1/e > ¢ >0 and for all &) > Cylog*(1/¢),

Ay 1
Explicitly, such a constant C1 can be given by

(2d + VA4d? + 2a,)?

2
iy

C) =

(S76)

Proof. For simplicity, throughout this proof, let z = log(1/€¢’). Because we assert that 1/e > ¢ > 0, then
1 < 2 < oo. First, we consider the monotonicity of f(d7) = %0} — dlog(d}). Taking the derivative of f
shows that f(0}) is monotonically increasing for &, > 2d/aj,. Since &, > Cylog?(1/€') = C1z? > C; >
2d/ay, (note d > 1), it suffices to establish the claim for §; = C122, i.e.,

SC1a? — dlog(Cra?) 2 (S77)

for x > 1. We show that our choice of C; satisfies this inequality. First, using the inequality log(z) <
2(y/z — 1) for z > 0, we can apply this with z = C 22 to obtain

Aalr

SrCia? - dlog(Cra?) = TrCra? — 2dy/Cra + 2. (S78)

Bounding this trivially because 22 > x for > 1, we have

Aalr

TCra® — dlog(Cra?) > (01— 24/C1) . (S79)

Plugging in our choice of C; and simplifying, we have

2
. 2d + V4d? + ay, 2d + /4d? B
a—lCle — dlog(Cyz?) > ( ) —2d i i ) x (S80a)
2 2(1]1' Qly
(8 +2ai, + 4dVAd® + 20, 8d* + 4dV/Ad® + 2a, . (S80D)
o 2(111« 2a1r
= . (S80c)

Hence, we obtain the desired inequality. O
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Lemma 7. Given b > 0, there exists a constant Cs large enough such that for all 1/e > € > 0 and for
all &, > Cylog?(1/¢€),

2b5" 1
— 4 22log(b(d; +1)) >1lo <> S81

Tlog?(b(3, + 1)) g(b(01 +1)) = log | 5 (S81)
Explicitly, such a constant Cy can be given by

C max<(18b+(63'2?/2))3 | 2(7-16)° 23(7.22.64)4)

S82
b B b ’ b (S82)
Proof. For simplicity, throughout this proof, let = log(1/€¢’). Because we assert that 1/e > ¢ > 0, then
1 < 2 < oo. First, we consider the monotonicity of f(d)) = %ﬁé’ﬂ)) — 22log(b(6} +1)). Taking

1

the derivative of f shows that f(d7) is monotonically increasing for 6, > (18b + (63 - 22/2))3/b. For
81 > (18b + (63 - 22/2))? /b, we can make use of log(z) < 32!/3,Vz > 0 to show that

/
7132(((;1((;)1)) > §b+22. (S83)
Because 87 > (18b + (63 - 22/2))3/b > e/b, we have
log?(b(87 + 1)) > 1. (S84)
Together, we can show that for 6] > (18b + (63 - 22/2))3 /b,
£(5) 2b 4b 22 0. (S85)

= - - >
Tlog?(b(d} + 1)) 7(5 +1)log®(b(8] + 1)) & +1 =
Since &, > Cylog?(1/€') = Coa® > Cy > (18b + (63 - 22/2))3/b, it suffices to establish the claim for

8 = Coz?, e,

2b02$2

— 221log(bCy2® + b) > S86
Tlog2 (bCoa® + b) o(bCaa” +b) 2@ (586)

for x > 1. We show that our choice of C5 satisfies this. First, notice that it suffices to show the following
two inequalities

b 2
. Caz >z (S87)
7log”“(bCax? + b)
and
2
bCor > 221log (bCha? + b). (S88)
7log”(bCox? + b)
Since Cy > 1 and z > 1, then Cy2? > 1 and bCox? + b < 2bCyx%. Then, in Eq. (S87), we have
2 2 AT

b02$ bOQl‘ > Cgb (889)

> >
7log? (bCox? +b) — Tlog?(2bCax2) ~ 7- 16\/53: ="

where the second inequality follows using the inequality log(z) < 4z'/* for z > 0, applied with z =
20C52%, and the last inequality follows from our choice of Cy. This proves Eq. (S87). Now, to prove
Eq. (S88), notice that it suffices to show that

ng (E2
7

> 22(4(20C2%)Y*)3 = 22 64(20C,)>/ 423/, (S90)

This is because, again using the inequality log(z) < 4z'/* with z = 2bCs22, then

2
bC;”” > 22 64(20C5)% 423/ > 2210g®(20C,2?) (S91)

so Eq. (S90) implies Eq. (S88). Thus, it remains to prove Eq. (S90), which is equivalent to

(7-22-64)%.23
—

Because = > 1, our choice of () satisfies the above inequality. O

Cy > (592)
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Lemma 8. Given aj,b > 0 and d > 1, there exists a constant Cs large enough such that for all
1/e > ¢ >0 and for all & > Cslog®(1/¢),
2b0]
log? (b(d] + 1))

Explicitly, such a constant C3 can be given by

— (d + 22)log(b(8} + 1)) > log (3/) (S93)

18b+ 63(d 4 22)/2)3 . 2(7-16)% 23(7-(d +22) - 64)*
G — e (806304 22)/2 | 27167 2(7-(d+22) 64" o0
b b b
Proof. The proof is the same as that of Lemma 7 after replacing 22 by d + 22. O

Next, we begin the integral bounds portion of this section and reprove a variant of the lemma introduced
in [2].

Lemma 9 (Variant of Lemma 2.5 in [2], Lemma 5 in [1]). For a > 0 define
Ua(z) = € “ToEt@®

on the domain x € (1,00), where log denotes the natural logarithm. For all integers k > 0 and t > 5504
such that

—— > 2k + 2, S95
a10g2 t (595)

we have the bound

+o0 1
/ aFug (z) de < ————— 122y, (t), (S96)
t

- 2k+2
“ ( 20) )

where 7(z) £ ax/log?(x).
To prove this, we need a bound on the upper incomplete Gamma function:
Lemma 10 (Proposition 2.7 in [8]). Take any real n > 0. Then,

Mn+1,2) < ! z"e” 7, (S97)

2

for all real z > n.

Proof of Lemma 9. Define the function

o (S98)

Here, because we are considering the domain z € (1 oo)
entiable. Moreover, it is always positive because log (x)

derivative
ar —a <log(m3)—2> ) (S99)
dx log”(x)

en this function is well-defined and differ-
og(

th
> log(z) > 0 for z > 1. Also, consider the

Again, this is well-defined because log®(z) > 0 for # > 1. Furthermore, we see that if z > €2, then
3—; > 0. Thus, for z > €2, 7(x) is monotone increasing. Ultimately, our goal is to bound the integral

+oo +oo
/ hug (z) do = / ke @) dg (5100)
¢ ¢

by using a substitution 7 = 7(x),dr = g—;da:. Substituting in for x, we use the inverse x = z(7) and for
the differential dzx, we use dx = g—de to obtain

+oo dx
x(T)) ke ™= dr. S101
[, @ (s101)



We want to get this into the form of the upper incomplete Gamma function:

+oo "Gk
I'n+1,2) = / e T dT:n!e_ZZH.
z k=0

16

(S102)

Thus, we want to find bounds on g—f and x(7) in terms of 7 (and constants). Since we define x(7) as the

inverse of 7(z), then we know that

— ===
dr T a

de 1 1 < log® () )_

- - log(z) — 2

We notice here that if > 28, then

If we further require = > 5504, then
(o) — 5
x — | = —.
~ \log? a?

dz T T2
— < —-< .
dr —a — a3

Using these together, we have that

Plugging these into Eq. (S101), we can upper bound our integral

—+oo +oo d
/ 2*e @) dy = / (x(T))kefT—x dr
t 7(t) dr

+oo 2k . 72
< —5€ 3 dr
a a

(1)
1 e 2k+2
- T d
a2k+3 [—(t) T e T

Now, applying Lemma 10, we can further bound this:

+oo xke_-r(x) dr < L#(T(t))%we—f(t)
\ = q2k+3 1 _ 2k(+)2
T(t

for 7(t) > 2k 4+ 2. Finally, since 7(t) < at for ¢ > e, then we have

—+00
/ ehe—T@ gy < ;tzﬂze—f(w_
t

_2k+2
o (1-232)

We use this to obtain another integral bound, which is as follows.

Lemma 11. Let 61, ¢ be as in Definition 1. Then, there exists a constant ¢ such that

+ee 1 2
I'= / (61+7+1)"%exp (— b0, + 1) ) dr < ce.

1 35log?(b(51+r+1))

EAP)
B 7log”(b(01 +r +1))

=0

Proof. Using the substitution x = b(d; + r + 1), this integral transforms into

1\ e 1 10 2 x—b
e=b(61+1) \ 1 — = 5F og”(x)

(S103)

(S104)

(S105)

(S106)

(S107a)
(S107b)

(S107¢)

(S107d)

(S108)

(S109)

(S110)

(S111)
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Here, we can show that for our choice of &1, 22/7198°(®) and 1/(1 — (35log? x)/(z — b)) are both mono-
tonically decreasing in x. The derivative of the exponential term is

2 b

7 1o x
4 ks _ _4667122, (S112)
dz Txlog” x

To show that the exponential term is monotonically decreasing, we need to show that this derivative is

less than 0 for x > b(d; +1). We see that 2/ (Tlog’ z) ig always nonnegative and log® z is positive as long

as ¢ > 1 (in which case x > 0 as well). Thus, we only require z > 1 for this derivative to be less than 0.
Similarly, for the other term, we have the derivative

d 1 ~ 35logx(2b — 2z + wlog )

%1—%_ 2(b— 2 + 35log® )2

(S113)

In order for this to be less than 0, we see that (b — z + 35 log? x)? is always nonnegative and logx is
positive as long as « > 1 (in which case x > 0 as well). Then, the only term left is 2b — 2z + z log x,
which is positive as long as logx > 2(x — b)/x = 2 — 2b/x. This is satisfied if logx > 2, which follows
when z > 2.

Putting everything together, we see that both of these terms are monotonically decreasing in x for
x > e2. In our integral, we have x > b(6; + 1). However, by our choice of §; in Definition 1, we have
that 6; > 5900/b so that b(6; + 1) > bd; > 5900 > e2. Hence, the condition for these terms to be
monotonically decreasing is satisfied for the bounds of the integral.

Thus, because these terms are monotonically decreasing, we can upper bound the integral by

11 —+o0
I< <1> exp (2 5 b > 12 / 210 Rt da. (S114)
b 710g (b(51 —+ 1)) 1 — w ;I)=b((51+1)
1
Now, we can use Lemma 9 to bound this final integral using k£ = 10,a = 2/7:
oo g 7 1 2 b(6 +1)
e Tos?@ dy < b(d1 +1))*2 ex (—]-). S115
x e Tlos x e
/aczb(61+1) = 21 _ 7(22)log? (b(6:1+1)) (b(on ) P 7log®(b(8, + 1)) ( )

26(81+1)

Here, we note that the conditions are satisfied because

(I 0 B )}
2/Uhr o 2U1r

and it is clear that for ¢ > 5900 that at/log®t > 22. Let ¢; = 7(1/b)'' /2, and we can combine these
bounds:

2 béy 1 1 99
< —— .
<o 7log2<b<61+1>>>(1—351"%253“1“))) g | 06+ D) 610
1 1

> max (5900, a, 7(d + 11), 6) > 5900, (S116)

We can further bound this by

I <4cpexp (_2751 Lij(lizygz(l(;gi(i()il +1) > . (S118)

Here, this is because of Eq. (S8). This follows because
1_ 3510g121§l(;551+1)) < 1 77105}6(1b§r611)+1)) ’ (5119)

Now, by our choice of §; and Lemma. 7, then we have
I < 4eje™ '8/ = 4eye, (S120)
Taking ¢ = 4¢;, we arrive at our claim. O

Lemma 12. Let 61,¢ be as in Definition 1. Then, there exists a constant ¢’ such that

I'= /:O 1_ 3510gib(61+r+1)) (01474 )T exp (ﬂbﬁ(iii i:i 1))) dr<de (S121)

b(d1+r1)

Proof. The proof is the same as that of Lemma 11 after replacing 2'° by x¢+19. Moreover, in the final
steps, instead of using Eq. (S8) and Lemma 7, we use Eq. (S9) and Lemma 8, respectively. O
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II. NORM INEQUALITY FOR OBSERVABLES

The efficiency of learning depends strongly on the complexity of the target functions we would like to
learn. One way to characterize the complexity of the target function is to consider an appropriate norm
of the function. Given an observable O = ), apP specified by the Pauli coefficients ap, Theorem 3
shows that having a smaller ¢/;-norm ), |ap| on the Pauli coefficients implies that the ground state
property Tr(Op(x)) can be better approximated by a simple function. This motivates the derivation of
bounds on ), |ap|.

A technical contribution of this work is to develop a norm inequality relating the #;-norm of the Pauli
coefficients ), |ap| to the spectral norm ||O||  (the largest singular value). To state this result precisely,
we first present some formal definitions. Throughout the remainder of this section, we consider labelling
the n qubits in a d-dimensional lattice with a d-tuple, £ = ({1, ...,£4), where each ¢ € {1,...,|/n|}.

Definition 4 (Domain of an observable). Let O be an arbitrary observable in a finite d-dimensional
space. Then, define the domain dom(O) C {1,...,[/n]}¢ of O to be the set of qubits that O acts
nontrivially on.

Definition 5 (geometrically local with range R). Let O be an arbitrary observable in a finite d-
dimensional space and let dom(O) C {1,...,[¥n|}? be its domain. Moreover, let dom(O); =
mk(dom(0)) C {1,...,|¥n]}, where m : Z¢ — 7Z is the projection map onto the kth coordinate.
Let Ro; £ max(dom(O)x) — min(dom(O)y). The observable O is geometrically local with range R
if Rox < R, forallk=1,...,d and

d
R ] R (1)
k=1

In cases when the range R = O(1) is unimportant, we simply say that O is geometrically local.
We can now properly state the norm inequality relating the Pauli-1 norm to the spectral norm.

Theorem 4 (Detailed restatement of Theorem 2). Given an observable O =" , apP that can be written
as a sum of geometrically local observables with range R in a finite d-dimensional space, we have

> lap| <2'R-470] . (52)
P

If we additionally require that ||O| ., = O(1), we have the following corollary.

Corollary 4. Given an observable O = Y, apP with ||O| = O(1) that can be written as a sum of
geometrically local observables in a finite d-dimensional space with R = O(1), we have Y p|ap| = O(1).

In order to establish the above norm inequality, we consider an explicit algorithm for constructing a
state p satisfying >~ [ag| < CTr(Op). In this way, bounding Tr(Op) above by [|O]|,, gives the desired
inequality. We briefly discuss the idea of the algorithm. First, we consider the set of all geometrically
local blocks over the n qubits. Then, we consider all Pauli observables () with nonzero ag and the qubits
that @) acts on. For each block, if the qubits that ) acts on are all inside that block, we put Q) inside
of this block. If there are multiple such blocks, we choose an arbitrary one to put @ in so that each
Pauli observable @ is in exactly one block. After that, we separate all blocks into a few disjoint layers
of blocks. Each layer contains many blocks that are sufficiently far from one another, and each block
contains some Pauli observables. We select the layer that has the largest ZQ |agl|, where this sum is
over all Pauli observables inside that layer. To construct the state p, we let p be the maximally mixed
state on qubits outside of the selected layer. For each block in the selected layer, we choose p to be a
state that maximizes the sum of the Pauli terms in the block. With a careful analysis, the constructed
state p satisfies the desired norm inequality.

A. Facts and lemmas

Before proving Theorem 4, we give a few definitions, facts and lemmas.

Definition 6 (geometrically local Pauli observables). Throughout this section, we consider S(220) ¢ be
the set of all geometrically local Pauli observables with a constant range R = O(1).
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The following fact can be easily shown by considering the Pauli decomposition of each geometrically
local observable in the sum.

Fact 1. Any observable O that can be written as a sum of geometrically local observables can also be
written as a sum of geometrically local Pauli observables. Thus, we can write O = Y, apP, where
ap =0 for all P ¢ S&>),

A construction of the mixed state that we are going to use throughout the proof is the following. The
key idea is that |Tr(Pip)| = 1/k for i = 1,...,k, and | Tx(Pp)| = 0 for any P € {I,X,Y,Z}®" \
{I,Py,...,P}.

Lemma 13. Let Py, ..., P, € {I,X,Y, Z}®". Suppose that P; # I®" for alli=1,...,k. Then

I+ P +---£Pg
= (S3)

is a density operator, i.e., it is positive semidefinite and has unit trace.

Proof. First, we can easily show that p has unit trace. Let P, = @}_, Pi; for all i = 1,...,k, where
P, ; € {I,X,Y,Z}. Then, we have

Tr(p) = 2% (Tr([) + %(TY(H) e Tr(Pk))> (S4a)
1 1= n
=1, (S4c)

where the last equality follows because the trace of a nonidentity Pauli matrix is 0, and we assume that
P; # I®™ so that the P;, ; are not all identity. To show that p is positive semidefinite, it suffices to prove
that the eigenvalues of (£P; & -+ &+ P;)/k are between —1 and 1. Then, when this is summed with the
identity matrix which has eigenvalue +1, the eigenvalues are nonnegative. We see this using the spectral
norm

H:I:P1:I:~~:I:Pk
k

1
< (Pl ++ 1P = 1, (55)

which concludes our proof. O

Now, we want to define an operation that is useful throughout the proof.

Definition 7 (Restriction of a Pauli operator). Let P € {I,X,Y, Z}®". Write P = ®£€{1"”,|—%J}d P,

for P e {I,X,Y,Z}. Let S C{1,...,|¥/n]}¢ be a subset of qubits. The restriction of P to the subset
of qubits S is the substring of Paulis that act on S:

restrict(P; S) £ Ps = ®P[. (S6)
Les

In Definition 7, the subscript notation is used to be consistent with the more standard notation of Py to
denote a Pauli acting on qubit k.

B. Proof of Theorem 4

The key idea is to upper bound ) , |ap| by a constant times Tr(Op) for some test state p. We construct
such a p with a similar form to that seen in Lemma 13. Then, because p is positive semidefinite and has
unit trace by Lemma 13, Tr(Op) < ||O|| - Putting everything together, we have

> lapl <2/R 47 Tx(0p) < 2°R- 47| 0], (S7)
P
as required. Thus, it suffices to consider this intermediate step of finding a quantum state p such that

29R - 4R Tr(Op) > Y p |ap|. To this end, we consider dividing our space of all Pauli observables into
different sets and focus on one set, which educates our choice of p.
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Consider some Pauli observable P € 5(8%°) where S(8%) is the set of all geometrically local Pauli
observables. Since P is geometrically local, by Definition 5, there exist constants Ry for K = 1,...,d that
serve as the maximum range of qubits that a Pauli observable covers in the kth dimension. We want to
divide our d-dimensional space into blocks of Ry, qubits in each dimension. These blocks of qubits are

B Q5= {qublts 0= (ly,...,0q) b € [(2i, —2)Rg + Ji + 1, (26 — )Ry + ji), VE € {1,...,d}}, (S8)

where 7 = (i1,...,iq) and j = (j1,...,ja). We construct these blocks for i) = 1,... L%J
and jr = 0,...,2Ry — 1 for k = 1,...,d. Here, we are dividing the d-dimensional space into blocks of

R= HZ:1 R qubits, where each block is index by 14 i and is separated from the next by Rj qubits in the
kth dimension. We refer to this gap between the blocks as the buffer. Denote the buffer as

SRVAIRA UB@,;) ; (S9)

i

where the union is over all possible vectors 7 such that i), ranges from 1 to L%j This separation
using the buffer region is so that no Pauli term can act on qubits in two blocks at once, which we use
later. Moreover, we are considering possible shifts of these blocks by jr qubits in each of the dimensions.
Notice that there are only 2Ry possible shifts in each dimension until the blocks align with the original
positioning of another block. Consider the related set consisting of the Pauli terms that act only on
qubits in a given block

S5 £ {P : for all qubits k € dom(P), then k € Bz} \ U Seml (S10)

(@3 < @9
where we define (7, ') < (i, ) using the standard lexicographical order, i.e.,

(#,5') = (1, i), G, -5 da)) < (659) = (i, - i), (1 -+ Ja)) (St1)

if and only if i <, or i =i and j' < j. Here, @' < i if and only if |, < i1, or i} = iy and i} < is, or,
etc. Thus, we create these sets S(; ;) sequentially according to this ordering. We remove previous sets so
that each S(;;.) is disjoint from other sets S(;, i)

Now, taking a union over all i, we can consider the Pauli terms acting on these blocks together. The
resulting sets then only differ based on the shift of j; qubits in each dimension.

U; £ U S (S12)

Figure S3 illustrates all these definitions. We now consider ), . |ap|, where these ap are the
J

coefficients in O = )", apP. We want to pick the set Ujf such that this sum is largest, i.e.

-,

j* & argmax Z lap). (S13)
0<i1S2R—1 fp)

OdeSQRd*I

We now focus on the set U;.*. To justify this choice, we can think of each of the sets shifted by j as
breaking up the sum ), |ap| into different disjoint sums. This is a result of our earlier choice for U, 5 to

contain a disjoint set of Pauli terms. Then, the maximum over all shifts j of 3 pey. lap| is greater than
J
the average over all shifts. In other words, we have

1
Z lap| > ﬁZIaPI, (S14)
P

PEUJ*

where recall that R = szl Rj. Relating back to our original goal, it remains to find a test state p such
that

TH(0p) > 15 O lawl (515)

PEU;*
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Figure S3: Intuition behind proof construction of Theorem 4 for the cases of d =1 (a) and d = 2
(b). In both cases, the idea is to divide our qubits (blue circles) in d-dimensional space into blocks (light blue
boxes), and consider the quantity we wish to bound in these blocks. Note that all qubits not highlighted are in

the buffer region. The first column in the figure depicts the unshifted blocks, i.e., ; = 0. The second column
displays an example of shifted blocks (dashed boxes). Finally, the last column considers Pauli terms (dark blue
circles) acting on the qubits circled and indicates if they are contained in Uy, defined in Eq. (512).

Once we have this, we can conclude that

2'R-47|0||, > 2°R- 4% Tx(Op) > 2°R ) |ap| > |apl, (516)
PEU;* P

proving our claim, where the first inequality follows because p is positive semidefinite and has unit trace
from Lemma 13. In what follows, we aim to define this p based on the set Us. and show that this
inequality holds.

The idea is to have p as the maximally mixed state on qubits in the buffer region B% and be a state
of the form in Lemma 13 for qubits in (7 B ;7<) In this way, when we take Tr(Op), any Pauli terms not

in Uz, contribute 0 while Pauli terms P in Uy. contribute a constant times |ap|. Explicitly, we define p
as

P = @ ZLR IB(?,]‘*) + |S(*1~ Z (71)5{GQ<0}QB(?J‘*) ® %é ®p; ® %’ (817)
i

©3")1 QES 7 749 ey, 7 LeBl,

where d(q,<0) 18 1 when ag < 0 and 0 otherwise. Also, the tensor product is again over all possible

vectors 7 such that each entry i ranges from 1 to LWJ Here, we are using the notation
from Definition 7 to denote quantum operations restricted to their action on a given set of qubits. By
Lemma 13, p; is a proper quantum state that is positive semidefinite and has unit trace; hence p is a
quantum state. Now, we want to calculate Tr(Op). Recall that O = >, apP. Taking the trace, we
have

Tr(Op) = > ap Tr(Pp). (S18)
P

There are four cases that can occur regarding dom(P).

1. P acts nontrivially on some qubits in the buffer region, i.e., dom(P) C B(;P 7 U B% for some ip.

2. P acts trivially on all qubits in the buffer region, but P acts nontrivially on qubits in two or more
blocks, i.e., dom(P) C Bg,, 7Y Bg,, 7+ for some ipy,ips.

3. P acts nontrivially only on qubits in a single block but P is not in the set U;*, i.e.,dom(P) C B(;P 7

for some 7p, but P ¢ Siip 7o

4. P acts nontrivially only on qubits in a single block and P is in the set Uj+, i.e., dom(P) C B, 7

for some ip and P € S(?p,f*)'
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We compute Tr(Pp) for each of these cases. We note that Tr(p;) =1 in all these calculations.
For Case 1, it suffices to consider the case where P acts on only one qubit in the buffer region, i.e.
there exists a qubit £* € B;* such that ¢* € dom(P) and dom(P) \ {¢*} C B Then, the state Pp

is as follows

G@p.Jg*)

I,
Pr=|Qr Q& 5 (S19a)
i#ip éiji_*
040"
1 1 s P,
- _1)%ag <0} e
& R PB@PJ*) + |S(;P i ( 1) Q< PB(ZP.J’*)QB(ZPJ*) X 5 R (Sl9b)

QGS(;PJ'*)

where we are again using the notation from Definition 7. Taking the trace of this state, since the trace
of I/2is 1, we have

Py
T (P ) — M Tr( P, (SQO )
NP = TR "\ Bap ) a
1 S{ag <o}
+ ﬁ Z (—1)teq<o Tr<PB<fp,F*)QB(7p,3*>>> (S20Db)
(P! Q€S 7y, 70y
=0, (S20¢)

where the last equality follows because the trace of a nonidentity Pauli string is 0 and

T(Po, . Qs ) = 2%0(rn, | —n, o) (S21)

- B, - -
P3*) (ip,3™*)

Here, PB(IP,;*) #* QB(IPJ*) because @ € S(?pj*) so that @ acts nontrivially only on qubits in B(?p,f*)
while P acts nontrivially on £* ¢ Bz, 7.,. Thus, Case 1 contributes 0 to Tr(Op).

Next, we consider Case 2. In Case 2, we consider what happens if P acts nontrivially on qubits in
more than one block, i.e., dom(P) C B(i'p,l,]'*) U B(fp,z,f*)' However, this case is in fact not possible
by construction because the buffer region between B(fp,lj*) and B(fp,zj*)
dimensions. Recall that Ry is the largest distance between two qubits that any P acts on in the kth
dimension. Thus, it is not possible for P to span across the buffer region, so this case cannot occur.
Hence, it trivially contributes 0 to Tr(Op).

Now, we consider Case 3. From the previous two cases, we see that P can only act nontrivially on

qubits in a single block B( ) to contribute to Tr(Op). However, by construction of the sets S(;;),

is of size Ry in each of the

ip,
in order to make them disjoint, it is possible that P ¢ S(;P ) despite it acting on the correct block of
qubits. We show that this also contributes 0 to Tr(Op). Taking the trace, we have

1 1
TH(Pp) = 55 Tr(P(B({Pj*))) AT

(ip,j*)

_ 1\%{ap <0} _
( 1) Qs Tr<PB(ZPJ*>QB(TPJ*)> - 07 (822)
QESip 5%

where the last equality follows because the trace of a nonidentity Pauli string is 0 and

Tr(PBGPL;*)QB(;PJ*)) =2%0(p, . . Qu, .} (523)

ipd*) Q (ip,i*)

Here, PBGPJ*) #+ QBGPJ'*) because @ € S(?p,f* .7
Finally, we consider Case 4. From the previous cases, we see that the only remaining possibility is that
P acts nontrivially on qubits in a single block B(;P 7 and is also contained in a set S - ) Computing

(ip,g*
the trace, we have

y while we know from this case that P ¢S

1

1 6 «@
Te(Pp) = 55 Tr(P(BGPJ*)O n Bl (—1)%tea<0) Tr(PB({P_j*)QBGP‘;*J (S24a)
1P,

QES@PJ’*)
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1 1 5
= PYAT— Z (—1)’teq=<0} Tr(PB(;Pj*)QBGPj*)) (524b)
(iP.7")! Q€S 7, 7+
1
= (—1)%ep<0), (S24c)

Here, we are using that the trace of a nonidentity Pauli string is 0 and TT(PB(EP-EHQBGP f*)) =
R Lo : Lo _

2 6{PBGP,J’*>:QBGPJ*>}' Because P € S(Z.P’j*), there exists a Q € S(iPJ*) such that P = @ so that

the sum over S(;P 7 then collapses to this P. Thus, for this case, P contributes a nonzero amount to

Tr(Op). Summing over all P € U;., we have a total contribution of

Z ap Tr(Pp) = Z w;(fl)‘s{w’@}ap: Z S%‘|ap|. (S25)

PEU;. PEU;. (ip,J*) PEU;*| (ip,j*)

Thus, putting everything together, only Case 4 contributed a nonzero amount to Tr(Op), so we have

1
Te(Op) = ) ﬁhﬂ- (526)
PeU;. 7 (ip.g")
Here, we know that
|S(;P7;*) < 4R (827)

because |B 7, =

= R and on R = [], Ry qubits, there are 4% possible Pauli terms (i.e., I, X,Y, Z on
each of the qubits). Then, we have

1
00> 5 3 lapl (s28)
PGUJ-*
As explained previously, this suffices to conclude the proof. O

III. ML ALGORITHM AND SAMPLE COMPLEXITY

In this section, we present our machine learning algorithm and prove that it can approximate Tr(Op(x))
given training data size N scaling logarithmically in system size n. To do so, we leverage the results in
Section I and Section II heavily.

Recall that we consider an unknown family of n-qubit geometrically local Hamiltonians {H (z) : z €

[-1,1]™} in a finite d-dimensional space such that H(x) = Zle hj(Z;), where Z; € R?, ¢ = O(1), and
x is the concatenation of the L vectors &,...,Zr. We also assume that the spectral gap of H(zx) is
lower bounded by a constant v over [—1,1]™ and p(x) is the ground state of H(x). We also consider an
unknown observable O with ||O]| . = O(1) that can be written as a sum of geometrically local observables
and an arbitrary unknown distribution D over [—1,1]™.

In what follows, we first present a full description of the proposed ML algorithm in Section IITA. In
Section IIIB, we then state the rigorous guarantee achieved by this ML algorithm. Next, we find a
bound required to utilize ¢1-regularized regression in Section III C. Then, we bound the in-sample error
on the training data in Section IIID by showing that the function g(x) for approximating Tr(Op(x))
as defined in Eq. (S60) of Section I achieves small training error. Finally, we use standard results in
machine learning theory to bound the prediction error in Section ITTE.

A. ML algorithm

This section is dedicated to describing the ML algorithm in detail. Let 1/e > €1,€2,e3 > 0. The
ML algorithm is also given training data {(z,,y,)})_, consisting of parameters z, sampled from an
arbitrary unknown distribution D over [—1,1]™ along with an estimator y, of Tr(Op(x¢)) such that
lye — Tr(Op(xr))| < €2



24

Given this, we first redefine several notions from Section I in terms of €;. We utilize these definitions in
the remainder of Section III. We begin by redefining §; and Ip, originally defined in Def. 1, 2, respectively.
Define §; as

(S1)

51 £ max <Cmax log?(2C/€1), Cy, Cs, max(5900, o, 7(d + 11), 9)> )

b

where all constants b, vy, Cinax, C4, Cs, o, 0 are defined as in Def. 1 and C' is defined in Lemma 2. Using
this definition of 41, let Ip be defined as

Ipé{ce{1,...,m}:dobs(hj(c),P) Sdl}, (82)

as in Eq. (S11). Now, we can redefine the quantities from Def. 3 used to approximate the ground state
property as a sum of discretized functions. Let do be given by

A 1

€1

where €’ is defined in Lemma 2. From this, we can define the discretized parameter space X p, which
contains parameter vectors that are 0 outside of Ip and take on discrete values inside of Ip:

Xp 2 x € [—1,1] :1-fc¢Ip7xc:0 . ($4)
1fC€IP,:L'CG{O,i§2,i252,...,il}

Furthermore, for each discretized vector 2’ € Xp, let T, p be the set of vectors close to 2’ for coordinates
in Ip:

5 5
Txvpé{xle [_1,1}7";—52 <ae—al < 52 VCEIP}- (S5)

Finally, we define an additional hyperparameter B > 0 as

B2 2(9(polylog(1/e1))_ (86)

With these definitions in place, we can discuss the ML algorithm. At a high level, the algorithm first
maps the parameter space into a high-dimensional feature space. Then, the ML algorithm learns a linear
function in this feature space using ¢;-regularized regression.

In particular, the feature map ¢ maps x — ¢(z), where z € [—1,1]™ is an m-dimensional vector while
¢(z) € R™¢ is an my-dimensional vector with

mg 2 Y [ Xp|. (S7)

Pesseo

Here, S(&°) denotes the set of all geometrically local Pauli observables as in Def. 6. Each coordinate of
#(z) is indexed by 2/ € Xp, P € S&°) and is defined as

¢(£U)x/7p L ]1[:];‘ S Tz/}p]. (88)

The hypothesis class for our proposed ML algorithm consists of linear functions in this feature space,
i.e., functions of the form h(x) = w - ¢(z). The classical ML model learns such a function using ¢;-
regularized regression (LASSO) [9-11] over the feature space. Namely, given the hyperparameter B > 0
defined above, we utilize LASSO to find an mg-dimensional vector w* from the following optimization

problem that minimizes the training error + Zévzl lw - p(x0) — yel°,

N
1
Jnin > w e o(ee) = wel” (S9)
wl,<B =1

where y, approximates Tr(Op(z¢)). We denote the learned function by h*(z) = w* - ¢(z). Importantly,
this learned function does not need to achieve the minimum training error. In the following, we consider
the vector w* to yield a training error that is larger than the minimum training error by at most e3/2.
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B. Rigorous guarantee

Given these definitions and the ML algorithm, we prove the following theorem. The theorem stated
in the main text corresponds to €; = 0.2¢, €3 = ¢, and €3 = 0.4e. Hence (€1 + €2)? < 1.44€2 < 0.53¢ and
(61 + 62)2 + €3 S €.

Theorem 5. Let 1/e > €1, 62,63 >0 and § > 0. Given training data {(ze,ye)}), of size
N = log(n/(g)QO(lOg(l/Es)-*-I)Olylog(l/61))7 (S10)

where x; is sampled from D and y, is an estimator of Tr(Op(x¢)) such that |y, — Tr(Op(x¢))| < €2, the
ML algorithm can produce h*(x) that achieves prediction error

E_[h*(x) = Tr(Op(x))|* < (1 + €2)” + €5 (St1)

with probability at least 1 — 6. The training time for constructing the hypothesis function h and the
prediction time for computing h*(z) are upper bounded by O(nN) = nlog(n/§)200os(l/es)+polylog(l/e1))

In the ML problem formulated in the main text and Section III A, the training data {xs, v},
corresponds to a fixed and unknown observable O. However, we may be interested in training an ML
model that can predict Tr(Op(z)) for a wide range of observables O. In this setting, one could consider a
classical dataset {xs, or(p(z¢))}), generated by performing classical shadow tomography [12-16] on the
ground state p(z) for each zy in £ = 1,..., N. This is achieved by repeatedly performing 7" randomized
Pauli measurements on each state p(z¢). Using the classical shadow dataset, we can obtain the following
corollary for predicting ground state representations.

Corollary 5. Let 1/e > €1, 62,63 >0 and § > 0. Given a training data set {x,,or(p(z0))}, of size
N = 10g(n/§)20(10g(1/63)+polylog(1/61))7 (S12)

where x; is sampled from an unknown distribution D and or(p(xe)) is the classical shadow representa-
tion of the ground state p(xy¢) using T randomized Pauli measurements. For T = O(log(nN/8)/e3) =
O(log(n/8)/€3), the proposed ML algorithm can learn a ground state representation py () that achieves

E_ITe(Opnr(w)) = Te(Op(2))* < (e + €2)” + €3 (513)
for any observable O with eigenvalues between —1 and 1 that can be written as a sum of geometrically
local observables with probability at least 1 — 9.

Proof. For any observable O with eigenvalues between —1 and 1 that can be written as a sum of geomet-
rically local observables, we have O = 3 5 g(se0) ap P, where S (g¢0) s the set of all geometrically local
Pauli observables. From Corollary 4, we have

> lepl<C (S14)
PeS(geo)

for a constant C. We are going to use the constant C' to set the training data size N and the number of
randomized measurements 7. In particular, we are going to consider

N = log (n/(é/(2|s(geo) |)))2(9(10g(02/53)erolylog(C/el))7 (815)
T = 0 (1og(nN/(3/(2|5]))) /(e2/C)?) . (516)

For any geometrically local Pauli observables P € S we can use the classical shadow dataset
{xo,01(p(x0))}}L, to estimate the expectation value of P in the ground states p(w,) for all £. This

creates a dataset {zy, yép)}é\/: ,- Under the specified 7', Lemma 1 in [1] guarantees that

y" = Te(Pplan)| < 2 (S17)

C )
forall =1,...,N and P € S(&°) with probability at least 1 — (§/2). For each P € S we consider

hp(x) to be the function produced from Theorem 5. From Theorem 5, we have

E (@)~ TH(Po(@)? < g [+ @) + ] ($18)
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for all P € S(&) with probability at least 1 — (§/2) conditioned on the event given in Eq. (S17) occurs.
Using the union bound to combine the two events considered in Eq. (S17) and Eq. (S18), we can ensure
that Eq. (S18) holds with probability at least 1 — 4.

We define the ground state representation produced by the ML algorithm to be

pnr(x) S > hplx ( ) . (S19)
Pes )
For the observable O, we have
| Te(Opnr(x)) = Te(Op(a)| < Y Jap|lhp(z) — Te(Pp(x))]- (520)
PeS(geo)

By the Cauchy-Schwarz inequality, Eq. (S14), and Eq. (S18), we have

E_| Tx(Opwr(x)) — Te(Op())* (521)
< Y lapllan] E_ |k (x) = Te(Pip(a)||hp, (2) = Te(Pap(a))] (522)
Py, PeS8(8e0) '
< ) Iaplllaml\/gciED \hp, () = Tr(Puip(z IQ\/ E_[hp, () = Tr(Pop(2))[? (523)
P1,PscS(ge0)
2
1
< > lapl o2 (614 €2)% + €3] < (614 €2)* + €3 (S24)
PeS(geo)
This concludes the proof of the corollary. O

C. /{;-Norm bound on coefficients of linear hypothesis

We now justify our choice of the hyperparameter B > 0 such that |[w||; < B. From Section I, we
constructed a function that approximates the ground state property. Explicitly, this function is defined
as

)& Y Y fe@)le € T p] = w - ¢(x), (525)

PeS(geo) x'eXp
where in this case, the vector of coefficients w’, indexed by ' € Xp, P € 5 is defined as

Wl p 2 fpla). (526)

Thus, we see that the ML model, which learns functions of this form, has the capacity to approximate
the target ground state property Tr(Op(z)). The actual function we learn, h*(x) = w*- ¢(x) could differ
significantly from g(z) = w' - ¢(z) because w’ is unknown. Nevertheless, we can utilize an upper bound
|lw’||; < B to restrict the hypothesis set of the ML algorithm to functions of the form h(z) = w - ¢(z)
such that ||w||; < B. Thus, we find an upper bound on ||w’||; in the following lemma.

Lemma 14 (¢;-Norm bound). Let w’ be the vector of coefficients defined in Eq. (S26). Then, we have
the following bound on ||w'||,:

Wl =Y > |fp(a))] = 20eloslt/e), (527)
PeS(geo) x'eXp

Proof. First, we can analyze the |fp(2’)| term. Recall that fp is just ap Tr(Pp(xp(x))), where xp(x) €
[—1,1]™ sets parameters outside of Ip to 0. Thus, we can bound its absolute value by

[fp (@) = lep|| Te(Pp(xp(2)))] < |apl. (528)

Plugging this into the ¢;-norm of w’, we have

wil= > > /el (S529a)

PecS(geo) x'eXp
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< 0 Xpllfe() (S29D)

PeS(geo)

< .

< max [Xp| Y laql (S29¢)
QeS(eeo)

Thus, it suffices to count the number of elements in Xp. Recall in Definition 3 that Xp is defined
such that the parameter values for ¢ ¢ Ip are fixed to 0 while for ¢’ € Ip, 2. can be any value in
{0, £d2, +2d5,...,£1}. Hence, it is clear that

|Ip]
|Xp| < {0, £05, £20,, ..., £1}/7l < (522 + 1) . (S30)

Moreover, by our choice of d in Eq. (S3), we have

; [Ip|
Xp| < (2 Fc”ﬂ T 1) . ($31)
1

Now, it remains to bound the size of Ip, defined in Eq. (S11). This size is simply the number of
parameters that h; depends on for some h; with dops(hj, P) < 61. By Eq. (S5), we can bound the
number of such h;:

Z 1<bg+ Cdéii. (S32)
Jidobs (hj,P)<é1

Moreover, we assume that each h; depends on O(1) parameters. Suppose that each h; depends on at
most g parameters. Then, we can bound the size of Ip by

1Ip| < q(ba + cady). (833)
Utilizing this bound in Eq. (S31), we obtain

; 7 q(ba+cadd)
|XPS<2 2 CQ(bd“d‘sl)wH) .

€1
Plugging this into our ¢;-norm bound from Eq. (S29¢), we have

wil= > > Ife@) (S352)

PeS(geo) z’eXp

(S34)

2/Cq(ba + cadd) o(bueash)

C
< <2{ 04T o —‘Jrl) 3 agl (S35b)

€1
QeS(geo)
q(ba+cady)

2 ’ d

<D <2 [ Cq(ba + Cdél)w + 1) : (S35¢)
€1

where the second inequality follows from Corollary 4, taking D as this constant. We can simplify this
expression further by using that §; = Cpay log?(2C/€1) for sufficiently small €, according to Eq. (S1).

W= > > Ife() (S36a)

PcS(geo) z'€Xp

5 a(bg+cd(Cmax log?(2C/e1))?)
2\/C/Q(bd + Cd(Cmax 10g (20/61))d)
2

<D ; +1 (S36b)
1
O(log®(1/e1))
log??(1
_ <g</>> ($360)
€1
O(log®*(1/e€1)) 2d
1 O(log??(1/e1))
_ () (lode(l/el)) | (936d)
€1
_ 90(log?™ 1 (1/e1)) (S36e)
_ 9O(polylog(1/e1)) (S36f)

which is the promised scaling. O
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D. Training error bound

Using the results in Section I C, we can derive a bound on the training error of g(x) = w'-¢(z) discussed
in the previous section. The existence of w’ then guarantees that the function h*(z) = w* - ¢(z) found
by performing optimization to minimize training error will also yield a training error close to zero. To
prove this rigorously, we first write a precise definition of training error.

Definition 8 (Training error). Given a function h(x) and a training dataset {(z¢,ye)}Y_,. The training
error is defined as

N
R(h) = min % S (o) — wel?. ($37)
/=1

We can bound the training error in the following lemma.
Lemma 15 (Detailed restatement of Lemma 1). The function
g(x) = Z Z fr(@)lx € Ty p] =w' - ¢(z), (S38)
PcS(eeo) 2'€Xp
achieves training error
R(g) < (1 + €2)?, (S39)
where the training error is defined in Definition §.
Proof. This lemma follows directly from Theorem 3. Let £* be defined as
0 = argmax |g(z¢) — yo|*. (540)
1<e<N

Then, the training error can be bounded above by
R(g) < lg(@e-) = ye I < (|g(e-) = Te(Op(ae))| + | Tr(Op(ae-)) — we-|)?, (541)

where the last inequality follows by triangle inequality. Here, the second term can be bounded by e
using definition of our training labels y,. For the first term, let D be a constant such that

> lap| <D, (S42)
PeS(geo)
using Corollary 4. Then, by Theorem 3, we have
|[g(xe) — Tr(Op(ze-))| < €1 + €. (543)
Putting everything together, we have
R(g) < (a1 + e2)?, (544)
which is the claimed result. O

Now consider the function h*(z) = w* - ¢(x), where w* is obtained by minimizing the training error,
such that the training error is larger than the minimum training error by at most e3/2. We can achieve
this using an optimization algorithm described in Section III F. Formally, we have the following inequality,

Ry < S+ iy 25w dlae) — Te(Op(ae)) (S45)

Because we have set B = 2prolylog(1/e1)

wl,= > > Ife(a)] < 20@Mest/a) = g, (546)

PeS(geo) z'€Xp

Therefore, the minimum training error must be at most R(g),

N
1 ,
Join > W olee) = Te(Op(e))I” < R(g). (S47)
Iwl,<B  £=1
Together, we have
R(h*) < R(g) + %3 <(a+e)+ %3 (348)

The last inequality follows from Lemma 15.
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E. Prediction error bound

With this bound on the training error, it remains to find a bound on the prediction error of our
hypothesis function. To this end, we can use a standard result from machine learning theory about the
prediction error of ¢1-norm-constrained linear hypotheses trained using the LASSO algorithm [9-11].

Theorem 6 (Theorem 11.16 in [11]). Let X C RA and H = {x € X — w-x : |[|w|; < B}. Let
S = ((x1,91)- -+, (XN, yn)) € (X x V)V, Let D denote a distribution over X x Y according to which
the training data S is drawn. Assume that there exists ro > 0 such that for allx € X, ||x|| < roo and
M > 0 such that |h(z) —y| < M for all (z,y) € X x Y. Then, for any § > 0, with probability at least
1— 4, each of the following inequalities holds for all h € H.:

. 1 log &
h(z) — 32 2 R(h) < Re(h) + 2ra BMy | 222824 4 yp2, [1085

549
(m,ng N 2N ( )

where R(R) is the prediction error for the hypothesis h and Rs(h) is the training error of h on the training
data S.

We can use this theorem to prove the prediction error bound in Theorem 5.

Proof of prediction error in Theorem 5. We utilize Theorem 6 as well as our established lemmas.

First, we demonstrate that we satisfy the conditions of the theorem in our setting. Here, we view h
in Theorem 6 as a function of the higher-dimensional feature vector ¢(x) rather than the m-dimensional
vector z € [—1,1]™ so that h is a linear hypothesis. In this perspective, our input space X is the feature
space {0,1}™¢ C R™¢ as the indicator functions we are evaluating only take 0-1 values. In our case, the
dimension A is given by

A:m¢, £ Z |Xp‘ (850)

PeS(geo)

Moreover, the training data we are given is S = ((¢(z1),v1),- -, (¢(zn),yn)) € (X x V)V, where y, is
such that

lye = Tr(Op(z))| < e (S51)

Again, we are thinking of h as a function that takes the input ¢(z). Furthermore, since ¢(xy) € {0,1}™
for all £ = 1,..., N, we can see that ||¢(z¢)||,, < 1 = r. Moreover, the hypothesis class H is given
by the set of the functions of the same form as h, ie., H = {¢(z) € X — w - ¢(z) : ||w|; < B} with
B = 2rolylog(1/€) By considering M = 2°0Polylos(1/€1)) 'we also have |h(xy) —ye| < M forall £ =1,...,N
because

(o) = yel < [W - (x| + lye| < Wy [[$(2)l] +2 < 20@oRIEA/ W) 49 = gOpelvioalt/e) (552)

where the second inequality follows by Holder’s inequality. Furthermore, by Eq. (S48), the learned model
h*(z) = w* - ¢(x) achieves R(h*) < (€1 + €2)? + (e3/2). Thus, by Theorem 6,

21og(2my) log
) < 218 Loppy /208 2 5
R(h*) < (e +e2)” + 5 + Nt o (S53)

with probability at least 1 — §. In order to bound the prediction error above by (€1 + €2)? + €3, we need

N to be large enough such that
2log(2my) 5 |log % €3
- =2 7 < =,
2BM4/ + M oSN = (S54)

We can upper bound mg using the same approach as in the proof of Lemma 14. Explicitly, using
Eq. (S34) and Eq. (S36), we have

C7q(ba + cad?) o(baeadd)
me= Y |Xpl< Y (2{ A0d c’“%ﬂ) (S55a)

€1
PeS(geo) PeS(geo)
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= 20olylog(1/e)) O(p), (S55Db)

where the last equality follows because |S&°)| = O(n). Plugging everything into the left hand side of

Eq. (S54), we have
2log(2my) 2, [log 3
2BM\| ———F + M~“\| —=
Vot o (S56a)

. 90(polylog(1/e
<2v3 (20<polylog<1/61>>)2\/ log (22007 ;Vg( [2)0m) (S56b)
1 2 [log 3
s QO(polylog(l/el)) B
+ ( ) - (S56¢)

_ 2O(Polylog(1/61))% <\/(9(polylog(1/el)) + O(log(n)) + 1/log (15) . (S56d)

To upper bounded the above by <, we choose

2

4 2 1
N = = (2O(P°1y1°g(1/61))> <\/O(polylog(1/el)) + O(log(n)) + 4/log 5) (S57a)
3
— 9O(log(1/es)+polylog(1/e1)) log(n/0). (S57b)

Together, the training data size N given above guarantees that R(h*) < (e; + €2)? + €3 with probability
at least 1 — 4. O

F. Computational time for training and prediction

Finally, we find the computation time required for the ML algorithm’s training and prediction. To
this end, we utilize standard results about the training time of the LASSO algorithm [17].

Proof of computational time in Theorem 5. The training time is dominated by the time required for ¢;-

regularized regression (LASSO) over the feature space defined by the feature map ¢. It is well-known that

to obtain a training error at most (e3/2) larger than the optimal function value, the LASSO algorithm on

Mg loQg, me [
€-

the feature space can be executed in time O ( 17], where my is the dimension of the feature

space. By Eq. (S55b), we know that
my = O(n)20(polylog(1/el)) (858)

Plugging this into the time required for LASSO, we have

1 O(n)20@olylog(1/€1)) 1o (O ()20 (Polylog(1/e1))
0 (m¢ o8 m¢) o) < ) OgQ( ) ) (S59a)
€3 €3
= O(n20ee(l/es)Fpolylog(l/e)) (O (polylog(1/e1)) + O(log(n)))) (S59b)
= nlogn 2000s(1/es)+polylog(1/e1)) (S59¢)
= O(nN), (S59d)

where the last equality follows by the definition of the training data size .
The prediction time is the amount of time it takes to compute h*(z) = w* - ¢(z,), which takes time
O(mg). This can also be upper bounded by O(nN). O

IV. DETAILS OF NUMERICAL EXPERIMENTS

For the numerical experiments, we consider the two-dimensional antiferromagnetic Heisenberg model.
In this setting, spin-1/2 particles are placed on sites in a 2D lattice. The Hamiltonian is
H=Y"J(X:X; + VY, + Z: Z)), (S1)
(i)
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where the summation ranges over all pairs (ij) of neighboring sites on the lattice and the couplings
{Jij} are sampled uniformly from the interval [0, 2]. Here, the parameter z is a list of all couplings J;;
so that the dimension of the parameter space is m = O(n), where n is the system size. This is the
same class of Hamiltonians considered in previous work [1]. We are interested in predicting ground state
properties, which in this case are the two-body correlation functions for each pair of qubits on the lattice.
In particular, this correlation function is the expectation value of

1
Cij = 3(XiX; + YiY; + Z:Z;), (S2)

for each pair of qubits (ij).

We generated training and testing data for this model using the same method as [1]. For completeness,
we briefly discuss this here. For each parameter vector of random couplings sampled uniformly from [0, 2],
we approximated the ground state using the density-matrix renormalization group (DMRG) [18] based
on matrix product states (MPS) [19]. We first consider an initial random MPS with bond dimension
X = 10 and variationally optimize it using a singular value decomposition cutoff of 1078, We terminate
the DMRG runs when the change in energy is less than 107%. After DMRG converges, we perform
randomized Pauli measurements by locally rotating into the corresponding Pauli bases and sampling the
rotated state [20]. In this work, we utilize two different data sets: one which is the same as in [1] and
the other which is generated in the same way but contains more data points.

We consider classical machine learning models given by first performing a feature mapping ¢ on the
input vector x and then running ¢;-regularized regression (LASSO) over the feature ¢(x) space, as
described in Section IIT A. However, while the indicator function feature map was a useful tool to obtain
our rigorous guarantees, it is often hard to discretize a high-dimension parameter space into Xp in
practice. Thus, we instead utilize random Fourier features [21]. One can think of this as a single layer
of a randomly initialized neural network. Explicitly, this feature map is

cos ( (wq - z))
sin ( (wy - 2)

COS

Skogl

sin (wg - 2)

N

(wn - 2))
)

where [ is the length of the vector z, v > 0 and R > 0 are tunable hyperparameters, and w; are I-
dimensional vectors sampled from a multivariate standard normal distribution. Here, for each vector
z, ¢(z) is a 2R-dimensional vector. Thus, the hyperparameter R determines the length of the feature
vector. We consider a set of different hyperparameters:

R € {5,10,20,40}, (S4)
~ € {0.4,0.5,0.6,0.65,0.7,0.75}. (S5)

Using this feature map, the ML algorithm is implemented as follows. First, we decompose = into
several vectors corresponding to local regions of a given local term of the Hamiltonian. This is analogous
to the discretization of the parameter space using X p. Explicitly, the decomposition is performed in the
following way. First, recall that in the 2D antiferromagnetic Heisenberg model, qubits are placed on sites
in a 2D lattice. Thus, each local term can be viewed as an edge between neighboring sites on the lattice.
We construct a local region around this edge by including all edges within an ¢;-distance é;. This is
analogous to Eq. (S11). Now, for each vector resulting from the decomposition of x, we apply the feature
map ¢ and concatenate all vectors together to obtain ¢(x). Finally, we run the LASSO algorithm using
scikit-learn, a Python package [22]. Here, LASSO optimizes the objective function

1 2
s lly = Xuwl3 +aflwll, (56)
where N is the amount of training data, y is a vector of the training data labels {yg}évzl, X is a matrix

of the training data inputs {z,}) ,, w is a vector of coefficients we want to learn, and @ > 0 is a
regularization parameter. We consider a set of different regularization parameters

a€ {278 277 276 2751 (S7)



32

We consider several different classical ML models, corresponding to these choices of hyperparameters
R,~,a. Thus, we perform model selection to determine the optimal choice of these hyperparameters.
To this end, we consider M different values of the parameter x = {J;;}, where M is as big as 900.
From these M data points, we randomly choose half of these points as training data (i.e., N = M/2)
and the remaining half is test data. For each ground state property we want to predict, we choose
one value of each of R,~,a such that the root-mean-square error is minimized when performing 4-fold
cross-validation, which is also implemented using scikit-learn. Finally, we test the performance of the
ML model with these chosen hyperparameters using the test data.

For each vector x that we tested on, we would predict the correlation functions for all pairs of qubits
(ij). Hence, the prediction error is averaged over a large number of predictions. Despite M/2 being
only of around 50, the prediction errors reported in the plots are statistically sound given the large
total number of predictions. The standard deviation of the exact correlation functions in the data varies
slightly across different system sizes. The standard deviation for system size 4 x 5 is around 0.192, 5 x 5
is around 0.199, 6 x 5 is around 0.187, 7 x 5 is around 0.193, 8 x 5 is around 0.190, 9 x 5 is around 0.187.
When the standard deviation is smaller, the prediction error will also be smaller. To judge the difficulty
to predict the correlation functions across different system sizes, we normalize the standard deviation
to be the average standard deviation of 0.191. We also include experiments where we vary the training
data size N or the classical shadow size T, i.e., the number of randomized Pauli measurements used to
approximate the ground state. The left figure of Figure 2A fixes the training set size N to be 50, system
size n to be 9 x 5 = 45, and varies the classical shadow size T € {50, 100, 250, 500,1000}. The center
figure of Figure 2A fixes the shadow size T to be 500, system size n to be 9 x 5 = 45, and varies the
training data size varies from N € {10, 30,50, 75,90, 150, 250, 350,450}. The right figure of Figure 2A
fixes the training set size N = 250 and shadow size T' = 500, and varies the system size from 4 x 5 to
9 x 5. The numerical results of these experiments are summarized in Figure 2.
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