
Improved machine learning algorithm for
predicting ground state properties

Laura Lewis,1, * Hsin-Yuan Huang,1 Viet T. Tran,2

Sebastian Lehner,2 Richard Kueng,2 and John Preskill1, 3
1California Institute of Technology, Pasadena, CA, USA

2Johannes Kepler University, Linz, Austria
3AWS Center for Quantum Computing, Pasadena, CA, USA

(Dated: December 7, 2023)

Supplementary Information

Contents

I. Simple form for ground state property 2
A. Approximation by a sum of smooth functions 2
B. Simplification using discretization 10
C. Simple form for ground state property 12
D. Technical lemmas for finding constants and bounding integrals 13

II. Norm inequality for observables 18
A. Facts and lemmas 18
B. Proof of Theorem 4 19

III. ML algorithm and sample complexity 23
A. ML algorithm 23
B. Rigorous guarantee 25
C. ℓ1-Norm bound on coefficients of linear hypothesis 26
D. Training error bound 28
E. Prediction error bound 29
F. Computational time for training and prediction 30

IV. Details of numerical experiments 30

These appendices provide detailed proofs of the statements in the main text. We discuss our main
contribution that Tr(𝑂𝜌) can be approximated by a machine learning model given training data scaling
logarithmically in system size, where 𝑂 is an unknown observable and 𝜌 is the ground state of a Hamilto-
nian. The proof of this result has three main parts. The first two parts yield important results necessary
for the design of the ML algorithm and its sample complexity.

We recommend that readers start with Section I, which derives a simpler form for the ground state
property Tr(𝑂𝜌(𝑥)) that we wish to predict. In Section II, we give a norm inequality characterizing the
Pauli coefficients of any observable that can be written as a sum of geometrically local observables. The
norm inequality reveals a structure of the ground state property Tr(𝑂𝜌(𝑥)) that we can use to design an
ML algorithm that uses very few training data. In Section III, we present our ML algorithm and prove
its sample complexity using standard tools in ML theory, including known guarantees on the LASSO
(least absolute shrinkage and selection operator) algorithm’s performance. Finally, in Section IV, we
describe numerical experiments performed to assess the performance of the algorithm in practice.

*Electronic address: llewis@alumni.caltech.edu

mailto:llewis@alumni.caltech.edu

2

I. SIMPLE FORM FOR GROUND STATE PROPERTY

This section is dedicated to deriving a simpler form for the ground state property Tr(𝑂𝜌(𝑥)) as a
function of 𝑥. Note that throughout this section, log denotes the natural logarithm. We consider the
assumptions (a)-(d) from Appendix F.5 of [1], with (b) and (d) adjusted for our setting, which we
reproduce here for convenience:

(a) Physical system: We consider 𝑛 finite-dimensional quantum systems that are arranged at locations,
or sites, in a 𝑑-dimensional space, e.g., a spin chain (𝑑 = 1), a square lattice (𝑑 = 2), or a cubic lattice
(𝑑 = 3). Unless specified otherwise, our big-𝒪,Ω,Θ notation is with respect to the thermodynamic
limit 𝑛 → ∞.

(b) Hamiltonian: 𝐻(𝑥) decomposes into a sum of geometrically local terms 𝐻(𝑥) =
∑︀𝐿

𝑗=1 ℎ𝑗(�⃗�𝑗), each
of which only acts on an 𝒪(1) number of sites in a ball of 𝒪(1) radius. Here, �⃗�𝑗 ∈ R𝑞, 𝑞 = 𝒪(1)
and 𝑥 is the concatenation of 𝐿 vectors �⃗�1, . . . , �⃗�𝐿 with dimension 𝑚 = 𝐿𝑞 = 𝒪(𝑛). Individual
terms ℎ𝑗(�⃗�𝑗) obey ‖ℎ𝑗(�⃗�𝑗)‖∞ ≤ 1 and also have bounded directional derivative: ‖𝜕ℎ𝑗/𝜕�̂�‖∞ ≤ 1,
where �̂� is a unit vector in parameter space.

(c) Ground-state subspace: We consider the ground state 𝜌(𝑥) for the Hamiltonian 𝐻(𝑥) to be defined as
𝜌(𝑥) = lim𝛽→∞ 𝑒−𝛽𝐻(𝑥)/Tr

(︀
𝑒−𝛽𝐻(𝑥)

)︀
. This is equivalent to a uniform mixture over the eigenspace

of 𝐻(𝑥) with the minimum eigenvalue.

(d) Observable: 𝑂 can be written as a sum of few-body observables 𝑂 =
∑︀

𝑗 𝑂𝑗 , where each 𝑂𝑗

only acts on an 𝒪(1) number of sites. Hence, we can also write 𝑂 =
∑︀

𝑃∈𝑆(geo) 𝛼𝑃𝑃 , where
𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 and 𝑆(geo) is the set of geometrically local Pauli observables (defined more
precisely in Def. 6). The results in this section hold for any 𝑂 of the above form. However, we only
focus on 𝑂 given as a sum of geometrically local observables

∑︀
𝑗 𝑂𝑗 , where each 𝑂𝑗 only acts on

an 𝒪(1) number of sites in a ball of 𝒪(1) radius.

Under these assumptions, we can prove that Tr(𝑂𝜌(𝑥)) can be approximated by a sum of weighted
indicator functions, where the weights satisfy a ℓ1-norm bound. A precise statement of this result is
found in Section I C.

We first show that Tr(𝑂𝜌(𝑥)) can be approximated by a sum of smooth local functions in Section I A.
Then, we prove that this sum of smooth local functions can be approximated by simple functions in
Section I B. Finally, we put everything together in Section I C. Several technical lemmas for bounding
integrals are needed throughout these proofs, which are compiled in Section ID.

A. Approximation by a sum of smooth functions

The key intermediate step is to approximate Tr(𝑂𝜌(𝑥)) by a sum of smooth local functions. The proof
of this relies on the spectral flow formalism [2] and Lieb-Robinson bounds [3].

First, we review the tools necessary from spectral flow [2, 4, 5]. Let the spectral gap of 𝐻(𝑥) be lower
bounded by a constant 𝛾 over [−1, 1]𝑚. Then, the directional derivative of an associated ground state in
the direction defined by the parameter unit vector �̂� is given by

𝜕𝜌

𝜕�̂�
(𝑥) = −𝑖[𝐷�̂�(𝑥), 𝜌(𝑥)], (S1)

where 𝐷�̂�(𝑥) is given by

𝐷�̂�(𝑥) =

∫︁ +∞

−∞
𝑊𝛾(𝑡)𝑒

𝑖𝑡𝐻(𝑥) 𝜕𝐻

𝜕�̂�
(𝑥)𝑒−𝑖𝑡𝐻(𝑥) 𝑑𝑡. (S2)

Here, 𝑊𝛾(𝑡) is defined by

|𝑊𝛾(𝑡)| ≤

{︃
1
2 0 ≤ 𝛾|𝑡| ≤ 𝜃,

35𝑒2(𝛾|𝑡|)4𝑒−
2
7

𝛾|𝑡|
log(𝛾|𝑡|)2 𝛾|𝑡| > 𝜃,

(S3)

where 𝜃 is chosen to be the largest real solution of 35𝑒2𝜃4 exp
(︁
− 2

7
𝜃

log2(𝜃)

)︁
= 1/2. Notice that 𝑊𝛾(𝑡) has

the property that sup𝑡 |𝑊𝛾(𝑡)| = 1/2.

3

Next, we review the Lieb-Robinson bounds [3, 6]. Let the distance 𝑑obs(𝑋1, 𝑋2) between any two
operators 𝑋1, 𝑋2 be defined as the minimum distance between all pairs of sites acted on by 𝑋1 and 𝑋2,
respectively, in the 𝑑-dimensional space. Formally, this is defined as

𝑑obs(𝑋1, 𝑋2) ≜ min
𝑖∈dom(𝑋1)
𝑖′∈dom(𝑋2)

𝑑qubit(𝑖, 𝑖
′), (S4)

where dom(𝑂) contains the qubits that the observable 𝑂 acts on and 𝑑qubit(𝑖, 𝑖
′) is the distance between

two qubits 𝑖 and 𝑖′. Furthermore, notice that for any operator 𝑋 acting on a single site, a ball of radius
𝑟 around 𝑋 contains 𝒪(𝑟𝑑) local terms in 𝑑-dimensional space:∑︁

𝑗:𝑑obs(𝑋,ℎ𝑗)≤𝑟

1 ≤ 𝑏𝑑 + 𝑐𝑑𝑟
𝑑, (S5)

where ℎ𝑗 is an interaction term of the Hamiltonian 𝐻 =
∑︀𝐿

𝑗=1 ℎ𝑗 . Here, this bound implies the existence
of a Lieb-Robinson bound [6, 7] such that for any two operators 𝑋1, 𝑋2 and any 𝑡 ∈ R,

‖[exp(𝑖𝑡𝐻(𝑥))𝑋1 exp(−𝑖𝑡𝐻(𝑥)), 𝑋2]‖∞
≤ 𝑐lr‖𝑋1‖∞‖𝑋2‖∞|dom(𝑋1)| exp(−𝑎lr(𝑑obs(𝑋1, 𝑋2)− 𝑣lr|𝑡|)),

(S6)

where 𝑎lr, 𝑐lr, 𝑣lr = Θ(1) are constants. Having reviewed these tools, before stating our result formally,
we need to define a quantity that we use throughout the proof.

Definition 1. Let 1/𝑒 > 𝜖 > 0. Consider a family of Hamiltonians {𝐻(𝑥) : 𝑥 ∈ [−1, 1]𝑚} in a 𝑑-
dimensional space. Suppose that the spectral gap of 𝐻(𝑥) is lower bounded by a constant 𝛾 over [−1, 1]𝑚.
Define 𝛿1 as

𝛿1 ≜ max

(︂
𝐶max log

2(1/𝜖), 𝐶4, 𝐶5,
max(5900, 𝛼, 7(𝑑+ 11), 𝜃)

𝑏

)︂
, (S7)

where we denote 𝑏 ≜ 𝛾/2𝑣lr for convenience, and 𝑣lr is the constant from the Lieb-Robinson bound in
Eq. (S6). Here, 𝐶max = max(𝐶1, 𝐶2, 𝐶3), where 𝐶1, 𝐶2, 𝐶3 are constants defined in Lemmas 6, 7, 8.
Also, we define 𝐶4 as a constant such that for all 𝛿′ ≥ 𝐶4,

1

1− 77 log2(𝑏(𝛿′+1))
𝑏(𝛿′+1)

≤ 2. (S8)

Similarly, define 𝐶5 as a constant such that for all 𝛿′ ≥ 𝐶5,

1

1− 7(2𝑑+22) log2(𝑏(𝛿′+1))
2𝑏(𝛿′+1)

≤ 2. (S9)

Moreover, 𝛼 is defined such that for all 𝑥 ≥ 𝑏(𝛼 + 1), 35 log2 𝑥 < 𝑥 − 𝑏. Finally, 𝜃 is chosen to be the
largest real solution of

35𝑒2𝜃4 exp

(︂
−2

7

𝜃

log2(𝜃)

)︂
=

1

2
. (S10)

The existence of 𝐶4, 𝐶5 is guaranteed by noting that as 𝛿′ goes to infinity, the inequalities become less
than or equal to 2. Similarly, the existence of 𝛼 is guaranteed by considering 𝑥 → ∞. Using the quantity
𝛿1 defined above, we also define the parameters “close to” a given Pauli term 𝑃 .

Definition 2. Given 𝛿1 from Definition 1 and an observable 𝑂 =
∑︀

𝑃∈𝑆(geo) 𝛼𝑃𝑃 , for each Pauli term
𝑃 ∈ 𝑆(geo), we define

𝐼𝑃 ≜
{︀
𝑐 ∈ {1, . . . ,𝑚} : 𝑑obs(ℎ𝑗(𝑐), 𝑃) ≤ 𝛿1

}︀
, (S11)

as in Eq. (II.1) in the main text.

Now, we are ready to present the precise statement that the ground state property Tr(𝑂𝜌(𝑥)) can
be approximated by a sum of smooth local functions. First, we consider the simpler case where our
observable 𝑂 = 𝛼𝑃𝑃 is a single Pauli term, which easily generalizes to the general case via triangle
inequality.

4

Figure S1: Intuition behind Lemma 2. The qubits (blue circles) are arranged in a two-dimensional lattice
with local Hamiltonian terms (light gray shading) acting between all pairs of neighboring qubits. A Pauli term 𝑃
acts on a subset of these qubits indicated by the light blue region. The dark blue circle represents a neighborhood
around the region on which 𝑃 acts. The idea of Lemma 2 is that when changing the parameters 𝑥, only �⃗�𝑗 such
that ℎ𝑗(�⃗�𝑗) within the neighborhood around the region that 𝑃 acts on should significantly change Tr(𝑃𝜌(𝑥)).
Hence, 𝑓𝑃 depends only on those parameters. It is implicit in the figure that ℎ𝑗 depends on �⃗�𝑗 for all 𝑗. Hence,
𝑓𝑃 depends only on the variables included in the vectors �⃗�14, �⃗�19, �⃗�20, �⃗�25. In particular, 𝐼𝑃 in Def. 2 contains
exactly those indices 𝑐 of the variables 𝑥𝑐 that are included in �⃗�14, �⃗�19, �⃗�20, �⃗�25.

Lemma 2 (Approximation using smooth local functions; simple case). Consider a class of local Hamil-
tonians {𝐻(𝑥) : 𝑥 ∈ [−1, 1]𝑚} satisfying assumptions (a)-(c), and an observable 𝑂 = 𝛼𝑃𝑃 , where 𝑃 acts
on at most 𝒪(1) qubits. Then, there exists a constant 𝐶 > 0 such that for any 1/𝑒 > 𝜖 > 0,

|𝛼𝑃 Tr(𝑃𝜌(𝑥))− 𝑓𝑃 (𝑥)| ≤ 𝐶|𝛼𝑃 |𝜖, (S12)

where 𝑓𝑃 (𝑥) ≜ 𝛼𝑃 Tr(𝑃𝜌(𝜒𝑃 (𝑥))) is a smooth function that only depends on parameters 𝑥𝑐 ∈ [−1, 1] for
coordinates 𝑐 ∈ 𝐼𝑃 , the restriction function 𝜒𝑃 : [−1, 1]𝑚 ↦→ [−1, 1]𝑚 is defined as

𝜒𝑃 (𝑥)𝑐 =

{︃
𝑥𝑐, 𝑐 ∈ 𝐼𝑃 ,

0, 𝑐 ̸∈ 𝐼𝑃 ,
∀𝑐 ∈ {1, . . . ,𝑚}, (S13)

and the set 𝐼𝑃 of coordinates is given in Definition 2. The function 𝑓𝑃 (𝑥) is smooth in the sense that

‖∇𝑥𝑓𝑃 (𝑥)‖22 ≤ |𝛼𝑃 |2𝐶 ′ (S14)

for some constant 𝐶 ′ > 0.

Corollary 2 (Approximation using smooth local functions; general case). Consider a class of local
Hamiltonians {𝐻(𝑥) : 𝑥 ∈ [−1, 1]𝑚} and an observable 𝑂 =

∑︀
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛 𝛼𝑃𝑃 satisfying assump-

tions (a)-(d). There exists a constant 𝐶 > 0 such that for any 1/𝑒 > 𝜖 > 0,

|Tr(𝑂𝜌(𝑥))− 𝑓(𝑥)| ≤ 𝐶𝜖

(︃∑︁
𝑃

|𝛼𝑃 |

)︃
, (S15)

where 𝑓(𝑥) =
∑︀

𝑃∈𝑆(geo) 𝑓𝑃 (𝑥) for 𝑓𝑃 (𝑥) given in Lemma 2.

We illustrate the intuition for Lemma 2 in Figure S1. The proof of Lemma 2 requires several steps.
The main idea is that the function 𝑓𝑃 (𝑥) is simply 𝛼𝑃 Tr(𝑃𝜌(𝜒𝑃 (𝑥))) such that 𝜒𝑃 (𝑥)𝑐 = 𝑥𝑐 for 𝑐 ∈ 𝐼𝑃
and 𝜒𝑃 (𝑥)𝑐 = 0 for coordinates 𝑐 /∈ 𝐼𝑃 . Thus, we need to show that changing coordinates outside of
𝐼𝑃 does not change 𝛼𝑃 Tr(𝑃𝜌(𝑥)) by much. First, we change one coordinate outside of 𝐼𝑃 at a time
and show that the directional derivative of 𝛼𝑃 Tr(𝑃𝜌(𝑥)) in the direction changing this coordinate is
bounded. Next, we use this to prove that |𝛼𝑃 Tr(𝑃𝜌(𝑥)) − 𝛼𝑃 Tr(𝑃𝜌(𝑥′))| is bounded, where 𝑥 and 𝑥′

5

differ in this one coordinate. Finally, we show that the difference is bounded for the case where 𝑥 and 𝑥′

differ for all coordinates outside of 𝐼𝑃 , which concludes the proof of Lemma 2. We separate these results
into lemmas. Throughout the proofs of these lemmas, we also need several technical lemmas for showing
the existence of certain constants and bounding integrals, proofs of which we relegate to Section ID. In
the rest of this section, and in Section I D, we use the notation 𝑏 ≜ 𝛾/(2𝑣lr) and Δ(𝑗, 𝑃) ≜ 𝑑obs(ℎ𝑗(𝑐), 𝑃)
for convenience.

Lemma 3 (Change one coordinate; directional derivative). Consider a class of local Hamiltonians
{𝐻(𝑥) : 𝑥 ∈ [−1, 1]𝑚} satisfying assumptions (a)-(c), and an observable 𝑂 = 𝛼𝑃𝑃 , where 𝑃 acts on at
most 𝒪(1) qubits. Suppose that some 𝑥, 𝑥′ ∈ [−1, 1]𝑚 only differ in one coordinate, say the coordinate
𝑐* such that 𝑐* /∈ 𝐼𝑃 and only one ℎ𝑗 depends on 𝑥𝑐* . Let �̂� be a unit vector in the direction that moves
from 𝑥 to 𝑥′ along the 𝑐*th coordinate. Then, there exist constants 𝑐1, 𝑐2 such that

|𝛼𝑃 | |�̂� · ∇𝑥 Tr(𝑃𝜌(𝑥))|

≤ |𝛼𝑃 |

⎛⎝𝑐1𝑒
− 𝑎lrΔ(𝑗,𝑃)

2 + 𝑐2

⎛⎝ 1

1− 35 log2(𝑏Δ(𝑗,𝑃))
𝑏Δ(𝑗,𝑃)

⎞⎠Δ(𝑗, 𝑃)10 exp

(︂
−2

7

𝑏Δ(𝑗, 𝑃)

log2(𝑏Δ(𝑗, 𝑃))

)︂⎞⎠ .
(S16)

Proof. For the direction �̂�, we can write the directional derivative of 𝜌(𝑥) in two ways. First, we have
the standard definition:

𝜕𝜌

𝜕�̂�
(𝑥) = �̂� · ∇𝑥𝜌(𝑥). (S17)

Then, from spectral flow, we also have Eq. (S1). When evaluated on an observable 𝑂 = 𝛼𝑃𝑃 , this
establishes the following correspondence:

𝛼𝑃 (�̂� · ∇𝑥 Tr(𝑃𝜌(𝑥))) = 𝑖𝛼𝑃 Tr(𝑃 [𝐷�̂�(𝑥), 𝜌(𝑥)]) = 𝑖𝛼𝑃 Tr([𝑃,𝐷�̂�(𝑥)]𝜌(𝑥)). (S18)

Expanding 𝐷�̂�(𝑥) according to Eq. (S2) and applying the triangle inequality to

𝐻(𝑥) =

𝐿∑︁
𝑗=1

ℎ𝑗(�⃗�𝑗), (S19)

we have

|𝛼𝑃 ||Tr([𝑃,𝐷�̂�(𝑥)]𝜌(𝑥))| ≤ |𝛼𝑃 |
∫︁ +∞

−∞
𝑊𝛾(𝑡)

𝐿∑︁
𝑗=1

⃦⃦⃦⃦[︂
𝑃, 𝑒𝑖𝑡𝐻(𝑥) 𝜕ℎ𝑗

𝜕�̂�
𝑒−𝑖𝑡𝐻(𝑥)

]︂⃦⃦⃦⃦
∞

𝑑𝑡. (S20)

Here, since 𝑥𝑐* only affects ℎ𝑗 for one 𝑗 and �̂� is in the direction where only the coordinate 𝑐* changes,
then

𝜕ℎ𝑗′

𝜕�̂�
= 0 (S21)

for all 𝑗′ ̸= 𝑗. Thus, we are left with

|𝛼𝑃 ||Tr([𝑃,𝐷�̂�(𝑥)]𝜌(𝑥))| ≤ |𝛼𝑃 |
∫︁ +∞

−∞
𝑊𝛾(𝑡)

⃦⃦⃦⃦[︂
𝑃, 𝑒𝑖𝑡𝐻(𝑥) 𝜕ℎ𝑗

𝜕�̂�
𝑒−𝑖𝑡𝐻(𝑥)

]︂⃦⃦⃦⃦
∞

𝑑𝑡. (S22)

We bound this integral using Lieb-Robinson bounds and the inequality on 𝑊𝛾(𝑡) that

sup
𝑡

|𝑊𝛾(𝑡)| = 1/2. (S23)

We first need to split the integral into cases. This is because Lieb-Robinson bounds only apply outside of
the lightcone, i.e., when Δ(𝑗, 𝑃) > 𝑣lr|𝑡|. Then, when Δ(𝑗, 𝑃) ≤ 𝑣lr|𝑡|, we can instead use the commutator
norm bound ‖[𝐴,𝐵]‖∞ ≤ 2‖𝐴‖∞‖𝐵‖∞. Thus, we define 𝑡* = Δ(𝑗, 𝑃)/(2𝑣lr) and split up the integration
into two parts: 𝑡 ∈ [−𝑡*, 𝑡*] and 𝑡 /∈ [−𝑡*, 𝑡*] so that we have

|𝛼𝑃 ||Tr([𝑃,𝐷�̂�(𝑥)]𝜌(𝑥))| ≤ |𝛼𝑃 |
∫︁ 𝑡*

−𝑡*
𝑊𝛾(𝑡)

⃦⃦⃦⃦[︂
𝑃, 𝑒𝑖𝑡𝐻(𝑥) 𝜕ℎ𝑗

𝜕�̂�
𝑒−𝑖𝑡𝐻(𝑥)

]︂⃦⃦⃦⃦
∞

𝑑𝑡

+ |𝛼𝑃 |
∫︁ +∞

𝑡*
𝑊𝛾(𝑡)

⃦⃦⃦⃦[︂
𝑃, 𝑒𝑖𝑡𝐻(𝑥) 𝜕ℎ𝑗

𝜕�̂�
𝑒−𝑖𝑡𝐻(𝑥)

]︂⃦⃦⃦⃦
∞

𝑑𝑡

+ |𝛼𝑃 |
∫︁ −𝑡*

−∞
𝑊𝛾(𝑡)

⃦⃦⃦⃦[︂
𝑃, 𝑒𝑖𝑡𝐻(𝑥) 𝜕ℎ𝑗

𝜕�̂�
𝑒−𝑖𝑡𝐻(𝑥)

]︂⃦⃦⃦⃦
∞

𝑑𝑡.

(S24)

6

Notice that the first integral corresponds to the case when we are outside of the lightcone, i.e., Δ(𝑗, 𝑃) >
2𝑣lr|𝑡| while the other two integrals correspond to the case when we are inside of the light cone.

First, we bound the first integral using the Lieb-Robinson bound. Applying Eq. (S6) to the commutator
norm, we have⃦⃦⃦⃦[︂

𝑃, 𝑒𝑖𝑡𝐻(𝑥) 𝜕ℎ𝑗

𝜕�̂�
𝑒−𝑖𝑡𝐻(𝑥)

]︂⃦⃦⃦⃦
∞

≤ 𝑐lr‖𝑃‖∞

⃦⃦⃦⃦
𝜕ℎ𝑗

𝜕�̂�

⃦⃦⃦⃦
∞
|dom(ℎ𝑗)|𝑒−𝑎lr(Δ(𝑗,𝑃)−𝑣lr|𝑡|) (S25a)

≤ 𝑐lr𝑐ℎ𝑒
−𝑎lr(Δ(𝑗,𝑃)−𝑣lr|𝑡|), (S25b)

where in the last inequality, we are using assumption (b) that ‖𝜕ℎ𝑗/𝜕�̂�‖∞ ≤ 1 and |dom(ℎ𝑗)| ≤ 𝑐ℎ for a
constant 𝑐ℎ. Plugging this into the integral, we have

|𝛼𝑃 |
∫︁ 𝑡*

−𝑡*
𝑊𝛾(𝑡)

⃦⃦⃦⃦[︂
𝑃, 𝑒𝑖𝑡𝐻(𝑥) 𝜕ℎ𝑗

𝜕�̂�
𝑒−𝑖𝑡𝐻(𝑥)

]︂⃦⃦⃦⃦
∞

𝑑𝑡 ≤ |𝛼𝑃 |𝑐lr𝑐ℎ𝑒−𝑎lrΔ(𝑗,𝑃)

∫︁ 𝑡*

−𝑡*
|𝑊𝛾(𝑡)|𝑒𝑎lr𝑣lr|𝑡| 𝑑𝑡 (S26a)

≤ 1

2
|𝛼𝑃 |𝑐lr𝑐ℎ𝑒−𝑎lrΔ(𝑗,𝑃)

∫︁ 𝑡*

−𝑡*
𝑒𝑎lr𝑣lr|𝑡| 𝑑𝑡 (S26b)

= |𝛼𝑃 |𝑐lr𝑐ℎ𝑒−𝑎lrΔ(𝑗,𝑃)

∫︁ 𝑡*

0

𝑒𝑎lr𝑣lr𝑡 𝑑𝑡 (S26c)

= |𝛼𝑃 |
𝑐lr𝑐ℎ𝑒

−𝑎lrΔ(𝑗,𝑃)

𝑎lr𝑣lr

(︁
𝑒𝑎lr𝑣lr𝑡

*
− 1
)︁

(S26d)

= |𝛼𝑃 |
𝑐lr𝑐ℎ
𝑎lr𝑣lr

𝑒−𝑎lrΔ(𝑗,𝑃)
(︁
𝑒𝑎lrΔ(𝑗,𝑃)/2 − 1

)︁
(S26e)

= |𝛼𝑃 |
𝑐lr𝑐ℎ
𝑎lr𝑣lr

(︁
𝑒−𝑎lrΔ(𝑗,𝑃)/2 − 𝑒−𝑎lrΔ(𝑗,𝑃)

)︁
(S26f)

≤ |𝛼𝑃 |
𝑐lr𝑐ℎ
𝑎lr𝑣lr

𝑒−𝑎lrΔ(𝑗,𝑃)/2, (S26g)

where in the second line, we used the fact that sup𝑡 |𝑊𝛾(𝑡)| = 1/2, and in the fifth line, we substituted
back in 𝑡* = Δ(𝑗, 𝑃)/(2𝑣lr).

We can also bound the other integrals using the commutator norm bound

‖[𝐴,𝐵]‖∞ ≤ 2‖𝐴‖∞‖𝐵‖∞ (S27)

to obtain:

|𝛼𝑃 |
∫︁ +∞

𝑡*
𝑊𝛾(𝑡)

⃦⃦⃦⃦[︂
𝑃, 𝑒𝑖𝑡𝐻(𝑥) 𝜕ℎ𝑗

𝜕�̂�
𝑒−𝑖𝑡𝐻(𝑥)

]︂⃦⃦⃦⃦
∞

𝑑𝑡 ≤ 2|𝛼𝑃 |
∫︁ +∞

𝑡*
|𝑊𝛾(𝑡)|‖𝑃‖∞

⃦⃦⃦⃦
𝜕ℎ𝑗

𝜕�̂�

⃦⃦⃦⃦
∞

𝑑𝑡 (S28a)

≤ 2|𝛼𝑃 |
∫︁ ∞

𝑡*
|𝑊𝛾(𝑡)| 𝑑𝑡, (S28b)

where in the second line, we used assumption (b) that ‖𝜕ℎ𝑗/𝜕�̂�‖∞ ≤ 1. To bound the resulting integral,
we use the definition of 𝑊𝛾(𝑡) in Eq. (S3). Note that by our definition of 𝑡*, 𝛾𝑡* > 𝜃, so we only need to
consider this case in the upper bound on 𝑊𝛾(𝑡). This is because we chose

𝛿1 = max

(︂
𝐶max log

2(1/𝜖), 𝐶4, 𝐶5,
max(5900, 𝛼, 7(𝑑+ 11), 𝜃)

𝑏

)︂
, (S29)

and here we consider Δ(𝑗, 𝑃) > 𝛿1. Thus, we have

𝛾𝑡* =
𝛾Δ(𝑗, 𝑃)

2𝑣lr
>

𝛾𝛿1
2𝑣lr

≥ max(5900, 𝛼, 7(𝑑+ 11), 𝜃) ≥ 𝜃. (S30)

Hence, we can bound the integral:∫︁ +∞

𝑡*
|𝑊𝛾(𝑡)| 𝑑𝑡 ≤ 35𝑒2

∫︁ +∞

𝑡*
(𝛾𝑡)4𝑒

− 2
7

𝛾𝑡

log2(𝛾𝑡) 𝑑𝑡 = 35𝑒2𝛾−1

∫︁ +∞

𝑥=𝛾𝑡*
𝑥4𝑒

− 2
7

𝑥
log2(𝑥) 𝑑𝑥. (S31)

In the inequality, we used the definition of 𝑊𝛾(𝑡) and in the equality, we used the substitution 𝑥 = 𝛾𝑡.
We can bound this integral using Lemma 9. Set 𝑎 = 2/7 and 𝑘 = 4. We have chosen 𝑡* and 𝛿1
such that all of the assumptions of Lemma 9 are satisfied. In particular, from Eq. (S30), we see that

7

𝑡 = 𝛾𝑡* > max(5900, 𝛼, 7(𝑑 + 11), 𝜃) ≥ 5900. Furthermore, we have 𝑎𝑡/ log2(𝑡) > 2𝑘 + 2, because if
𝑡 ≥ 5900, then it is clear that 𝑎𝑡/ log2(𝑡) > 10. Now, applying Lemma 9, we have

∫︁ +∞

𝑡*
|𝑊𝛾(𝑡)| 𝑑𝑡 ≤

245

2
𝑒2𝛾−1

⎛⎝ 1

1− 35 log2(𝛾𝑡*)
𝛾𝑡*

⎞⎠ (𝛾𝑡*)10𝑒
− 2

7
𝛾𝑡*

log2(𝛾𝑡*) . (S32)

The last integral can be bounded in exactly the same way. Plugging these bounds into Eq. (S24), we
have

|𝛼𝑃 ||Tr([𝑃,𝐷�̂�(𝑥)]𝜌(𝑥))| (S33a)

≤ |𝛼𝑃 |

⎛⎝ 𝑐lr𝑐ℎ
𝑎lr𝑣lr

𝑒−𝑎lrΔ(𝑗,𝑃)/2 + 4

⎛⎝245

2
𝑒2𝛾−1

⎛⎝ 1

1− 35 log2(𝛾𝑡*)
𝛾𝑡*

⎞⎠ (𝛾𝑡*)10𝑒
− 2

7
𝛾𝑡*

log2(𝛾𝑡*)

⎞⎠⎞⎠ (S33b)

= |𝛼𝑃 |

⎛⎝𝑐1𝑒
−𝑎lrΔ(𝑗,𝑃)/2 + 𝑐2

⎛⎝ 1

1− 35 log2(𝑏Δ(𝑗,𝑃))
𝑏Δ(𝑗,𝑃)

⎞⎠Δ(𝑗, 𝑃)10 exp

(︂
−2

7

𝑏Δ(𝑗, 𝑃)

log2(𝑏Δ(𝑗, 𝑃))

)︂⎞⎠ , (S33c)

where in the second line, we defined constants

𝑐1 =
𝑐lr𝑐ℎ
𝑎lr𝑣lr

, 𝑐2 =
245𝑒2𝑏9

𝑣lr
. (S34)

Thus, we have proven that if we only change one coordinate outside of 𝐼𝑃 , then the directional derivative
changing this coordinate is small. This is exactly the claim of the lemma.

An immediate consequence of this is that we can integrate the directional derivative to obtain a bound
on the distance between Tr(𝑃𝜌(𝑥)) and Tr(𝑃𝜌(𝑥′)).

Lemma 4 (Change one coordinate; distance). Consider a class of local Hamiltonians {𝐻(𝑥) : 𝑥 ∈
[−1, 1]𝑚} satisfying assumptions (a)-(c), and an observable 𝑂 = 𝛼𝑃𝑃 , where 𝑃 acts on at most 𝒪(1)
qubits. Suppose that some 𝑥, 𝑥′ ∈ [−1, 1]𝑚 only differ in one coordinate, say the coordinate 𝑐* such that
𝑐* /∈ 𝐼𝑃 and only one ℎ𝑗 depends on 𝑥𝑐* . Let �̂� be a unit vector in the direction that moves from 𝑥 to 𝑥′

along the 𝑐*th coordinate. Then, there exist constants 𝑐′1, 𝑐
′
2 such that

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))|

≤ |𝛼𝑃 |

⎛⎝𝑐′1𝑒
− 𝑎lrΔ(𝑗,𝑃)

2 + 𝑐′2

⎛⎝ 1

1− 35 log2(𝑏Δ(𝑗,𝑃))
𝑏Δ(𝑗,𝑃)

⎞⎠Δ(𝑗, 𝑃)10 exp

(︂
−2

7

𝑏Δ(𝑗, 𝑃)

log2(𝑏Δ(𝑗, 𝑃))

)︂⎞⎠ .
(S35)

Proof. By Lemma 3, we have a bound on the directional derivative of 𝛼𝑃 Tr(𝑃𝜌(𝑥)) in the direction of
�̂�. In this lemma, we want a bound on the distance

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))−Tr(𝑃𝜌(𝑥′))| = |𝛼𝑃 ||Tr(𝑃𝜌(𝑥1, . . . , 𝑥𝑐* , . . . , 𝑥𝑚))−Tr(𝑃𝜌(𝑥1, . . . , 𝑥
′
𝑐* , . . . , 𝑥𝑚))|. (S36)

To this end, we can obtain the distance by integrating the directional derivative:

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))| (S37a)

= |𝛼𝑃 |

⃒⃒⃒⃒
⃒
∫︁ 𝑥′

𝑐*

𝑥𝑐*

𝜕 Tr(𝑃𝜌(𝑥1, . . . , 𝑡, . . . , 𝑥𝑚))

𝜕�̂�
𝑑𝑡

⃒⃒⃒⃒
⃒ (S37b)

≤ |𝛼𝑃 |
∫︁ 𝑥′

𝑐*

𝑥𝑐*

⃒⃒⃒⃒
𝜕 Tr(𝑃𝜌(𝑥1, . . . , 𝑡, . . . , 𝑥𝑚))

𝜕�̂�

⃒⃒⃒⃒
𝑑𝑡 (S37c)

= |𝛼𝑃 |
∫︁ 𝑥′

𝑐*

𝑥𝑐*

|Tr([𝑃,𝐷�̂�(𝑥1, . . . , 𝑡, . . . , 𝑥𝑚)]𝜌(𝑥1, . . . , 𝑡, . . . , 𝑥𝑚))| 𝑑𝑡, (S37d)

where in the last line, we used the correspondence from Eq. (S18). Now, the integrand is exactly what
we bounded in Lemma 3, so we have

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))| (S38a)

8

≤ |𝛼𝑃 |
∫︁ 𝑥′

𝑐*

𝑥𝑐*

⎛⎝𝑐1𝑒
−𝑎lrΔ(𝑗,𝑃)/2 + 𝑐2

⎛⎝ 1

1− 35 log2(𝑏Δ(𝑗,𝑃))
𝑏Δ(𝑗,𝑃)

⎞⎠Δ(𝑗, 𝑃)10 exp

(︂
−2

7

𝑏Δ(𝑗, 𝑃)

log2(𝑏Δ(𝑗, 𝑃))

)︂⎞⎠ 𝑑𝑡

(S38b)

≤ 2|𝛼𝑃 |

⎛⎝𝑐1𝑒
−𝑎lrΔ(𝑗,𝑃)/2 + 𝑐2

⎛⎝ 1

1− 35 log2(𝑏Δ(𝑗,𝑃))
𝑏Δ(𝑗,𝑃)

⎞⎠Δ(𝑗, 𝑃)10 exp

(︂
−2

7

𝑏Δ(𝑗, 𝑃)

log2(𝑏𝛿1)

)︂⎞⎠ , (S38c)

where in the last line, we can bound this integral because 𝑥𝑐* , 𝑥
′
𝑐* ∈ [−1, 1], so their difference is at most

2. Taking 𝑐′1 = 2𝑐1 and 𝑐′2 = 2𝑐2, we arrive at the claim.

With these two results, we can prove Lemma 2.

Proof of Lemma 2. It remains to show that if we change multiple coordinates outside of 𝐼𝑃 , the difference
|Tr(𝑃𝜌(𝑥)) − Tr(𝑃𝜌(𝑥′))| is still bounded. Then, taking 𝑓𝑃 (𝑥) to be 𝛼𝑃 Tr(𝑃𝜌(𝜒𝑃 (𝑥))) with 𝜒𝑃 (𝑥) ∈
[−1, 1]𝑚 equal to 𝑥𝑐 for coordinates 𝑐 ∈ 𝐼𝑃 and 0 for coordinates outside of 𝐼𝑃 gives the desired result.
Thus, we want to bound

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))| = |𝛼𝑃 ||Tr(𝑃𝜌(𝑥1, . . . , 𝑥𝑚))− Tr(𝑃𝜌(𝑥′
1, . . . , 𝑥

′
𝑚))|, (S39)

where 𝑥′
𝑐′ = 𝑥𝑐′ if and only if 𝑐′ ∈ 𝐼𝑃 . We can bound this using the triangle inequality

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))| ≤ |𝛼𝑃 ||Tr(𝑃𝜌(𝑥1, 𝑥2, . . . , 𝑥𝑚))− Tr(𝑃𝜌(𝑥′
1, 𝑥2, . . . , 𝑥𝑚))|

+ |𝛼𝑃 ||Tr(𝑃𝜌(𝑥′
1, 𝑥2, . . . , 𝑥𝑚))− Tr(𝑃𝜌(𝑥′

1, 𝑥
′
2, . . . , 𝑥𝑚))|

+ · · ·
+ |𝛼𝑃 ||Tr

(︀
𝑃𝜌(𝑥′

1, . . . , 𝑥
′
𝑚−1, 𝑥𝑚)

)︀
− Tr(𝑃𝜌(𝑥′

1, . . . , 𝑥
′
𝑚))|

(S40)

Here, recall that we are only changing coordinates outside of 𝐼𝑃 , i.e., 𝑥𝑐 such that ℎ𝑗 depends on 𝑥𝑐 and
Δ(𝑗, 𝑃) > 𝛿1 for 𝛿1 in Definition 1. Moreover, by assumption (b), each local term ℎ𝑗 depends on at most
a constant number 𝑞 of parameters. Then, we can upper bound this sum by

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))| ≤ 𝑞|𝛼𝑃 |
∑︁

𝑗:Δ(𝑗,𝑃)>𝛿1

|Tr(𝑃𝜌(𝑦𝑘*))− Tr(𝑃𝜌(𝑦′𝑘*))|, (S41a)

where 𝑘* is defined as

𝑘* ≜ argmax
1≤𝑘≤𝑚

|Tr(𝑃𝜌(𝑦𝑘))− Tr(𝑃𝜌(𝑦′𝑘))|, (S42)

and 𝑦𝑘, 𝑦
′
𝑘 ∈ [−1, 1]𝑚 denote parameter vectors that only differ in the 𝑘th coordinate. Each of these

terms in the summand can be bounded using Lemma 4:

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))| (S43a)

≤ 𝑞|𝛼𝑃 |
∑︁

𝑗:Δ(𝑗,𝑃)>𝛿1

⎛⎝𝑐′1𝑒
− 𝑎lrΔ(𝑗,𝑃)

2 + 𝑐′2

⎛⎝ 1

1− 35 log2(𝑏Δ(𝑗,𝑃))
𝑏Δ(𝑗,𝑃)

⎞⎠Δ(𝑗, 𝑃)10 exp

(︂
−2

7

𝑏Δ(𝑗, 𝑃)

log2(𝑏Δ(𝑗, 𝑃))

)︂⎞⎠
(S43b)

≤ 𝑞|𝛼𝑃 |
∞∑︁
𝑟=0

∑︁
𝑗:Δ(𝑗,𝑃)∈[𝛿1+𝑟,𝛿1+𝑟+1]

(︁
𝑐′1𝑒

− 𝑎lrΔ(𝑗,𝑃)

2

+𝑐′2

⎛⎝ 1

1− 35 log2(𝑏Δ(𝑗,𝑃))
𝑏Δ(𝑗,𝑃)

⎞⎠Δ(𝑗, 𝑃)10 exp

(︂
−2

7

𝑏Δ(𝑗, 𝑃)

log2(𝑏Δ(𝑗, 𝑃))

)︂⎞⎠ .

(S43c)

Now, we want to upper bound this inner sum over 𝑗 such that Δ(𝑗, 𝑃) ∈ [𝛿1 + 𝑟, 𝛿1 + 𝑟 + 1]. Using
Eq. (S5), we see that there are at most |dom(𝑃)|(𝑏𝑑 + 𝑐𝑑(𝛿1 + 𝑟 + 1)𝑑) interaction terms ℎ𝑗 such that
Δ(𝑗, 𝑃) ∈ [𝛿1+𝑟, 𝛿1+𝑟+1]. Moreover, because 𝑃 acts on only a constant number of sites (by assumption),
then

|dom(𝑃)|(𝑏𝑑 + 𝑐𝑑(𝛿1 + 𝑟 + 1)𝑑) ≤ 𝑐𝑃 (𝑏𝑑 + 𝑐𝑑(𝛿1 + 𝑟 + 1)𝑑), (S44)

9

for some constant 𝑐𝑃 . Using this as well as upper bounding the sum over 𝑟 by an integral, we have

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))| (S45a)

≤ 𝑞𝑐𝑃 |𝛼𝑃 |
∫︁ +∞

𝑟=0

(𝑏𝑑 + 𝑐𝑑(𝛿1 + 𝑟 + 1)𝑑) (S45b)

·

⎛⎝𝑐′1𝑒
− 𝑎lr(𝛿1+𝑟)

2 + 𝑐′2

⎛⎝ 1

1− 35 log2(𝑏(𝛿1+𝑟+1))
𝑏(𝛿1+𝑟)

⎞⎠ (𝛿1 + 𝑟 + 1)10 exp

(︂
−2

7

𝑏(𝛿1 + 𝑟)

log2(𝑏(𝛿1 + 𝑟 + 1))

)︂⎞⎠ 𝑑𝑟.

(S45c)

It remains to integrate this to obtain our desired bound. Distributing, we can split this integral into four
terms. We bound each of these individually.

First, we have∫︁ +∞

𝑟=0

𝑏𝑑𝑐
′
1𝑒

−𝑎lr(𝛿1+𝑟)/2 𝑑𝑟 = 𝑐′1𝑏𝑑𝑒
−𝑎lr𝛿1/2

∫︁ +∞

𝑟=0

𝑒−𝑎lr𝑟/2 𝑑𝑟 =
2𝑐′1𝑏𝑑
𝑎lr

𝑒−𝑎lr𝛿1/2. (S46)

We also have∫︁ +∞

𝑟=0

𝑐𝑑𝑐
′
1(𝛿1 + 𝑟 + 1)𝑑𝑒−𝑎lr(𝛿1+𝑟)/2 𝑑𝑟 = 𝑐′1𝑐𝑑𝑒

−𝑎lr𝛿1/2

∫︁ +∞

𝑟=0

(𝛿1 + 𝑟 + 1)𝑑𝑒−𝑎lr𝑟/2 𝑑𝑟 (S47a)

= 𝑐′1𝑐𝑑𝑒
−𝑎lr𝛿1/2

𝑑∑︁
𝑘=0

𝑑! 2𝑑−𝑘+1

𝑘! 𝑎𝑑−𝑘+1
lr

(𝛿1 + 1)𝑘, (S47b)

where in the last equality we used integration by parts. For the other two integrals, we use Lemma 11
to obtain∫︁ +∞

𝑟=0

𝑏𝑑𝑐
′
2

⎛⎝ 1

1− 35 log2(𝑏(𝛿1+𝑟+1))
𝑏(𝛿1+𝑟)

⎞⎠ (𝛿1 + 𝑟 + 1)10 exp

(︂
−2

7

𝑏(𝛿1 + 𝑟)

log2(𝑏(𝛿1 + 𝑟 + 1))

)︂
𝑑𝑟 ≤ 𝑐𝜖, (S48)

for some constant 𝑐. Similarly, for the last integral, by Lemma 12, we have∫︁ +∞

𝑟=0

𝑐𝑑𝑐
′
2

⎛⎝ 1

1− 35 log2(𝑏(𝛿1+𝑟+1))
𝑏(𝛿1+𝑟)

⎞⎠ (𝛿1 + 𝑟 + 1)𝑑+10 exp

(︂
−2

7

𝑏(𝛿1 + 𝑟)

log2(𝑏(𝛿1 + 𝑟 + 1))

)︂
𝑑𝑟 ≤ 𝑐′𝜖, (S49)

for some constant 𝑐′. Putting everything together, we have

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))| (S50a)

≤ 𝑞𝑐𝑃 |𝛼𝑃 |

(︃
2𝑐′1𝑏𝑑
𝑎lr

𝑒−𝑎lr𝛿1/2 + 𝑐′1𝑐𝑑𝑒
−𝑎lr𝛿1/2

𝑑∑︁
𝑘=0

𝑑!2𝑑−𝑘+1

𝑘!𝑎𝑑−𝑘+1
lr

(𝛿1 + 1)𝑘 + 𝑐𝜖+ 𝑐′𝜖

)︃
. (S50b)

Combining constants and simplifying, we have

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))| ≤ |𝛼𝑃 |

(︃
𝑒−𝑎lr𝛿1/2

𝑑∑︁
𝑘=0

𝑐′′𝑘𝛿
𝑘
1 + 𝑐′′𝜖

)︃
. (S51)

To obtain the final bound, we can use our choice of 𝛿1 to write this bound in terms of 𝜖:

𝑒−𝑎lr𝛿1/2
𝑑∑︁

𝑘=0

𝑐′′𝑘𝛿
𝑘
1 =

𝑑∑︁
𝑘=0

𝑐′′𝑘𝑒
−𝑎lr𝛿1/2+𝑘 log 𝛿1 ≤

(︃
𝑑∑︁

𝑘=0

𝑐′′𝑘

)︃
𝜖, (S52)

where the last inequality follows from our choice of 𝛿1 in Definition 1 and 𝐶1 in Lemma 6. Thus, we have

|𝛼𝑃 ||Tr(𝑃𝜌(𝑥))− Tr(𝑃𝜌(𝑥′))| ≤ 𝐶|𝛼𝑃 |𝜖, (S53)

where we take

𝐶 =

𝑑∑︁
𝑘=0

𝑐′′𝑘 + 𝑐′′. (S54)

10

Figure S2: Example of Definition 3. Illustration of the set 𝑇𝑥′,𝑃 (light blue shading) for specific 𝑥′ ∈ 𝑋𝑃

(blue circle), fixing 𝛿2 = 1/2 for simplicity. a Example for 𝑚 = 1. 𝐼𝑃 is fixed to {1} so that 𝑋𝑃 = {0,±1/2,±1}
according to Def. 3. 𝑇𝑥′,𝑃 is depicted for the chosen 𝑥′ = 1/2. b Example for 𝑚 = 2. 𝐼𝑃 is fixed to {2}, and
𝑇𝑥′,𝑃 is depicted for the chosen 𝑥′ = (0,−1/2).

To complete the proof, recall that 𝑓𝑃 (𝑥) = 𝛼𝑃 Tr(𝑃𝜌(𝜒𝑃 (𝑥))), where 𝜒𝑃 is defined in Eq. (S13). The func-
tion 𝑓𝑃 only depends on parameters in 𝐼𝑃 by definition. By the previous analysis, since 𝜒𝑃 (𝑥) and 𝑥 only
differs in the coordinates outside of the set 𝐼𝑃 , the function 𝑓𝑃 (𝑥) should be close to 𝛼𝑃 Tr(𝑃𝜌(𝜒𝑃 (𝑥)))
in absolute value as required. Moreover, Tr(𝑃𝜌(𝑥)) is smooth by Lemma 4 in [1] in that

‖∇𝑥 Tr(𝑃𝜌(𝑥))‖22 ≤ 𝐶 ′‖𝑃‖2∞ = 𝐶 ′ (S55)

for some constant 𝐶 ′ > 0. Then, because 𝑓𝑃 is defined as 𝛼𝑃 Tr(𝑃𝜌(𝜒𝑃 (𝑥))), we have

‖∇𝑥𝑓𝑃 (𝑥)‖22 ≤ |𝛼𝑃 |2𝐶 ′, (S56)

so 𝑓𝑃 is smooth as claimed.

B. Simplification using discretization

Now, we want to show that the sum of smooth local functions 𝑓(𝑥) =
∑︀

𝑃∈𝑆(geo) 𝑓𝑃 (𝑥) from Corollary 2
can be approximated by simple functions, i.e., linear combinations of indicator functions. In order to do
so, we discretize our parameter space and map each 𝑥 ∈ [−1, 1]𝑚 to some 𝑥′ with discrete values. Our
simple function is then 𝑓 evaluated on this discretized 𝑥′. To state this more precisely, we first require
some definitions. An illustrative example of how each set is defined is given in Figure S2.

Definition 3 (Discretization). Let 𝜖 > 0. Let

𝛿2 ≜
1⌈︂√

𝐶′|𝐼𝑃 |
𝜖

⌉︂ , (S57)

where 𝐼𝑃 is defined in Definition 2 and 𝐶 ′ is as in Lemma 2. Define the discretized parameter space as

𝑋𝑃 ≜

{︃
𝑥 ∈ [−1, 1]𝑚 : if 𝑐 /∈ 𝐼𝑃 , 𝑥𝑐 = 0

if 𝑐 ∈ 𝐼𝑃 , 𝑥𝑐 ∈ {0,±𝛿2,±2𝛿2, . . . ,±1}

}︃
. (S58)

Moreover, for each 𝑥 ∈ 𝑋𝑃 , define the thickened affine subspace close to the vector 𝑥 for coordinates in
𝐼𝑃 as

𝑇𝑥,𝑃 ≜

{︂
𝑥′ ∈ [−1, 1]𝑚 : −𝛿2

2
< 𝑥𝑐 − 𝑥′

𝑐 ≤
𝛿2
2
,∀𝑐 ∈ 𝐼𝑃

}︂
. (S59)

11

With these definitions, the simple function that approximates 𝑓 is defined by

𝑔(𝑥) ≜
∑︁

𝑃∈𝑆(geo)

[︃ ∑︁
𝑥′∈𝑋𝑃

𝑓𝑃 (𝑥
′)1[𝑥 ∈ 𝑇𝑥′,𝑃]

]︃
≜

∑︁
𝑃∈𝑆(geo)

𝑔𝑃 (𝑥). (S60)

In what follows, we prove that 𝑔 indeed approximates 𝑓 well. As in Section IA, we first consider the
simpler case where our observable 𝑂 = 𝛼𝑃𝑃 is a single Pauli term, which easily generalizes to the general
case via triangle inequality.

Lemma 5 (Approximation using simple functions; simple case). Let 𝜖 > 0. Given this 𝜖 in Definition 3,

|𝑔𝑃 (𝑥)− 𝑓𝑃 (𝑥)| < 𝜖|𝛼𝑃 | (S61)

for any 𝑥, where 𝑓𝑃 is as in Lemma 2 and 𝑔𝑃 is defined in Eq. (S60).

Corollary 3 (Approximation using simple functions; general case). Let 𝜖 > 0. Given this 𝜖 in Defini-
tion 3, then

|𝑔(𝑥)− 𝑓(𝑥)| < 𝜖

⎛⎝ ∑︁
𝑃∈𝑆(geo)

|𝛼𝑃 |

⎞⎠ (S62)

for any 𝑥, where 𝑓 is as in Corollary 2 and 𝑔 is defined in Eq. (S60).

Proof of Lemma 5. Consider some input 𝑥 ∈ [−1, 1]𝑚. First, we want to argue that 𝑥 ∈ 𝑇𝑥′,𝑃 for exactly
one 𝑥′ ∈ 𝑋𝑃 . Consider some variable 𝑥𝑐 ∈ [−1, 1] of 𝑥 for 𝑐 ∈ 𝐼𝑃 . It suffices to show that there exists
𝑥′
𝑐 ∈ {0,±𝛿2,±2𝛿2, . . . ,±1} such that −𝛿2/2 < 𝑥′

𝑐 − 𝑥𝑐 ≤ 𝛿2/2. This is clear because 𝛿2 is defined as
a fraction of the form 1/𝑛 for an integer 𝑛. Moreover, there is at most one 𝑥′

𝑐 such that this is true
because each possible discrete value of 𝑥′

𝑐 is separated by intervals of size 𝛿2 while 𝑥𝑐 is within 𝛿2/2 of
𝑥′
𝑐, so there cannot be overlap for different values of 𝑥′

𝑐. Also, since 𝑥𝑐 is in a half-open interval of 𝑥′
𝑐,

this prevents points on the boundary (i.e., exactly 𝛿2/2 away from 𝑥′
𝑐) from being associated with two

𝑥′
𝑐. Finally, this half-open interval does not prevent the boundary case of 𝑥𝑐 = −1 from being associated

with an 𝑥′
𝑐 because −1 is always a possible discrete value for 𝑥′

𝑐. This occurs again because of our choice
of 𝛿2 as a fraction of the form 1/𝑛 for an integer 𝑛. Thus, 𝑥 ∈ 𝑇𝑥′,𝑃 for exactly one 𝑥′ ∈ 𝑋𝑃 .

With this, our goal is to show that

|𝑔𝑃 (𝑥)− 𝑓𝑃 (𝑥)| = |𝑓𝑃 (𝑥′)− 𝑓𝑃 (𝑥)| < 𝜖|𝛼𝑃 |. (S63)

There are two parts to proving this. By definition of 𝑇𝑥′,𝑃 in Definition 3, this means that 𝑥′ and 𝑥 are
close for coordinates in 𝐼𝑃 . However, for coordinates not in 𝐼𝑃 , 𝑥′ and 𝑥 can be far away. Nevertheless,
from our results in Lemma 2, we know that 𝑓𝑃 does not change much when its input only differs for
coordinates not in 𝐼𝑃 . Thus, we can use this to obtain our bound.

To make this more clear, we introduce the notation

𝑓𝑃 (𝑥) = 𝑓𝑃 (𝑥in;𝑥out), (S64)

where 𝑥in denotes the variables 𝑥𝑐 ∈ [−1, 1] such that 𝑐 ∈ 𝐼𝑃 and 𝑥out denotes the variables 𝑥𝑐 ∈ [−1, 1]
such that 𝑐 /∈ 𝐼𝑃 . With this, we can use the triangle inequality to treat the two cases separately:

|𝑓𝑃 (𝑥′)− 𝑓𝑃 (𝑥)| = |𝑓𝑃 (𝑥′
in;𝑥

′
out)− 𝑓𝑃 (𝑥in;𝑥out)| (S65a)

≤ |𝑓𝑃 (𝑥′
in;𝑥

′
out)− 𝑓𝑃 (𝑥

′
in;𝑥out)|

+ |𝑓𝑃 (𝑥′
in;𝑥out)− 𝑓𝑃 (𝑥in;𝑥out)|.

(S65b)

Here, in the first term, only the coordinates not in 𝐼𝑃 change while in the second term, only coordinates
in 𝐼𝑃 change. To bound the first term, we can use Lemma 2 with 𝜖 set to 𝜖/(2𝐶), where 𝐶 is the constant
defined in Lemma 2, to obtain

|𝑓𝑃 (𝑥′
in;𝑥

′
out)− 𝑓𝑃 (𝑥

′
in;𝑥out)| ≤ |𝛼𝑃 |

𝜖

2
. (S66)

For the second term in Eq. (S65), we bound this using the fact that 𝑥′ and 𝑥 are separated by at most
𝛿2 for coordinates in 𝐼𝑃 and the smoothness condition on 𝑓𝑃 from Lemma 2. The key step here is that
we can write this difference as the integral of the directional derivative of 𝑓𝑃 along the direction from
𝑥in to 𝑥′

in given by a line. In particular, we can parameterize this line by 𝑥in(𝑡) = 𝑥in + (𝑥′
in − 𝑥in)𝑡.

12

Notice that at 𝑡 = 0, this is equal to 𝑥in while at 𝑡 = 1, this is equal to 𝑥′
in. Thus, suppressing the 𝑥out

parameters in our notation, we have

|𝑓𝑃 (𝑥′
in)− 𝑓𝑃 (𝑥in)| =

⃒⃒⃒⃒∫︁ 1

0

𝜕𝑓𝑃 (𝑥in(𝑡))

𝜕𝑡
𝑑𝑡

⃒⃒⃒⃒
(S67a)

≤
∫︁ 1

0

⃒⃒⃒⃒
𝜕𝑓𝑃 (𝑥in(𝑡))

𝜕𝑡

⃒⃒⃒⃒
𝑑𝑡 (S67b)

=

∫︁ 1

0

⃒⃒⃒⃒
𝜕𝑓𝑃 (𝑥in(𝑡))

𝜕𝑥in(𝑡)
· 𝜕𝑥in(𝑡)

𝜕𝑡

⃒⃒⃒⃒
𝑑𝑡 (S67c)

=

∫︁ 1

0

|∇𝑥in
𝑓𝑃 (𝑥in) · (𝑥′

in − 𝑥in)| 𝑑𝑡 (S67d)

≤
∫︁ 1

0

‖∇𝑥in
𝑓𝑃 (𝑥in)‖2‖𝑥

′
in − 𝑥in‖2 𝑑𝑡 (S67e)

≤
√
𝐶 ′|𝛼𝑃 |‖𝑥′

in − 𝑥in‖2 (S67f)

≤
√
𝐶 ′|𝛼𝑃 |

√︀
|𝐼𝑃 |‖𝑥′

in − 𝑥in‖∞ (S67g)

≤
√
𝐶 ′|𝛼𝑃 |

√︀
|𝐼𝑃 |

𝛿2
2

(S67h)

≤ 𝜖

2
|𝛼𝑃 |. (S67i)

Here, in the third line, we use the chain rule. In the fifth line, we use the Cauchy-Schwarz inequality. In
the sixth line, we use the smoothness condition from Lemma 2 to bound the ℓ2-norm of the gradient. In
the seventh line, we use the fact that ‖𝑦‖2 ≤

√
𝑛‖𝑦‖∞ where 𝑛 is the number of elements in 𝑦. In the

eighth line, we use the definition of 𝑇𝑥,𝑃 . Finally, in the last line, we use our choice of 𝛿2 as

𝛿2 =
1⌈︂√

𝐶′|𝐼𝑃 |
𝜖

⌉︂ ≤ 𝜖√︀
𝐶 ′|𝐼𝑃 |

. (S68)

Combining this bound with Eq. (S66) and plugging into Eq. (S65), we have

|𝑓𝑃 (𝑥′)− 𝑓𝑃 (𝑥)| <
𝜖

2
|𝛼𝑃 |+

𝜖

2
|𝛼𝑃 | = 𝜖|𝛼𝑃 |, (S69)

as required.

C. Simple form for ground state property

We can combine the results of the previous two sections to obtain the final result giving a simpler
form for the ground state property Tr(𝑂𝜌(𝑥)). The proof of this statement is simple given the previous
results.

Theorem 3 (Simple form for Tr(𝑂𝜌(𝑥))). Let 1/𝑒 > 𝜖 > 0. Given 𝜖, we define 𝛿1 according to Def-
inition 1 with 𝜖 set to 𝜖/(2𝐶) for the constant 𝐶 defined in Corollary 2, and define 𝛿2 according to
Definition 3 with 𝜖 set to 𝜖/2. The ground state property Tr(𝑂𝜌(𝑥)) can be approximated by a simple
function, i.e.,

|Tr(𝑂𝜌(𝑥))− 𝑔(𝑥)| < 𝜖

⎛⎝ ∑︁
𝑃∈𝑆(geo)

|𝛼𝑃 |

⎞⎠ , (S70)

where 𝑔 is defined in Eq. (S60).

Proof. By the triangle inequality, we have

|Tr(𝑂𝜌(𝑥))− 𝑔(𝑥)| ≤ |Tr(𝑂𝜌(𝑥))− 𝑓(𝑥)|+ |𝑓(𝑥)− 𝑔(𝑥)|. (S71)

Here, the first term can be bounded by Corollary 2 to obtain

|Tr(𝑂𝜌(𝑥))− 𝑓(𝑥)| ≤ 𝜖

2

⎛⎝ ∑︁
𝑃∈𝑆(geo)

|𝛼𝑃 |

⎞⎠ . (S72)

13

Meanwhile, the second term in Eq. (S71) can be bounded by Corollary 3 to obtain

|𝑓(𝑥)− 𝑔(𝑥)| < 𝜖

2

⎛⎝ ∑︁
𝑃∈𝑆(geo)

|𝛼𝑃 |

⎞⎠ . (S73)

Combining Eq. (S72) and Eq. (S73) in Eq. (S71), we have

|Tr(𝑂𝜌(𝑥))− 𝑔(𝑥)| < 𝜖

⎛⎝ ∑︁
𝑃∈𝑆(geo)

|𝛼𝑃 |

⎞⎠ (S74)

This concludes the proof.

D. Technical lemmas for finding constants and bounding integrals

In this section, we state and prove several technical lemmas for showing the existence of certain
constants and bounding integrals of specific forms needed throughout Section I. Throughout this section,
we use the notation 𝑏 ≜ 𝛾/(2𝑣lr). First, we show the existence of the constants utilized in Definition 1.

Lemma 6. Given 𝑎lr, 𝑏 > 0 and 𝑑 ≥ 1, there exists a constant 𝐶1 large enough such that for all
1/𝑒 > 𝜖′ > 0 and for all 𝛿′1 > 𝐶1 log

2(1/𝜖′),

𝑎lr
2
𝛿′1 − 𝑑 log(𝛿′1) ≥ log

(︂
1

𝜖′

)︂
. (S75)

Explicitly, such a constant 𝐶1 can be given by

𝐶1 =
(2𝑑+

√
4𝑑2 + 2𝑎lr)

2

𝑎2lr
. (S76)

Proof. For simplicity, throughout this proof, let 𝑥 = log(1/𝜖′). Because we assert that 1/𝑒 > 𝜖′ > 0, then
1 < 𝑥 < ∞. First, we consider the monotonicity of 𝑓(𝛿′1) =

𝑎lr

2 𝛿′1 − 𝑑 log(𝛿′1). Taking the derivative of 𝑓
shows that 𝑓(𝛿′1) is monotonically increasing for 𝛿′1 ≥ 2𝑑/𝑎lr. Since 𝛿′1 > 𝐶1 log

2(1/𝜖′) = 𝐶1𝑥
2 ≥ 𝐶1 ≥

2𝑑/𝑎lr (note 𝑑 ≥ 1), it suffices to establish the claim for 𝛿′1 = 𝐶1𝑥
2, i.e.,

𝑎lr
2
𝐶1𝑥

2 − 𝑑 log
(︀
𝐶1𝑥

2
)︀
≥ 𝑥 (S77)

for 𝑥 > 1. We show that our choice of 𝐶1 satisfies this inequality. First, using the inequality log(𝑧) ≤
2(
√
𝑧 − 1) for 𝑧 > 0, we can apply this with 𝑧 = 𝐶1𝑥

2 to obtain

𝑎lr
2
𝐶1𝑥

2 − 𝑑 log
(︀
𝐶1𝑥

2
)︀
≥ 𝑎lr

2
𝐶1𝑥

2 − 2𝑑
√︀
𝐶1𝑥+ 2. (S78)

Bounding this trivially because 𝑥2 > 𝑥 for 𝑥 > 1, we have

𝑎lr
2
𝐶1𝑥

2 − 𝑑 log
(︀
𝐶1𝑥

2
)︀
≥
(︁𝑎lr

2
𝐶1 − 2𝑑

√︀
𝐶1

)︁
𝑥. (S79)

Plugging in our choice of 𝐶1 and simplifying, we have

𝑎lr
2
𝐶1𝑥

2 − 𝑑 log
(︀
𝐶1𝑥

2
)︀
≥

(︃(︀
2𝑑+

√
4𝑑2 + 𝑎lr

)︀2
2𝑎lr

− 2𝑑

(︂
2𝑑+

√
4𝑑2 + 𝑎lr
𝑎lr

)︂)︃
𝑥 (S80a)

=

(︂
8𝑑2 + 2𝑎lr + 4𝑑

√
4𝑑2 + 2𝑎lr

2𝑎lr
− 8𝑑2 + 4𝑑

√
4𝑑2 + 2𝑎lr

2𝑎lr

)︂
𝑥 (S80b)

= 𝑥. (S80c)

Hence, we obtain the desired inequality.

14

Lemma 7. Given 𝑏 > 0, there exists a constant 𝐶2 large enough such that for all 1/𝑒 > 𝜖′ > 0 and for
all 𝛿′1 > 𝐶2 log

2(1/𝜖′),

2𝑏𝛿′1
7 log2(𝑏(𝛿′1 + 1))

− 22 log(𝑏(𝛿′1 + 1)) ≥ log

(︂
1

𝜖′

)︂
. (S81)

Explicitly, such a constant 𝐶2 can be given by

𝐶2 = max

(︂
(18𝑏+ (63 · 22/2))3

𝑏
, 1,

2(7 · 16)2

𝑏
,
23(7 · 22 · 64)4

𝑏

)︂
. (S82)

Proof. For simplicity, throughout this proof, let 𝑥 = log(1/𝜖′). Because we assert that 1/𝑒 > 𝜖′ > 0, then
1 < 𝑥 < ∞. First, we consider the monotonicity of 𝑓(𝛿′1) =

2𝑏𝛿′1
7 log2(𝑏(𝛿′1+1))

− 22 log(𝑏(𝛿′1 + 1)). Taking
the derivative of 𝑓 shows that 𝑓(𝛿′1) is monotonically increasing for 𝛿′1 ≥ (18𝑏 + (63 · 22/2))3/𝑏. For
𝛿′1 ≥ (18𝑏+ (63 · 22/2))3/𝑏, we can make use of log(𝑧) ≤ 3𝑧1/3,∀𝑧 > 0 to show that

2𝑏(𝛿′1 + 1)

7 log2(𝑏(𝛿′1 + 1))
≥ 4

7
𝑏+ 22. (S83)

Because 𝛿′1 ≥ (18𝑏+ (63 · 22/2))3/𝑏 ≥ 𝑒/𝑏, we have

log3(𝑏(𝛿′1 + 1)) ≥ 1. (S84)

Together, we can show that for 𝛿′1 ≥ (18𝑏+ (63 · 22/2))3/𝑏,

𝑓 ′(𝛿′1) =
2𝑏

7 log2(𝑏(𝛿′1 + 1))
− 4𝑏

7(𝛿′1 + 1) log3(𝑏(𝛿′1 + 1))
− 22

𝛿′1 + 1
≥ 0. (S85)

Since 𝛿′1 > 𝐶2 log
2(1/𝜖′) = 𝐶2𝑥

2 ≥ 𝐶2 ≥ (18𝑏 + (63 · 22/2))3/𝑏, it suffices to establish the claim for
𝛿′1 = 𝐶2𝑥

2, i.e.,

2𝑏𝐶2𝑥
2

7 log2(𝑏𝐶2𝑥2 + 𝑏)
− 22 log

(︀
𝑏𝐶2𝑥

2 + 𝑏
)︀
≥ 𝑥 (S86)

for 𝑥 > 1. We show that our choice of 𝐶2 satisfies this. First, notice that it suffices to show the following
two inequalities

𝑏𝐶2𝑥
2

7 log2(𝑏𝐶2𝑥2 + 𝑏)
≥ 𝑥 (S87)

and

𝑏𝐶2𝑥
2

7 log2(𝑏𝐶2𝑥2 + 𝑏)
≥ 22 log

(︀
𝑏𝐶2𝑥

2 + 𝑏
)︀
. (S88)

Since 𝐶2 ≥ 1 and 𝑥 > 1, then 𝐶2𝑥
2 ≥ 1 and 𝑏𝐶2𝑥

2 + 𝑏 ≤ 2𝑏𝐶2𝑥
2. Then, in Eq. (S87), we have

𝑏𝐶2𝑥
2

7 log2(𝑏𝐶2𝑥2 + 𝑏)
≥ 𝑏𝐶2𝑥

2

7 log2(2𝑏𝐶2𝑥2)
≥

√
𝐶2𝑏

7 · 16
√
2
𝑥 ≥ 𝑥, (S89)

where the second inequality follows using the inequality log(𝑧) ≤ 4𝑧1/4 for 𝑧 > 0, applied with 𝑧 =
2𝑏𝐶2𝑥

2, and the last inequality follows from our choice of 𝐶2. This proves Eq. (S87). Now, to prove
Eq. (S88), notice that it suffices to show that

𝑏𝐶2𝑥
2

7
≥ 22(4(2𝑏𝐶2𝑥

2)1/4)3 = 22 · 64(2𝑏𝐶2)
3/4𝑥3/2. (S90)

This is because, again using the inequality log(𝑧) ≤ 4𝑧1/4 with 𝑧 = 2𝑏𝐶2𝑥
2, then

𝑏𝐶2𝑥
2

7
≥ 22 · 64(2𝑏𝐶2)

3/4𝑥3/2 ≥ 22 log3(2𝑏𝐶2𝑥
2) (S91)

so Eq. (S90) implies Eq. (S88). Thus, it remains to prove Eq. (S90), which is equivalent to

𝐶2 ≥ (7 · 22 · 64)4 · 23

𝑏
. (S92)

Because 𝑥 > 1, our choice of 𝐶2 satisfies the above inequality.

15

Lemma 8. Given 𝑎lr, 𝑏 > 0 and 𝑑 ≥ 1, there exists a constant 𝐶3 large enough such that for all
1/𝑒 > 𝜖′ > 0 and for all 𝛿′1 > 𝐶3 log

2(1/𝜖′),

2𝑏𝛿′1
log2(𝑏(𝛿′1 + 1))

− (𝑑+ 22) log(𝑏(𝛿′1 + 1)) ≥ log

(︂
1

𝜖′

)︂
(S93)

Explicitly, such a constant 𝐶3 can be given by

𝐶3 = max

(︂
(18𝑏+ 63(𝑑+ 22)/2)3

𝑏
, 1,

2(7 · 16)2

𝑏
,
23(7 · (𝑑+ 22) · 64)4

𝑏

)︂
. (S94)

Proof. The proof is the same as that of Lemma 7 after replacing 22 by 𝑑+ 22.

Next, we begin the integral bounds portion of this section and reprove a variant of the lemma introduced
in [2].

Lemma 9 (Variant of Lemma 2.5 in [2], Lemma 5 in [1]). For 𝑎 > 0 define

𝑢𝑎(𝑥) = 𝑒
−𝑎 𝑥

log2(𝑥)

on the domain 𝑥 ∈ (1,∞), where log denotes the natural logarithm. For all integers 𝑘 ≥ 0 and 𝑡 ≥ 5504
such that

𝑎
𝑡

log2 𝑡
> 2𝑘 + 2, (S95)

we have the bound ∫︁ +∞

𝑡

𝑥𝑘𝑢𝑎(𝑥) 𝑑𝑥 ≤ 1

𝑎
(︁
1− 2𝑘+2

𝜏(𝑡)

)︁ 𝑡2𝑘+2𝑢𝑎(𝑡), (S96)

where 𝜏(𝑥) ≜ 𝑎𝑥/ log2(𝑥).

To prove this, we need a bound on the upper incomplete Gamma function:

Lemma 10 (Proposition 2.7 in [8]). Take any real 𝑛 ≥ 0. Then,

Γ(𝑛+ 1, 𝑧) ≤ 1

1− 𝑛
𝑧

𝑧𝑛𝑒−𝑧, (S97)

for all real 𝑧 > 𝑛.

Proof of Lemma 9. Define the function

𝜏(𝑥) ≜ 𝑎
𝑥

log2(𝑥)
. (S98)

Here, because we are considering the domain 𝑥 ∈ (1,∞), then this function is well-defined and differ-
entiable. Moreover, it is always positive because log2(𝑥) ≥ log(𝑥) > 0 for 𝑥 > 1. Also, consider the
derivative

𝑑𝜏

𝑑𝑥
= 𝑎

(︂
log(𝑥)− 2

log3(𝑥)

)︂
. (S99)

Again, this is well-defined because log3(𝑥) > 0 for 𝑥 > 1. Furthermore, we see that if 𝑥 ≥ 𝑒2, then
𝑑𝜏
𝑑𝑥 > 0. Thus, for 𝑥 ≥ 𝑒2, 𝜏(𝑥) is monotone increasing. Ultimately, our goal is to bound the integral∫︁ +∞

𝑡

𝑥𝑘𝑢𝑎(𝑥) 𝑑𝑥 =

∫︁ +∞

𝑡

𝑥𝑘𝑒−𝜏(𝑥) 𝑑𝑥 (S100)

by using a substitution 𝜏 = 𝜏(𝑥), 𝑑𝜏 = 𝑑𝜏
𝑑𝑥𝑑𝑥. Substituting in for 𝑥, we use the inverse 𝑥 = 𝑥(𝜏) and for

the differential 𝑑𝑥, we use 𝑑𝑥 = 𝑑𝑥
𝑑𝜏 𝑑𝜏 to obtain∫︁ +∞

𝜏(𝑡)

(𝑥(𝜏))𝑘𝑒−𝜏 𝑑𝑥

𝑑𝜏
𝑑𝜏. (S101)

16

We want to get this into the form of the upper incomplete Gamma function:

Γ(𝑛+ 1, 𝑧) =

∫︁ +∞

𝑧

𝜏𝑛𝑒−𝜏 𝑑𝜏 = 𝑛!𝑒−𝑧
𝑛∑︁

𝑘=0

𝑧𝑘

𝑘!
. (S102)

Thus, we want to find bounds on 𝑑𝑥
𝑑𝜏 and 𝑥(𝜏) in terms of 𝜏 (and constants). Since we define 𝑥(𝜏) as the

inverse of 𝜏(𝑥), then we know that

𝑑𝑥

𝑑𝜏
=

1
𝑑𝜏
𝑑𝑥

=
1

𝑎

(︂
log3(𝑥)

log(𝑥)− 2

)︂
. (S103)

We notice here that if 𝑥 ≥ 28, then

𝑑𝑥

𝑑𝜏
=

1

𝑎

(︂
log3(𝑥)

log(𝑥)− 2

)︂
≤ 𝑥

𝑎
. (S104)

If we further require 𝑥 ≥ 5504, then

𝑥 ≤
(︂

𝑥

log2 𝑥

)︂2

=
𝜏2

𝑎2
. (S105)

Using these together, we have that

𝑑𝑥

𝑑𝜏
≤ 𝑥

𝑎
≤ 𝜏2

𝑎3
. (S106)

Plugging these into Eq. (S101), we can upper bound our integral∫︁ +∞

𝑡

𝑥𝑘𝑒−𝜏(𝑥) 𝑑𝑥 =

∫︁ +∞

𝜏(𝑡)

(𝑥(𝜏))𝑘𝑒−𝜏 𝑑𝑥

𝑑𝜏
𝑑𝜏 (S107a)

≤
∫︁ +∞

𝜏(𝑡)

𝜏2𝑘

𝑎2𝑘
𝑒−𝜏 𝜏

2

𝑎3
𝑑𝜏 (S107b)

=
1

𝑎2𝑘+3

∫︁ +∞

𝜏(𝑡)

𝜏2𝑘+2𝑒−𝜏 𝑑𝜏 (S107c)

=
1

𝑎2𝑘+3
Γ(2𝑘 + 3, 𝜏(𝑡)). (S107d)

Now, applying Lemma 10, we can further bound this:∫︁ +∞

𝑡

𝑥𝑘𝑒−𝜏(𝑥) 𝑑𝑥 ≤ 1

𝑎2𝑘+3

1

1− 2𝑘+2
𝜏(𝑡)

(𝜏(𝑡))2𝑘+2𝑒−𝜏(𝑡) (S108)

for 𝜏(𝑡) > 2𝑘 + 2. Finally, since 𝜏(𝑡) ≤ 𝑎𝑡 for 𝑡 ≥ 𝑒, then we have∫︁ +∞

𝑡

𝑥𝑘𝑒−𝜏(𝑥) 𝑑𝑥 ≤ 1

𝑎
(︁
1− 2𝑘+2

𝜏(𝑡)

)︁ 𝑡2𝑘+2𝑒−𝜏(𝑡). (S109)

We use this to obtain another integral bound, which is as follows.

Lemma 11. Let 𝛿1, 𝜖 be as in Definition 1. Then, there exists a constant 𝑐 such that

𝐼 =

∫︁ +∞

𝑟=0

⎛⎝ 1

1− 35 log2(𝑏(𝛿1+𝑟+1))
𝑏(𝛿1+𝑟)

⎞⎠ (𝛿1 + 𝑟 + 1)10 exp

(︂
−2

7

𝑏(𝛿1 + 𝑟)

log2(𝑏(𝛿1 + 𝑟 + 1))

)︂
𝑑𝑟 ≤ 𝑐𝜖. (S110)

Proof. Using the substitution 𝑥 = 𝑏(𝛿1 + 𝑟 + 1), this integral transforms into

𝐼 =

(︂
1

𝑏

)︂𝑛+11 ∫︁ +∞

𝑥=𝑏(𝛿1+1)

(︃
1

1− 35 log2 𝑥
𝑥−𝑏

)︃
𝑥10 exp

(︂
−2

7

𝑥− 𝑏

log2(𝑥)

)︂
𝑑𝑥. (S111)

17

Here, we can show that for our choice of 𝛿1, 𝑒2𝑏/7 log2(𝑥) and 1/(1− (35 log2 𝑥)/(𝑥− 𝑏)) are both mono-
tonically decreasing in 𝑥. The derivative of the exponential term is

𝑑

𝑑𝑥
𝑒

2
7

𝑏
log2 𝑥 = −4𝑏𝑒

2
7

𝑏
log2 𝑥

7𝑥 log3 𝑥
. (S112)

To show that the exponential term is monotonically decreasing, we need to show that this derivative is
less than 0 for 𝑥 ≥ 𝑏(𝛿1+1). We see that 𝑒2𝑏/(7 log2 𝑥) is always nonnegative and log3 𝑥 is positive as long
as 𝑥 > 1 (in which case 𝑥 > 0 as well). Thus, we only require 𝑥 > 1 for this derivative to be less than 0.

Similarly, for the other term, we have the derivative

𝑑

𝑑𝑥

1

1− 35 log2 𝑥
𝑥−𝑏

= −35 log 𝑥(2𝑏− 2𝑥+ 𝑥 log 𝑥)

𝑥(𝑏− 𝑥+ 35 log2 𝑥)2
. (S113)

In order for this to be less than 0, we see that (𝑏 − 𝑥 + 35 log2 𝑥)2 is always nonnegative and log 𝑥 is
positive as long as 𝑥 > 1 (in which case 𝑥 > 0 as well). Then, the only term left is 2𝑏 − 2𝑥 + 𝑥 log 𝑥,
which is positive as long as log 𝑥 > 2(𝑥 − 𝑏)/𝑥 = 2 − 2𝑏/𝑥. This is satisfied if log 𝑥 > 2, which follows
when 𝑥 > 𝑒2.

Putting everything together, we see that both of these terms are monotonically decreasing in 𝑥 for
𝑥 > 𝑒2. In our integral, we have 𝑥 ≥ 𝑏(𝛿1 + 1). However, by our choice of 𝛿1 in Definition 1, we have
that 𝛿1 ≥ 5900/𝑏 so that 𝑏(𝛿1 + 1) > 𝑏𝛿1 ≥ 5900 > 𝑒2. Hence, the condition for these terms to be
monotonically decreasing is satisfied for the bounds of the integral.

Thus, because these terms are monotonically decreasing, we can upper bound the integral by

𝐼 ≤
(︂
1

𝑏

)︂11

exp

(︂
2

7

𝑏

log2(𝑏(𝛿1 + 1))

)︂(︃
1

1− 35 log2(𝑏(𝛿1+1))
𝑏𝛿1

)︃∫︁ +∞

𝑥=𝑏(𝛿1+1)

𝑥10𝑒
− 2

7
𝑥

log2(𝑥) 𝑑𝑥. (S114)

Now, we can use Lemma 9 to bound this final integral using 𝑘 = 10, 𝑎 = 2/7:∫︁ +∞

𝑥=𝑏(𝛿1+1)

𝑥10𝑒
− 2

7
𝑥

log2(𝑥) 𝑑𝑥 ≤ 7

2

1

1− 7(22) log2(𝑏(𝛿1+1))
2𝑏(𝛿1+1)

(𝑏(𝛿1 + 1))22 exp

(︂
−2

7

𝑏(𝛿1 + 1)

log2(𝑏(𝛿1 + 1))

)︂
. (S115)

Here, we note that the conditions are satisfied because

𝑡 =
𝛾(𝛿1 + 1)

2𝑣lr
≥ 𝛾𝛿1

2𝑣lr
≥ max(5900, 𝛼, 7(𝑑+ 11), 𝜃) ≥ 5900, (S116)

and it is clear that for 𝑡 ≥ 5900 that 𝑎𝑡/ log2 𝑡 > 22. Let 𝑐1 = 7(1/𝑏)11/2, and we can combine these
bounds:

𝐼 ≤ 𝑐1 exp

(︂
−2

7

𝑏𝛿1

log2(𝑏(𝛿1 + 1))

)︂(︃
1

1− 35 log2(𝑏(𝛿1+1))
𝑏𝛿1

)︃⎛⎝ 1

1− 7(22) log2(𝑏(𝛿1+1))
2𝑏(𝛿1+1)

⎞⎠ (𝑏(𝛿1 + 1))22. (S117)

We can further bound this by

𝐼 ≤ 4𝑐1 exp

(︂
−2𝛾𝛿1 + 14(22)𝑣lr log

3(𝑏(𝛿1 + 1))

14𝑣lr log
2(𝑏(𝛿1 + 1))

)︂
. (S118)

Here, this is because of Eq. (S8). This follows because

1

1− 35 log2(𝑏(𝛿1+1))
𝑏𝛿1

≤ 1

1− 77 log2(𝑏(𝛿1+1))
𝑏(𝛿1+1)

, (S119)

Now, by our choice of 𝛿1 and Lemma. 7, then we have

𝐼 ≤ 4𝑐1𝑒
− log(1/𝜖) = 4𝑐1𝜖. (S120)

Taking 𝑐 = 4𝑐1, we arrive at our claim.

Lemma 12. Let 𝛿1, 𝜖 be as in Definition 1. Then, there exists a constant 𝑐′ such that

𝐼 =

∫︁ +∞

𝑟=0

⎛⎝ 1

1− 35 log2(𝑏(𝛿1+𝑟+1))
𝑏(𝛿1+𝑟)

⎞⎠ (𝛿1 + 𝑟 + 1)𝑑+10 exp

(︂
−2

7

𝑏(𝛿1 + 𝑟)

log2(𝑏(𝛿1 + 𝑟 + 1))

)︂
𝑑𝑟 ≤ 𝑐′𝜖. (S121)

Proof. The proof is the same as that of Lemma 11 after replacing 𝑥10 by 𝑥𝑑+10. Moreover, in the final
steps, instead of using Eq. (S8) and Lemma 7, we use Eq. (S9) and Lemma 8, respectively.

18

II. NORM INEQUALITY FOR OBSERVABLES

The efficiency of learning depends strongly on the complexity of the target functions we would like to
learn. One way to characterize the complexity of the target function is to consider an appropriate norm
of the function. Given an observable 𝑂 =

∑︀
𝑃 𝛼𝑃𝑃 specified by the Pauli coefficients 𝛼𝑃 , Theorem 3

shows that having a smaller ℓ1-norm
∑︀

𝑃 |𝛼𝑃 | on the Pauli coefficients implies that the ground state
property Tr(𝑂𝜌(𝑥)) can be better approximated by a simple function. This motivates the derivation of
bounds on

∑︀
𝑃 |𝛼𝑃 |.

A technical contribution of this work is to develop a norm inequality relating the ℓ1-norm of the Pauli
coefficients

∑︀
𝑃 |𝛼𝑃 | to the spectral norm ‖𝑂‖∞ (the largest singular value). To state this result precisely,

we first present some formal definitions. Throughout the remainder of this section, we consider labelling
the 𝑛 qubits in a 𝑑-dimensional lattice with a 𝑑-tuple, ℓ = (ℓ1, . . . , ℓ𝑑), where each ℓ𝑘 ∈ {1, . . . , ⌊ 𝑑

√
𝑛⌋}.

Definition 4 (Domain of an observable). Let 𝑂 be an arbitrary observable in a finite 𝑑-dimensional
space. Then, define the domain dom(𝑂) ⊆ {1, . . . , ⌊ 𝑑

√
𝑛⌋}𝑑 of 𝑂 to be the set of qubits that 𝑂 acts

nontrivially on.

Definition 5 (geometrically local with range 𝑅). Let 𝑂 be an arbitrary observable in a finite 𝑑-
dimensional space and let dom(𝑂) ⊆ {1, . . . , ⌊ 𝑑

√
𝑛⌋}𝑑 be its domain. Moreover, let dom(𝑂)𝑘 =

𝜋𝑘(dom(𝑂)) ⊆ {1, . . . , ⌊ 𝑑
√
𝑛⌋}, where 𝜋𝑘 : Z𝑑 → Z is the projection map onto the 𝑘th coordinate.

Let 𝑅𝑂,𝑘 ≜ max(dom(𝑂)𝑘) − min(dom(𝑂)𝑘). The observable 𝑂 is geometrically local with range 𝑅
if 𝑅𝑂,𝑘 ≤ 𝑅𝑘, for all 𝑘 = 1, . . . , 𝑑 and

𝑅 ≜
𝑑∏︁

𝑘=1

𝑅𝑘. (S1)

In cases when the range 𝑅 = 𝒪(1) is unimportant, we simply say that 𝑂 is geometrically local.

We can now properly state the norm inequality relating the Pauli-1 norm to the spectral norm.

Theorem 4 (Detailed restatement of Theorem 2). Given an observable 𝑂 =
∑︀

𝑃 𝛼𝑃𝑃 that can be written
as a sum of geometrically local observables with range 𝑅 in a finite 𝑑-dimensional space, we have∑︁

𝑃

|𝛼𝑃 | ≤ 2𝑑𝑅 · 4𝑅‖𝑂‖∞. (S2)

If we additionally require that ‖𝑂‖∞ = 𝒪(1), we have the following corollary.

Corollary 4. Given an observable 𝑂 =
∑︀

𝑃 𝛼𝑃𝑃 with ‖𝑂‖∞ = 𝒪(1) that can be written as a sum of
geometrically local observables in a finite 𝑑-dimensional space with 𝑅 = 𝒪(1), we have

∑︀
𝑃 |𝛼𝑃 | = 𝒪(1).

In order to establish the above norm inequality, we consider an explicit algorithm for constructing a
state 𝜌 satisfying

∑︀
𝑄 |𝛼𝑄| ≤ 𝐶 Tr(𝑂𝜌). In this way, bounding Tr(𝑂𝜌) above by ‖𝑂‖∞ gives the desired

inequality. We briefly discuss the idea of the algorithm. First, we consider the set of all geometrically
local blocks over the 𝑛 qubits. Then, we consider all Pauli observables 𝑄 with nonzero 𝛼𝑄 and the qubits
that 𝑄 acts on. For each block, if the qubits that 𝑄 acts on are all inside that block, we put 𝑄 inside
of this block. If there are multiple such blocks, we choose an arbitrary one to put 𝑄 in so that each
Pauli observable 𝑄 is in exactly one block. After that, we separate all blocks into a few disjoint layers
of blocks. Each layer contains many blocks that are sufficiently far from one another, and each block
contains some Pauli observables. We select the layer that has the largest

∑︀
𝑄 |𝛼𝑄|, where this sum is

over all Pauli observables inside that layer. To construct the state 𝜌, we let 𝜌 be the maximally mixed
state on qubits outside of the selected layer. For each block in the selected layer, we choose 𝜌 to be a
state that maximizes the sum of the Pauli terms in the block. With a careful analysis, the constructed
state 𝜌 satisfies the desired norm inequality.

A. Facts and lemmas

Before proving Theorem 4, we give a few definitions, facts and lemmas.

Definition 6 (geometrically local Pauli observables). Throughout this section, we consider 𝑆(geo) to be
the set of all geometrically local Pauli observables with a constant range 𝑅 = 𝒪(1).

19

The following fact can be easily shown by considering the Pauli decomposition of each geometrically
local observable in the sum.

Fact 1. Any observable 𝑂 that can be written as a sum of geometrically local observables can also be
written as a sum of geometrically local Pauli observables. Thus, we can write 𝑂 =

∑︀
𝑃 𝛼𝑃𝑃 , where

𝛼𝑃 = 0 for all 𝑃 /∈ 𝑆(geo).

A construction of the mixed state that we are going to use throughout the proof is the following. The
key idea is that |Tr(𝑃𝑖𝜌)| = 1/𝑘 for 𝑖 = 1, . . . , 𝑘, and |Tr(𝑃𝜌)| = 0 for any 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖
{𝐼, 𝑃1, . . . , 𝑃𝑘}.

Lemma 13. Let 𝑃1, . . . , 𝑃𝑘 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛. Suppose that 𝑃𝑖 ̸= 𝐼⊗𝑛 for all 𝑖 = 1, . . . , 𝑘. Then

𝜌 =
𝐼 + ±𝑃1±···±𝑃𝑘

𝑘

2𝑛
(S3)

is a density operator, i.e., it is positive semidefinite and has unit trace.

Proof. First, we can easily show that 𝜌 has unit trace. Let 𝑃𝑖 =
⨂︀𝑛

𝑗=1 𝑃𝑖,𝑗 for all 𝑖 = 1, . . . , 𝑘, where
𝑃𝑖,𝑗 ∈ {𝐼,𝑋, 𝑌, 𝑍}. Then, we have

Tr(𝜌) =
1

2𝑛

(︂
Tr(𝐼)± 1

𝑘
(Tr(𝑃1)± · · · ± Tr(𝑃𝑘))

)︂
(S4a)

=
1

2𝑛

⎛⎝2𝑛 ± 1

𝑘

⎛⎝ 𝑛∏︁
𝑗=1

Tr(𝑃1,𝑗)± · · · ±
𝑛∏︁

𝑗=1

Tr(𝑃𝑘,𝑗)

⎞⎠⎞⎠ (S4b)

= 1, (S4c)

where the last equality follows because the trace of a nonidentity Pauli matrix is 0, and we assume that
𝑃𝑖 ̸= 𝐼⊗𝑛 so that the 𝑃𝑖,𝑗 are not all identity. To show that 𝜌 is positive semidefinite, it suffices to prove
that the eigenvalues of (±𝑃1 ± · · · ± 𝑃𝑘)/𝑘 are between −1 and 1. Then, when this is summed with the
identity matrix which has eigenvalue +1, the eigenvalues are nonnegative. We see this using the spectral
norm ⃦⃦⃦⃦

±𝑃1 ± · · · ± 𝑃𝑘

𝑘

⃦⃦⃦⃦
∞

≤ 1

𝑘
(‖𝑃1‖∞ + · · ·+ ‖𝑃𝑘‖∞) = 1, (S5)

which concludes our proof.

Now, we want to define an operation that is useful throughout the proof.

Definition 7 (Restriction of a Pauli operator). Let 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛. Write 𝑃 =
⨂︀

ℓ∈{1,...,⌊ 𝑑
√
𝑛⌋}𝑑 𝑃ℓ

for 𝑃ℓ ∈ {𝐼,𝑋, 𝑌, 𝑍}. Let 𝑆 ⊆ {1, . . . , ⌊ 𝑑
√
𝑛⌋}𝑑 be a subset of qubits. The restriction of 𝑃 to the subset

of qubits 𝑆 is the substring of Paulis that act on 𝑆:

restrict(𝑃 ;𝑆) ≜ 𝑃𝑆 ≜
⨂︁
ℓ∈𝑆

𝑃ℓ. (S6)

In Definition 7, the subscript notation is used to be consistent with the more standard notation of 𝑃𝑘 to
denote a Pauli acting on qubit 𝑘.

B. Proof of Theorem 4

The key idea is to upper bound
∑︀

𝑃 |𝛼𝑃 | by a constant times Tr(𝑂𝜌) for some test state 𝜌. We construct
such a 𝜌 with a similar form to that seen in Lemma 13. Then, because 𝜌 is positive semidefinite and has
unit trace by Lemma 13, Tr(𝑂𝜌) ≤ ‖𝑂‖∞. Putting everything together, we have∑︁

𝑃

|𝛼𝑃 | ≤ 2𝑑𝑅 · 4𝑅 Tr(𝑂𝜌) ≤ 2𝑑𝑅 · 4𝑅‖𝑂‖∞, (S7)

as required. Thus, it suffices to consider this intermediate step of finding a quantum state 𝜌 such that
2𝑑𝑅 · 4𝑅 Tr(𝑂𝜌) ≥

∑︀
𝑃 |𝛼𝑃 |. To this end, we consider dividing our space of all Pauli observables into

different sets and focus on one set, which educates our choice of 𝜌.

20

Consider some Pauli observable 𝑃 ∈ 𝑆(geo), where 𝑆(geo) is the set of all geometrically local Pauli
observables. Since 𝑃 is geometrically local, by Definition 5, there exist constants 𝑅𝑘 for 𝑘 = 1, . . . , 𝑑 that
serve as the maximum range of qubits that a Pauli observable covers in the 𝑘th dimension. We want to
divide our 𝑑-dimensional space into blocks of 𝑅𝑘 qubits in each dimension. These blocks of qubits are

𝐵(⃗𝑖,⃗𝑗) ≜ {qubits ℓ = (ℓ1, . . . , ℓ𝑑) : ℓ𝑘 ∈ [(2𝑖𝑘 − 2)𝑅𝑘 + 𝑗𝑘 + 1, (2𝑖𝑘 − 1)𝑅𝑘 + 𝑗𝑘], ∀𝑘 ∈ {1, . . . , 𝑑}}, (S8)

where �⃗� = (𝑖1, . . . , 𝑖𝑑) and �⃗� = (𝑗1, . . . , 𝑗𝑑). We construct these blocks for 𝑖𝑘 = 1, . . . , ⌊ ⌊ 𝑑
√
𝑛⌋−𝑗𝑘+𝑅𝑘

2𝑅𝑘
⌋

and 𝑗𝑘 = 0, . . . , 2𝑅𝑘 − 1 for 𝑘 = 1, . . . , 𝑑. Here, we are dividing the 𝑑-dimensional space into blocks of
𝑅 =

∏︀𝑑
𝑘=1 𝑅𝑘 qubits, where each block is index by �⃗� and is separated from the next by 𝑅𝑘 qubits in the

𝑘th dimension. We refer to this gap between the blocks as the buffer. Denote the buffer as

𝐵′
�⃗�
≜ {1, . . . , ⌊ 𝑑

√︀
[𝑛]⌋}𝑑 ∖

⎛⎝⋃︁
�⃗�

𝐵(⃗𝑖,⃗𝑗)

⎞⎠ , (S9)

where the union is over all possible vectors �⃗� such that 𝑖𝑘 ranges from 1 to ⌊ ⌊ 𝑑
√
𝑛⌋−𝑗𝑘+𝑅𝑘

2𝑅𝑘
⌋. This separation

using the buffer region is so that no Pauli term can act on qubits in two blocks at once, which we use
later. Moreover, we are considering possible shifts of these blocks by 𝑗𝑘 qubits in each of the dimensions.
Notice that there are only 2𝑅𝑘 possible shifts in each dimension until the blocks align with the original
positioning of another block. Consider the related set consisting of the Pauli terms that act only on
qubits in a given block

𝑆(⃗𝑖,⃗𝑗) ≜ {𝑃 : for all qubits 𝑘 ∈ dom(𝑃), then 𝑘 ∈ 𝐵(⃗𝑖,⃗𝑗)} ∖

⎛⎝ ⋃︁
(⃗𝑖′ ,⃗𝑗′)≤(⃗𝑖,⃗𝑗)

𝑆(⃗𝑖′ ,⃗𝑗′)

⎞⎠ , (S10)

where we define (⃗𝑖′, �⃗�′) ≤ (⃗𝑖, �⃗�) using the standard lexicographical order, i.e.,

(⃗𝑖′, �⃗�′) = ((𝑖′1, . . . , 𝑖
′
𝑑), (𝑗

′
1, . . . , 𝑗

′
𝑑)) ≤ (⃗𝑖, �⃗�) = ((𝑖1, . . . , 𝑖𝑑), (𝑗1, . . . , 𝑗𝑑)) (S11)

if and only if �⃗�′ < �⃗�, or �⃗�′ = �⃗� and �⃗�′ ≤ �⃗�. Here, �⃗�′ ≤ �⃗� if and only if 𝑖′1 < 𝑖1, or 𝑖′1 = 𝑖1 and 𝑖′2 < 𝑖2, or,
etc. Thus, we create these sets 𝑆(𝑖,𝑗) sequentially according to this ordering. We remove previous sets so
that each 𝑆(⃗𝑖,⃗𝑗) is disjoint from other sets 𝑆(⃗𝑖′ ,⃗𝑗′).

Now, taking a union over all �⃗�, we can consider the Pauli terms acting on these blocks together. The
resulting sets then only differ based on the shift of 𝑗𝑘 qubits in each dimension.

𝑈�⃗� ≜
⋃︁
�⃗�

𝑆(⃗𝑖,⃗𝑗). (S12)

Figure S3 illustrates all these definitions. We now consider
∑︀

𝑃∈𝑈�⃗�
|𝛼𝑃 |, where these 𝛼𝑃 are the

coefficients in 𝑂 =
∑︀

𝑃 𝛼𝑃𝑃 . We want to pick the set 𝑈�⃗� such that this sum is largest, i.e.

�⃗�* ≜ argmax
0≤𝑗1≤2𝑅1−1

...
0≤𝑗𝑑≤2𝑅𝑑−1

∑︁
𝑃∈𝑈�⃗�

|𝛼𝑃 |. (S13)

We now focus on the set 𝑈�⃗�* . To justify this choice, we can think of each of the sets shifted by �⃗� as
breaking up the sum

∑︀
𝑃 |𝛼𝑃 | into different disjoint sums. This is a result of our earlier choice for 𝑈�⃗� to

contain a disjoint set of Pauli terms. Then, the maximum over all shifts �⃗� of
∑︀

𝑃∈𝑈�⃗�
|𝛼𝑃 | is greater than

the average over all shifts. In other words, we have∑︁
𝑃∈𝑈�⃗�*

|𝛼𝑃 | ≥
1

2𝑑𝑅

∑︁
𝑃

|𝛼𝑃 |, (S14)

where recall that 𝑅 =
∏︀𝑑

𝑘=1 𝑅𝑘. Relating back to our original goal, it remains to find a test state 𝜌 such
that

Tr(𝑂𝜌) ≥ 1

4𝑅

∑︁
𝑃∈𝑈�⃗�*

|𝛼𝑃 |. (S15)

21

Figure S3: Intuition behind proof construction of Theorem 4 for the cases of 𝑑 = 1 (a) and 𝑑 = 2
(b). In both cases, the idea is to divide our qubits (blue circles) in 𝑑-dimensional space into blocks (light blue
boxes), and consider the quantity we wish to bound in these blocks. Note that all qubits not highlighted are in
the buffer region. The first column in the figure depicts the unshifted blocks, i.e., �⃗� = 0. The second column
displays an example of shifted blocks (dashed boxes). Finally, the last column considers Pauli terms (dark blue
circles) acting on the qubits circled and indicates if they are contained in 𝑈0, defined in Eq. (S12).

Once we have this, we can conclude that

2𝑑𝑅 · 4𝑅‖𝑂‖∞ ≥ 2𝑑𝑅 · 4𝑅 Tr(𝑂𝜌) ≥ 2𝑑𝑅
∑︁

𝑃∈𝑈�⃗�*

|𝛼𝑃 | ≥
∑︁
𝑃

|𝛼𝑃 |, (S16)

proving our claim, where the first inequality follows because 𝜌 is positive semidefinite and has unit trace
from Lemma 13. In what follows, we aim to define this 𝜌 based on the set 𝑈�⃗�* and show that this
inequality holds.

The idea is to have 𝜌 as the maximally mixed state on qubits in the buffer region 𝐵′
�⃗�*

and be a state
of the form in Lemma 13 for qubits in

⋃︀
�⃗� 𝐵(⃗𝑖,⃗𝑗*). In this way, when we take Tr(𝑂𝜌), any Pauli terms not

in 𝑈�⃗�* contribute 0 while Pauli terms 𝑃 in 𝑈�⃗�* contribute a constant times |𝛼𝑃 |. Explicitly, we define 𝜌
as

𝜌 ≜
⨂︁
�⃗�

⎛⎝ 1

2𝑅

⎛⎝𝐼𝐵(⃗𝑖,⃗𝑗*)
+

1

|𝑆(⃗𝑖,⃗𝑗*)|
∑︁

𝑄∈𝑆(⃗𝑖,⃗𝑗*)

(−1)
𝛿{𝛼𝑄<0}𝑄𝐵(⃗𝑖,⃗𝑗*)

⎞⎠⎞⎠ ⨂︁
ℓ∈𝐵′

�⃗�*

𝐼ℓ
2

≜
⨂︁
�⃗�

𝜌𝑖

⨂︁
ℓ∈𝐵′

�⃗�*

𝐼ℓ
2
, (S17)

where 𝛿{𝛼𝑄<0} is 1 when 𝛼𝑄 < 0 and 0 otherwise. Also, the tensor product is again over all possible
vectors �⃗� such that each entry 𝑖𝑘 ranges from 1 to ⌊ ⌊ 𝑑

√
𝑛⌋−𝑗𝑘+𝑅𝑘

2𝑅𝑘
⌋. Here, we are using the notation

from Definition 7 to denote quantum operations restricted to their action on a given set of qubits. By
Lemma 13, 𝜌𝑖 is a proper quantum state that is positive semidefinite and has unit trace; hence 𝜌 is a
quantum state. Now, we want to calculate Tr(𝑂𝜌). Recall that 𝑂 =

∑︀
𝑃 𝛼𝑃𝑃 . Taking the trace, we

have

Tr(𝑂𝜌) =
∑︁
𝑃

𝛼𝑃 Tr(𝑃𝜌). (S18)

There are four cases that can occur regarding dom(𝑃).

1. 𝑃 acts nontrivially on some qubits in the buffer region, i.e., dom(𝑃) ⊆ 𝐵(⃗𝑖𝑃 ,⃗𝑗*) ∪𝐵′
�⃗�*

for some �⃗�𝑃 .

2. 𝑃 acts trivially on all qubits in the buffer region, but 𝑃 acts nontrivially on qubits in two or more
blocks, i.e., dom(𝑃) ⊆ 𝐵(⃗𝑖𝑃,1 ,⃗𝑗*)

∪𝐵(⃗𝑖𝑃,2 ,⃗𝑗*)
for some �⃗�𝑃,1, �⃗�𝑃,2.

3. 𝑃 acts nontrivially only on qubits in a single block but 𝑃 is not in the set 𝑈�⃗�* , i.e., dom(𝑃) ⊆ 𝐵(⃗𝑖𝑃 ,⃗𝑗*)

for some �⃗�𝑃 , but 𝑃 /∈ 𝑆(⃗𝑖𝑃 ,⃗𝑗*).

4. 𝑃 acts nontrivially only on qubits in a single block and 𝑃 is in the set 𝑈𝑗* , i.e., dom(𝑃) ⊆ 𝐵(⃗𝑖𝑃 ,⃗𝑗*)

for some �⃗�𝑃 and 𝑃 ∈ 𝑆(⃗𝑖𝑃 ,⃗𝑗*).

22

We compute Tr(𝑃𝜌) for each of these cases. We note that Tr
(︀
𝜌𝑖
)︀
= 1 in all these calculations.

For Case 1, it suffices to consider the case where 𝑃 acts on only one qubit in the buffer region, i.e.
there exists a qubit ℓ* ∈ 𝐵′

�⃗�*
such that ℓ* ∈ dom(𝑃) and dom(𝑃) ∖ {ℓ*} ⊆ 𝐵(⃗𝑖𝑃 ,⃗𝑗*). Then, the state 𝑃𝜌

is as follows

𝑃𝜌 =

⎛⎜⎜⎜⎝⨂︁
�⃗� ̸=⃗𝑖𝑃

𝜌𝑖

⨂︁
ℓ∈𝐵′

�⃗�*

ℓ ̸=ℓ*

𝐼ℓ
2

⎞⎟⎟⎟⎠ (S19a)

⊗

⎛⎝ 1

2𝑅

⎛⎝𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)
+

1

|𝑆(⃗𝑖𝑃 ,⃗𝑗*)|
∑︁

𝑄∈𝑆(⃗𝑖𝑃 ,⃗𝑗*)

(−1)
𝛿{𝛼𝑄<0}𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)

𝑄𝐵(⃗𝑖𝑃 ,⃗𝑗*)

⎞⎠⊗ 𝑃ℓ*

2

⎞⎠ , (S19b)

where we are again using the notation from Definition 7. Taking the trace of this state, since the trace
of 𝐼/2 is 1, we have

Tr(𝑃𝜌) =
Tr
(︁

𝑃ℓ*
2

)︁
2𝑅

(︃
Tr
(︁
𝑃(𝐵(⃗𝑖𝑃 ,⃗𝑗*))

)︁
(S20a)

+
1

|𝑆(⃗𝑖𝑃 ,⃗𝑗*)|
∑︁

𝑄∈𝑆(⃗𝑖𝑃 ,⃗𝑗*)

(−1)
𝛿{𝛼𝑄<0} Tr

(︁
𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)

𝑄𝐵(⃗𝑖𝑃 ,⃗𝑗*)

)︁)︃
(S20b)

= 0, (S20c)

where the last equality follows because the trace of a nonidentity Pauli string is 0 and

Tr
(︁
𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)

𝑄𝐵(⃗𝑖𝑃 ,⃗𝑗*)

)︁
= 2𝑅𝛿{𝑃𝐵

(⃗𝑖𝑃 ,⃗𝑗*)
=𝑄𝐵

(⃗𝑖𝑃 ,⃗𝑗*)
}. (S21)

Here, 𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)
̸= 𝑄𝐵(⃗𝑖𝑃 ,⃗𝑗*)

because 𝑄 ∈ 𝑆(⃗𝑖𝑃 ,⃗𝑗*) so that 𝑄 acts nontrivially only on qubits in 𝐵(⃗𝑖𝑃 ,⃗𝑗*)

while 𝑃 acts nontrivially on ℓ* /∈ 𝐵(⃗𝑖𝑃 ,⃗𝑗*). Thus, Case 1 contributes 0 to Tr(𝑂𝜌).
Next, we consider Case 2. In Case 2, we consider what happens if 𝑃 acts nontrivially on qubits in

more than one block, i.e., dom(𝑃) ⊆ 𝐵(⃗𝑖𝑃,1 ,⃗𝑗*)
∪ 𝐵(⃗𝑖𝑃,2 ,⃗𝑗*)

. However, this case is in fact not possible
by construction because the buffer region between 𝐵(⃗𝑖𝑃,1 ,⃗𝑗*)

and 𝐵(⃗𝑖𝑃,2 ,⃗𝑗*)
is of size 𝑅𝑘 in each of the

dimensions. Recall that 𝑅𝑘 is the largest distance between two qubits that any 𝑃 acts on in the 𝑘th
dimension. Thus, it is not possible for 𝑃 to span across the buffer region, so this case cannot occur.
Hence, it trivially contributes 0 to Tr(𝑂𝜌).

Now, we consider Case 3. From the previous two cases, we see that 𝑃 can only act nontrivially on
qubits in a single block 𝐵(⃗𝑖𝑃 ,⃗𝑗*) to contribute to Tr(𝑂𝜌). However, by construction of the sets 𝑆(⃗𝑖,⃗𝑗),
in order to make them disjoint, it is possible that 𝑃 /∈ 𝑆(⃗𝑖𝑃 ,⃗𝑗*) despite it acting on the correct block of
qubits. We show that this also contributes 0 to Tr(𝑂𝜌). Taking the trace, we have

Tr(𝑃𝜌) =
1

2𝑅

⎛⎝Tr
(︁
𝑃(𝐵(⃗𝑖𝑃 ,⃗𝑗*))

)︁
+

1

|𝑆(⃗𝑖𝑃 ,⃗𝑗*)|
∑︁

𝑄∈𝑆(⃗𝑖𝑃 ,⃗𝑗*)

(−1)
𝛿{𝛼𝑄<0} Tr

(︁
𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)

𝑄𝐵(⃗𝑖𝑃 ,⃗𝑗*)

)︁⎞⎠ = 0, (S22)

where the last equality follows because the trace of a nonidentity Pauli string is 0 and

Tr
(︁
𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)

𝑄𝐵(⃗𝑖𝑃 ,⃗𝑗*)

)︁
= 2𝑅𝛿{𝑃𝐵

(⃗𝑖𝑃 ,⃗𝑗*)
=𝑄𝐵

(⃗𝑖𝑃 ,⃗𝑗*)
}. (S23)

Here, 𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)
̸= 𝑄𝐵(⃗𝑖𝑃 ,⃗𝑗*)

because 𝑄 ∈ 𝑆(⃗𝑖𝑃 ,⃗𝑗*) while we know from this case that 𝑃 /∈ 𝑆(⃗𝑖𝑃 ,⃗𝑗*).
Finally, we consider Case 4. From the previous cases, we see that the only remaining possibility is that

𝑃 acts nontrivially on qubits in a single block 𝐵(⃗𝑖𝑃 ,⃗𝑗*) and is also contained in a set 𝑆(⃗𝑖𝑃 ,⃗𝑗*). Computing
the trace, we have

Tr(𝑃𝜌) =
1

2𝑅

⎛⎝Tr
(︁
𝑃(𝐵(⃗𝑖𝑃 ,⃗𝑗*))

)︁
+

1

|𝑆(⃗𝑖𝑃 ,⃗𝑗*)|
∑︁

𝑄∈𝑆(⃗𝑖𝑃 ,⃗𝑗*)

(−1)
𝛿{𝛼𝑄<0} Tr

(︁
𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)

𝑄𝐵(⃗𝑖𝑃 ,⃗𝑗*)

)︁⎞⎠ (S24a)

23

=
1

2𝑅
1

|𝑆(⃗𝑖𝑃 ,⃗𝑗*)|
∑︁

𝑄∈𝑆(⃗𝑖𝑃 ,⃗𝑗*)

(−1)
𝛿{𝛼𝑄<0} Tr

(︁
𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)

𝑄𝐵(⃗𝑖𝑃 ,⃗𝑗*)

)︁
(S24b)

=
1

|𝑆(⃗𝑖𝑃 ,⃗𝑗*)|
(−1)𝛿{𝛼𝑃 <0} . (S24c)

Here, we are using that the trace of a nonidentity Pauli string is 0 and Tr
(︁
𝑃𝐵(⃗𝑖𝑃 ,⃗𝑗*)

𝑄𝐵(⃗𝑖𝑃 ,⃗𝑗*)

)︁
=

2𝑅𝛿{𝑃𝐵
(⃗𝑖𝑃 ,⃗𝑗*)

=𝑄𝐵
(⃗𝑖𝑃 ,⃗𝑗*)

}. Because 𝑃 ∈ 𝑆(⃗𝑖𝑃 ,⃗𝑗*), there exists a 𝑄 ∈ 𝑆(⃗𝑖𝑃 ,⃗𝑗*) such that 𝑃 = 𝑄 so that
the sum over 𝑆(⃗𝑖𝑃 ,⃗𝑗*) then collapses to this 𝑃 . Thus, for this case, 𝑃 contributes a nonzero amount to
Tr(𝑂𝜌). Summing over all 𝑃 ∈ 𝑈�⃗�* , we have a total contribution of

∑︁
𝑃∈𝑈�⃗�*

𝛼𝑃 Tr(𝑃𝜌) =
∑︁

𝑃∈𝑈�⃗�*

1

|𝑆(⃗𝑖𝑃 ,⃗𝑗*)|
(−1)𝛿{𝛼𝑃 <0}𝛼𝑃 =

∑︁
𝑃∈𝑈�⃗�*

1

|𝑆(⃗𝑖𝑃 ,⃗𝑗*)|
|𝛼𝑃 |. (S25)

Thus, putting everything together, only Case 4 contributed a nonzero amount to Tr(𝑂𝜌), so we have

Tr(𝑂𝜌) =
∑︁

𝑃∈𝑈�⃗�*

1

|𝑆(⃗𝑖𝑃 ,⃗𝑗*)|
|𝛼𝑃 |. (S26)

Here, we know that

|𝑆(⃗𝑖𝑃 ,⃗𝑗*)| ≤ 4𝑅 (S27)

because |𝐵(⃗𝑖𝑃 ,⃗𝑗*)| = 𝑅 and on 𝑅 =
∏︀

𝑘 𝑅𝑘 qubits, there are 4𝑅 possible Pauli terms (i.e., 𝐼,𝑋, 𝑌, 𝑍 on
each of the qubits). Then, we have

Tr(𝑂𝜌) ≥ 1

4𝑅

∑︁
𝑃∈𝑈�⃗�*

|𝛼𝑃 |. (S28)

As explained previously, this suffices to conclude the proof.

III. ML ALGORITHM AND SAMPLE COMPLEXITY

In this section, we present our machine learning algorithm and prove that it can approximate Tr(𝑂𝜌(𝑥))
given training data size 𝑁 scaling logarithmically in system size 𝑛. To do so, we leverage the results in
Section I and Section II heavily.

Recall that we consider an unknown family of 𝑛-qubit geometrically local Hamiltonians {𝐻(𝑥) : 𝑥 ∈
[−1, 1]𝑚} in a finite 𝑑-dimensional space such that 𝐻(𝑥) =

∑︀𝐿
𝑗=1 ℎ𝑗(�⃗�𝑗), where �⃗�𝑗 ∈ R𝑞, 𝑞 = 𝒪(1), and

𝑥 is the concatenation of the 𝐿 vectors �⃗�1, . . . , �⃗�𝐿. We also assume that the spectral gap of 𝐻(𝑥) is
lower bounded by a constant 𝛾 over [−1, 1]𝑚 and 𝜌(𝑥) is the ground state of 𝐻(𝑥). We also consider an
unknown observable 𝑂 with ‖𝑂‖∞ = 𝒪(1) that can be written as a sum of geometrically local observables
and an arbitrary unknown distribution 𝒟 over [−1, 1]𝑚.

In what follows, we first present a full description of the proposed ML algorithm in Section IIIA. In
Section III B, we then state the rigorous guarantee achieved by this ML algorithm. Next, we find a
bound required to utilize ℓ1-regularized regression in Section III C. Then, we bound the in-sample error
on the training data in Section IIID by showing that the function 𝑔(𝑥) for approximating Tr(𝑂𝜌(𝑥))
as defined in Eq. (S60) of Section I achieves small training error. Finally, we use standard results in
machine learning theory to bound the prediction error in Section III E.

A. ML algorithm

This section is dedicated to describing the ML algorithm in detail. Let 1/𝑒 > 𝜖1, 𝜖2, 𝜖3 > 0. The
ML algorithm is also given training data {(𝑥ℓ, 𝑦ℓ)}𝑁ℓ=1 consisting of parameters 𝑥ℓ sampled from an
arbitrary unknown distribution 𝒟 over [−1, 1]𝑚 along with an estimator 𝑦ℓ of Tr(𝑂𝜌(𝑥ℓ)) such that
|𝑦ℓ − Tr(𝑂𝜌(𝑥ℓ))| ≤ 𝜖2.

24

Given this, we first redefine several notions from Section I in terms of 𝜖1. We utilize these definitions in
the remainder of Section III. We begin by redefining 𝛿1 and 𝐼𝑃 , originally defined in Def. 1, 2, respectively.
Define 𝛿1 as

𝛿1 ≜ max

(︂
𝐶max log

2(2𝐶/𝜖1), 𝐶4, 𝐶5,
max(5900, 𝛼, 7(𝑑+ 11), 𝜃)

𝑏

)︂
, (S1)

where all constants 𝑏, 𝑣lr, 𝐶max, 𝐶4, 𝐶5, 𝛼, 𝜃 are defined as in Def. 1 and 𝐶 is defined in Lemma 2. Using
this definition of 𝛿1, let 𝐼𝑃 be defined as

𝐼𝑃 ≜ {𝑐 ∈ {1, . . . ,𝑚} : 𝑑obs(ℎ𝑗(𝑐), 𝑃) ≤ 𝛿1}, (S2)

as in Eq. (S11). Now, we can redefine the quantities from Def. 3 used to approximate the ground state
property as a sum of discretized functions. Let 𝛿2 be given by

𝛿2 ≜
1⌈︂

2
√

𝐶′|𝐼𝑃 |
𝜖1

⌉︂ , (S3)

where 𝐶 ′ is defined in Lemma 2. From this, we can define the discretized parameter space 𝑋𝑃 , which
contains parameter vectors that are 0 outside of 𝐼𝑃 and take on discrete values inside of 𝐼𝑃 :

𝑋𝑃 ≜

{︃
𝑥 ∈ [−1, 1]𝑚 : if 𝑐 /∈ 𝐼𝑃 , 𝑥𝑐 = 0

if 𝑐 ∈ 𝐼𝑃 , 𝑥𝑐 ∈ {0,±𝛿2,±2𝛿2, . . . ,±1}

}︃
. (S4)

Furthermore, for each discretized vector 𝑥′ ∈ 𝑋𝑃 , let 𝑇𝑥,𝑃 be the set of vectors close to 𝑥′ for coordinates
in 𝐼𝑃 :

𝑇𝑥,𝑃 ≜

{︂
𝑥′ ∈ [−1, 1]𝑚 : −𝛿2

2
< 𝑥𝑐 − 𝑥′

𝑐 ≤
𝛿2
2
, ∀𝑐 ∈ 𝐼𝑃

}︂
. (S5)

Finally, we define an additional hyperparameter 𝐵 > 0 as

𝐵 ≜ 2𝒪(polylog(1/𝜖1)). (S6)

With these definitions in place, we can discuss the ML algorithm. At a high level, the algorithm first
maps the parameter space into a high-dimensional feature space. Then, the ML algorithm learns a linear
function in this feature space using ℓ1-regularized regression.

In particular, the feature map 𝜑 maps 𝑥 ↦→ 𝜑(𝑥), where 𝑥 ∈ [−1, 1]𝑚 is an 𝑚-dimensional vector while
𝜑(𝑥) ∈ R𝑚𝜑 is an 𝑚𝜑-dimensional vector with

𝑚𝜑 ≜
∑︁

𝑃∈𝑆geo

|𝑋𝑃 |. (S7)

Here, 𝑆(geo) denotes the set of all geometrically local Pauli observables as in Def. 6. Each coordinate of
𝜑(𝑥) is indexed by 𝑥′ ∈ 𝑋𝑃 , 𝑃 ∈ 𝑆(geo) and is defined as

𝜑(𝑥)𝑥′,𝑃 ≜ 1[𝑥 ∈ 𝑇𝑥′,𝑃]. (S8)

The hypothesis class for our proposed ML algorithm consists of linear functions in this feature space,
i.e., functions of the form ℎ(𝑥) = w · 𝜑(𝑥). The classical ML model learns such a function using ℓ1-
regularized regression (LASSO) [9–11] over the feature space. Namely, given the hyperparameter 𝐵 > 0
defined above, we utilize LASSO to find an 𝑚𝜑-dimensional vector w* from the following optimization
problem that minimizes the training error 1

𝑁

∑︀𝑁
ℓ=1 |w · 𝜑(𝑥ℓ)− 𝑦ℓ|2,

min
w∈R𝑚𝜑

‖w‖1≤𝐵

1

𝑁

𝑁∑︁
ℓ=1

|w · 𝜑(𝑥ℓ)− 𝑦ℓ|2 , (S9)

where 𝑦ℓ approximates Tr(𝑂𝜌(𝑥ℓ)). We denote the learned function by ℎ*(𝑥) = w* · 𝜑(𝑥). Importantly,
this learned function does not need to achieve the minimum training error. In the following, we consider
the vector w* to yield a training error that is larger than the minimum training error by at most 𝜖3/2.

25

B. Rigorous guarantee

Given these definitions and the ML algorithm, we prove the following theorem. The theorem stated
in the main text corresponds to 𝜖1 = 0.2𝜖, 𝜖2 = 𝜖, and 𝜖3 = 0.4𝜖. Hence (𝜖1 + 𝜖2)

2 ≤ 1.44𝜖2 ≤ 0.53𝜖 and
(𝜖1 + 𝜖2)

2 + 𝜖3 ≤ 𝜖.

Theorem 5. Let 1/𝑒 > 𝜖1, 𝜖2, 𝜖3 > 0 and 𝛿 > 0. Given training data {(𝑥ℓ, 𝑦ℓ)}𝑁ℓ=1 of size

𝑁 = log(𝑛/𝛿)2𝒪(log(1/𝜖3)+polylog(1/𝜖1)), (S10)

where 𝑥ℓ is sampled from 𝒟 and 𝑦ℓ is an estimator of Tr(𝑂𝜌(𝑥ℓ)) such that |𝑦ℓ − Tr(𝑂𝜌(𝑥ℓ))| ≤ 𝜖2, the
ML algorithm can produce ℎ*(𝑥) that achieves prediction error

E
𝑥∼𝒟

|ℎ*(𝑥)− Tr(𝑂𝜌(𝑥))|2 ≤ (𝜖1 + 𝜖2)
2 + 𝜖3 (S11)

with probability at least 1 − 𝛿. The training time for constructing the hypothesis function ℎ and the
prediction time for computing ℎ*(𝑥) are upper bounded by 𝒪(𝑛𝑁) = 𝑛 log(𝑛/𝛿)2𝒪(log(1/𝜖3)+polylog(1/𝜖1)).

In the ML problem formulated in the main text and Section IIIA, the training data {𝑥ℓ, 𝑦ℓ}𝑁ℓ=1
corresponds to a fixed and unknown observable 𝑂. However, we may be interested in training an ML
model that can predict Tr(𝑂𝜌(𝑥)) for a wide range of observables 𝑂. In this setting, one could consider a
classical dataset {𝑥ℓ, 𝜎𝑇 (𝜌(𝑥ℓ))}𝑁ℓ=1 generated by performing classical shadow tomography [12–16] on the
ground state 𝜌(𝑥ℓ) for each 𝑥ℓ in ℓ = 1, . . . , 𝑁 . This is achieved by repeatedly performing 𝑇 randomized
Pauli measurements on each state 𝜌(𝑥ℓ). Using the classical shadow dataset, we can obtain the following
corollary for predicting ground state representations.

Corollary 5. Let 1/𝑒 > 𝜖1, 𝜖2, 𝜖3 > 0 and 𝛿 > 0. Given a training data set {𝑥ℓ, 𝜎𝑇 (𝜌(𝑥ℓ))}𝑁ℓ=1 of size

𝑁 = log(𝑛/𝛿)2𝒪(log(1/𝜖3)+polylog(1/𝜖1)), (S12)

where 𝑥ℓ is sampled from an unknown distribution 𝒟 and 𝜎𝑇 (𝜌(𝑥ℓ)) is the classical shadow representa-
tion of the ground state 𝜌(𝑥ℓ) using 𝑇 randomized Pauli measurements. For 𝑇 = 𝒪(log(𝑛𝑁/𝛿)/𝜖22) =

�̃�(log(𝑛/𝛿)/𝜖22), the proposed ML algorithm can learn a ground state representation 𝜌𝑁,𝑇 (𝑥) that achieves

E
𝑥∼𝒟

|Tr(𝑂𝜌𝑁,𝑇 (𝑥))− Tr(𝑂𝜌(𝑥))|2 ≤ (𝜖1 + 𝜖2)
2 + 𝜖3 (S13)

for any observable 𝑂 with eigenvalues between −1 and 1 that can be written as a sum of geometrically
local observables with probability at least 1− 𝛿.

Proof. For any observable 𝑂 with eigenvalues between −1 and 1 that can be written as a sum of geomet-
rically local observables, we have 𝑂 =

∑︀
𝑃∈𝑆(geo) 𝛼𝑃𝑃 , where 𝑆(geo) is the set of all geometrically local

Pauli observables. From Corollary 4, we have∑︁
𝑃∈𝑆(geo)

|𝛼𝑃 | ≤ 𝐶 (S14)

for a constant 𝐶. We are going to use the constant 𝐶 to set the training data size 𝑁 and the number of
randomized measurements 𝑇 . In particular, we are going to consider

𝑁 = log
(︁
𝑛/(𝛿/(2|𝑆(geo)|))

)︁
2𝒪(log(𝐶

2/𝜖3)+polylog(𝐶/𝜖1)), (S15)

𝑇 = 𝒪
(︁
log
(︁
𝑛𝑁/(𝛿/(2|𝑆(geo)|))

)︁
/(𝜖2/𝐶)2

)︁
. (S16)

For any geometrically local Pauli observables 𝑃 ∈ 𝑆(geo), we can use the classical shadow dataset
{𝑥ℓ, 𝜎𝑇 (𝜌(𝑥ℓ))}𝑁ℓ=1 to estimate the expectation value of 𝑃 in the ground states 𝜌(𝑥ℓ) for all ℓ. This
creates a dataset {𝑥ℓ, 𝑦

(𝑃)
ℓ }𝑁ℓ=1. Under the specified 𝑇 , Lemma 1 in [1] guarantees that⃒⃒⃒

𝑦
(𝑃)
ℓ − Tr(𝑃𝜌(𝑥ℓ))

⃒⃒⃒
<

𝜖2
𝐶
, (S17)

for all ℓ = 1, . . . , 𝑁 and 𝑃 ∈ 𝑆(geo) with probability at least 1− (𝛿/2). For each 𝑃 ∈ 𝑆(geo), we consider
ℎ*
𝑃 (𝑥) to be the function produced from Theorem 5. From Theorem 5, we have

E
𝑥∼𝒟

|ℎ*
𝑃 (𝑥)− Tr(𝑃𝜌(𝑥))|2 ≤ 1

𝐶2

[︀
(𝜖1 + 𝜖2)

2 + 𝜖3
]︀

(S18)

26

for all 𝑃 ∈ 𝑆(geo) with probability at least 1− (𝛿/2) conditioned on the event given in Eq. (S17) occurs.
Using the union bound to combine the two events considered in Eq. (S17) and Eq. (S18), we can ensure
that Eq. (S18) holds with probability at least 1− 𝛿.

We define the ground state representation produced by the ML algorithm to be

𝜌𝑁,𝑇 (𝑥) ≜
∑︁

𝑃∈𝑆(geo)

ℎ*
𝑃 (𝑥)

(︂
𝑃

2𝑛

)︂
. (S19)

For the observable 𝑂, we have

|Tr(𝑂𝜌𝑁,𝑇 (𝑥))− Tr(𝑂𝜌(𝑥))| ≤
∑︁

𝑃∈𝑆(geo)

|𝛼𝑃 ||ℎ*
𝑃 (𝑥)− Tr(𝑃𝜌(𝑥))|. (S20)

By the Cauchy-Schwarz inequality, Eq. (S14), and Eq. (S18), we have

E
𝑥∼𝒟

|Tr(𝑂𝜌𝑁,𝑇 (𝑥))− Tr(𝑂𝜌(𝑥))|2 (S21)

≤
∑︁

𝑃1,𝑃2∈𝑆(geo)

|𝛼𝑃1 ||𝛼𝑃2 | E
𝑥∼𝒟

|ℎ*
𝑃1
(𝑥)− Tr(𝑃1𝜌(𝑥))||ℎ*

𝑃2
(𝑥)− Tr(𝑃2𝜌(𝑥))| (S22)

≤
∑︁

𝑃1,𝑃2∈𝑆(geo)

|𝛼𝑃1
||𝛼𝑃2

|
√︁

E
𝑥∼𝒟

|ℎ*
𝑃1
(𝑥)− Tr(𝑃1𝜌(𝑥))|2

√︁
E

𝑥∼𝒟
|ℎ*

𝑃2
(𝑥)− Tr(𝑃2𝜌(𝑥))|2 (S23)

≤

⎛⎝ ∑︁
𝑃∈𝑆(geo)

|𝛼𝑃 |

⎞⎠2

1

𝐶2

[︀
(𝜖1 + 𝜖2)

2 + 𝜖3
]︀
≤ (𝜖1 + 𝜖2)

2 + 𝜖3. (S24)

This concludes the proof of the corollary.

C. ℓ1-Norm bound on coefficients of linear hypothesis

We now justify our choice of the hyperparameter 𝐵 > 0 such that ‖w‖1 ≤ 𝐵. From Section I, we
constructed a function that approximates the ground state property. Explicitly, this function is defined
as

𝑔(𝑥) ≜
∑︁

𝑃∈𝑆(geo)

∑︁
𝑥′∈𝑋𝑃

𝑓𝑃 (𝑥
′)1[𝑥 ∈ 𝑇𝑥′,𝑃] = w′ · 𝜑(𝑥), (S25)

where in this case, the vector of coefficients w′, indexed by 𝑥′ ∈ 𝑋𝑃 , 𝑃 ∈ 𝑆(geo), is defined as

w′
𝑥′,𝑃 ≜ 𝑓𝑃 (𝑥

′). (S26)

Thus, we see that the ML model, which learns functions of this form, has the capacity to approximate
the target ground state property Tr(𝑂𝜌(𝑥)). The actual function we learn, ℎ*(𝑥) = w* ·𝜑(𝑥) could differ
significantly from 𝑔(𝑥) = w′ · 𝜑(𝑥) because w′ is unknown. Nevertheless, we can utilize an upper bound
‖w′‖1 ≤ 𝐵 to restrict the hypothesis set of the ML algorithm to functions of the form ℎ(𝑥) = w · 𝜑(𝑥)
such that ‖w‖1 ≤ 𝐵. Thus, we find an upper bound on ‖w′‖1 in the following lemma.

Lemma 14 (ℓ1-Norm bound). Let w′ be the vector of coefficients defined in Eq. (S26). Then, we have
the following bound on ‖w′‖1:

‖w′‖1 =
∑︁

𝑃∈𝑆(geo)

∑︁
𝑥′∈𝑋𝑃

|𝑓𝑃 (𝑥′)| = 2𝒪(polylog(1/𝜖1)). (S27)

Proof. First, we can analyze the |𝑓𝑃 (𝑥′)| term. Recall that 𝑓𝑃 is just 𝛼𝑃 Tr(𝑃𝜌(𝜒𝑃 (𝑥))), where 𝜒𝑃 (𝑥) ∈
[−1, 1]𝑚 sets parameters outside of 𝐼𝑃 to 0. Thus, we can bound its absolute value by

|𝑓𝑃 (𝑥)| = |𝛼𝑃 ||Tr(𝑃𝜌(𝜒𝑃 (𝑥)))| ≤ |𝛼𝑃 |. (S28)

Plugging this into the ℓ1-norm of w′, we have

‖w′‖1 =
∑︁

𝑃∈𝑆(geo)

∑︁
𝑥′∈𝑋𝑃

|𝑓𝑃 (𝑥′)| (S29a)

27

≤
∑︁

𝑃∈𝑆(geo)

|𝑋𝑃 ||𝑓𝑃 (𝑥′)| (S29b)

≤ max
𝑃∈𝑆(geo)

|𝑋𝑃 |
∑︁

𝑄∈𝑆(geo)

|𝛼𝑄|. (S29c)

Thus, it suffices to count the number of elements in 𝑋𝑃 . Recall in Definition 3 that 𝑋𝑃 is defined
such that the parameter values for 𝑐′ /∈ 𝐼𝑃 are fixed to 0 while for 𝑐′ ∈ 𝐼𝑃 , 𝑥𝑐′ can be any value in
{0,±𝛿2,±2𝛿2, . . . ,±1}. Hence, it is clear that

|𝑋𝑃 | ≤ |{0,±𝛿2,±2𝛿2, . . . ,±1}||𝐼𝑃 | ≤
(︂

2

𝛿2
+ 1

)︂|𝐼𝑃 |

. (S30)

Moreover, by our choice of 𝛿2 in Eq. (S3), we have

|𝑋𝑃 | ≤

(︃
2

⌈︃
2
√︀
𝐶 ′|𝐼𝑃 |
𝜖1

⌉︃
+ 1

)︃|𝐼𝑃 |

. (S31)

Now, it remains to bound the size of 𝐼𝑃 , defined in Eq. (S11). This size is simply the number of
parameters that ℎ𝑗 depends on for some ℎ𝑗 with 𝑑obs(ℎ𝑗 , 𝑃) ≤ 𝛿1. By Eq. (S5), we can bound the
number of such ℎ𝑗 : ∑︁

𝑗:𝑑obs(ℎ𝑗 ,𝑃)≤𝛿1

1 ≤ 𝑏𝑑 + 𝑐𝑑𝛿
𝑑
1 . (S32)

Moreover, we assume that each ℎ𝑗 depends on 𝒪(1) parameters. Suppose that each ℎ𝑗 depends on at
most 𝑞 parameters. Then, we can bound the size of 𝐼𝑃 by

|𝐼𝑃 | ≤ 𝑞(𝑏𝑑 + 𝑐𝑑𝛿
𝑑
1). (S33)

Utilizing this bound in Eq. (S31), we obtain

|𝑋𝑃 | ≤

(︃
2

⌈︃
2
√︀

𝐶 ′𝑞(𝑏𝑑 + 𝑐𝑑𝛿𝑑1)

𝜖1

⌉︃
+ 1

)︃𝑞(𝑏𝑑+𝑐𝑑𝛿
𝑑
1)

. (S34)

Plugging this into our ℓ1-norm bound from Eq. (S29c), we have

‖w′‖1 =
∑︁

𝑃∈𝑆(geo)

∑︁
𝑥′∈𝑋𝑃

|𝑓𝑃 (𝑥′)| (S35a)

≤

(︃
2

⌈︃
2
√︀
𝐶 ′𝑞(𝑏𝑑 + 𝑐𝑑𝛿𝑑1)

𝜖1

⌉︃
+ 1

)︃𝑞(𝑏𝑑+𝑐𝑑𝛿
𝑑
1) ∑︁

𝑄∈𝑆(geo)

|𝛼𝑄| (S35b)

≤ 𝐷

(︃
2

⌈︃
2
√︀
𝐶 ′𝑞(𝑏𝑑 + 𝑐𝑑𝛿𝑑1)

𝜖1

⌉︃
+ 1

)︃𝑞(𝑏𝑑+𝑐𝑑𝛿
𝑑
1)

, (S35c)

where the second inequality follows from Corollary 4, taking 𝐷 as this constant. We can simplify this
expression further by using that 𝛿1 = 𝐶max log

2(2𝐶/𝜖1) for sufficiently small 𝜖1 according to Eq. (S1).

‖w′‖1 =
∑︁

𝑃∈𝑆(geo)

∑︁
𝑥′∈𝑋𝑃

|𝑓𝑃 (𝑥′)| (S36a)

≤ 𝐷

⎛⎝2

⎡⎢⎢⎢
2
√︁
𝐶 ′𝑞(𝑏𝑑 + 𝑐𝑑(𝐶max log

2(2𝐶/𝜖1))𝑑)

𝜖1

⎤⎥⎥⎥+ 1

⎞⎠𝑞(𝑏𝑑+𝑐𝑑(𝐶max log2(2𝐶/𝜖1))
𝑑)

(S36b)

=

(︃
log2𝑑(1/𝜖1)

𝜖1

)︃𝒪(log2𝑑(1/𝜖1))

(S36c)

=

(︂
1

𝜖1

)︂𝒪(log2𝑑(1/𝜖1)) (︁
log2𝑑(1/𝜖1)

)︁𝒪(log2𝑑(1/𝜖1))

(S36d)

= 2𝒪(log2𝑑+1(1/𝜖1)) (S36e)

= 2𝒪(polylog(1/𝜖1)), (S36f)

which is the promised scaling.

28

D. Training error bound

Using the results in Section IC, we can derive a bound on the training error of 𝑔(𝑥) = w′ ·𝜑(𝑥) discussed
in the previous section. The existence of w′ then guarantees that the function ℎ*(𝑥) = w* · 𝜑(𝑥) found
by performing optimization to minimize training error will also yield a training error close to zero. To
prove this rigorously, we first write a precise definition of training error.
Definition 8 (Training error). Given a function ℎ(𝑥) and a training dataset {(𝑥ℓ, 𝑦ℓ)}𝑁ℓ=1. The training
error is defined as

�̂�(ℎ) = min
w

1

𝑁

𝑁∑︁
ℓ=1

|ℎ(𝑥ℓ)− 𝑦ℓ|2. (S37)

We can bound the training error in the following lemma.
Lemma 15 (Detailed restatement of Lemma 1). The function

𝑔(𝑥) =
∑︁

𝑃∈𝑆(geo)

∑︁
𝑥′∈𝑋𝑃

𝑓𝑃 (𝑥
′)1[𝑥 ∈ 𝑇𝑥′,𝑃] = w′ · 𝜑(𝑥), (S38)

achieves training error

�̂�(𝑔) ≤ (𝜖1 + 𝜖2)
2, (S39)

where the training error is defined in Definition 8.
Proof. This lemma follows directly from Theorem 3. Let ℓ* be defined as

ℓ* = argmax
1≤ℓ≤𝑁

|𝑔(𝑥ℓ)− 𝑦ℓ|2. (S40)

Then, the training error can be bounded above by

�̂�(𝑔) ≤ |𝑔(𝑥ℓ*)− 𝑦ℓ* |2 ≤ (|𝑔(𝑥ℓ*)− Tr(𝑂𝜌(𝑥ℓ*))|+ |Tr(𝑂𝜌(𝑥ℓ*))− 𝑦ℓ* |)2 , (S41)

where the last inequality follows by triangle inequality. Here, the second term can be bounded by 𝜖2
using definition of our training labels 𝑦ℓ. For the first term, let 𝐷 be a constant such that∑︁

𝑃∈𝑆(geo)

|𝛼𝑃 | ≤ 𝐷, (S42)

using Corollary 4. Then, by Theorem 3, we have

|𝑔(𝑥ℓ*)− Tr(𝑂𝜌(𝑥ℓ*))| ≤ 𝜖1 + 𝜖2. (S43)

Putting everything together, we have

�̂�(𝑔) ≤ (𝜖1 + 𝜖2)
2, (S44)

which is the claimed result.

Now consider the function ℎ*(𝑥) = w* · 𝜑(𝑥), where w* is obtained by minimizing the training error,
such that the training error is larger than the minimum training error by at most 𝜖3/2. We can achieve
this using an optimization algorithm described in Section III F. Formally, we have the following inequality,

�̂�(ℎ*) ≤ 𝜖3
2

+ min
w∈R𝑚𝜑

‖w‖1≤𝐵

1

𝑁

𝑁∑︁
ℓ=1

|w · 𝜑(𝑥ℓ)− Tr(𝑂𝜌(𝑥ℓ))|2 . (S45)

Because we have set 𝐵 = 2polylog(1/𝜖1),

‖w′‖1 =
∑︁

𝑃∈𝑆(geo)

∑︁
𝑥′∈𝑋𝑃

|𝑓𝑃 (𝑥′)| ≤ 2𝒪(polylog(1/𝜖1)) = 𝐵. (S46)

Therefore, the minimum training error must be at most �̂�(𝑔),

min
w∈R𝑚𝜑

‖w‖1≤𝐵

1

𝑁

𝑁∑︁
ℓ=1

|w · 𝜑(𝑥ℓ)− Tr(𝑂𝜌(𝑥ℓ))|2 ≤ �̂�(𝑔). (S47)

Together, we have

�̂�(ℎ*) ≤ �̂�(𝑔) +
𝜖3
2

≤ (𝜖1 + 𝜖2)
2 +

𝜖3
2
. (S48)

The last inequality follows from Lemma 15.

29

E. Prediction error bound

With this bound on the training error, it remains to find a bound on the prediction error of our
hypothesis function. To this end, we can use a standard result from machine learning theory about the
prediction error of ℓ1-norm-constrained linear hypotheses trained using the LASSO algorithm [9–11].

Theorem 6 (Theorem 11.16 in [11]). Let 𝒳 ⊆ R𝐴 and ℋ = {x ∈ 𝒳 ↦→ w · x : ‖w‖1 ≤ 𝐵}. Let
𝑆 = ((x1, 𝑦1), . . . , (x𝑁 , 𝑦𝑁)) ∈ (𝒳 × 𝒴)𝑁 . Let 𝒟 denote a distribution over 𝒳 × 𝒴 according to which
the training data 𝑆 is drawn. Assume that there exists 𝑟∞ > 0 such that for all x ∈ 𝒳 , ‖x‖∞ ≤ 𝑟∞ and
𝑀 > 0 such that |ℎ(𝑥) − 𝑦| ≤ 𝑀 for all (𝑥, 𝑦) ∈ 𝒳 × 𝒴. Then, for any 𝛿 > 0, with probability at least
1− 𝛿, each of the following inequalities holds for all ℎ ∈ ℋ:

E
(𝑥,𝑦)∼𝒟

|ℎ(𝑥)− 𝑦|2 ≜ 𝑅(ℎ) ≤ �̂�𝑆(ℎ) + 2𝑟∞𝐵𝑀

√︂
2 log(2𝐴)

𝑁
+𝑀2

√︃
log 1

𝛿

2𝑁
(S49)

where 𝑅(ℎ) is the prediction error for the hypothesis ℎ and �̂�𝑆(ℎ) is the training error of ℎ on the training
data 𝑆.

We can use this theorem to prove the prediction error bound in Theorem 5.

Proof of prediction error in Theorem 5. We utilize Theorem 6 as well as our established lemmas.
First, we demonstrate that we satisfy the conditions of the theorem in our setting. Here, we view ℎ

in Theorem 6 as a function of the higher-dimensional feature vector 𝜑(𝑥) rather than the 𝑚-dimensional
vector 𝑥 ∈ [−1, 1]𝑚 so that ℎ is a linear hypothesis. In this perspective, our input space 𝒳 is the feature
space {0, 1}𝑚𝜑 ⊆ R𝑚𝜑 , as the indicator functions we are evaluating only take 0-1 values. In our case, the
dimension 𝐴 is given by

𝐴 = 𝑚𝜑 ≜
∑︁

𝑃∈𝑆(geo)

|𝑋𝑃 |. (S50)

Moreover, the training data we are given is 𝑆 = ((𝜑(𝑥1), 𝑦1), . . . , (𝜑(𝑥𝑁), 𝑦𝑁)) ∈ (𝒳 × 𝒴)𝑁 , where 𝑦ℓ is
such that

|𝑦ℓ − Tr(𝑂𝜌(𝑥ℓ))| ≤ 𝜖2. (S51)

Again, we are thinking of ℎ as a function that takes the input 𝜑(𝑥). Furthermore, since 𝜑(𝑥ℓ) ∈ {0, 1}𝑚𝜑

for all ℓ = 1, . . . , 𝑁 , we can see that ‖𝜑(𝑥ℓ)‖∞ ≤ 1 = 𝑟∞. Moreover, the hypothesis class ℋ is given
by the set of the functions of the same form as ℎ, i.e., ℋ = {𝜑(𝑥) ∈ 𝒳 ↦→ w · 𝜑(𝑥) : ‖w‖1 ≤ 𝐵} with
𝐵 = 2polylog(1/𝜖). By considering 𝑀 = 2𝒪(polylog(1/𝜖1)), we also have |ℎ(𝑥ℓ)−𝑦ℓ| ≤ 𝑀 for all ℓ = 1, . . . , 𝑁
because

|ℎ(𝑥ℓ)− 𝑦ℓ| ≤ |w · 𝜑(𝑥ℓ)|+ |𝑦ℓ| ≤ ‖w‖1‖𝜑(𝑥)‖∞ + 2 ≤ 2𝒪(polylog(1/𝜖1)) + 2 = 2𝒪(polylog(1/𝜖1)), (S52)

where the second inequality follows by Hölder’s inequality. Furthermore, by Eq. (S48), the learned model
ℎ*(𝑥) = w* · 𝜑(𝑥) achieves �̂�(ℎ*) ≤ (𝜖1 + 𝜖2)

2 + (𝜖3/2). Thus, by Theorem 6,

𝑅(ℎ*) ≤ (𝜖1 + 𝜖2)
2 +

𝜖3
2

+ 2𝐵𝑀

√︂
2 log(2𝑚𝜑)

𝑁
+𝑀2

√︃
log 1

𝛿

2𝑁
(S53)

with probability at least 1− 𝛿. In order to bound the prediction error above by (𝜖1 + 𝜖2)
2 + 𝜖3, we need

𝑁 to be large enough such that

2𝐵𝑀

√︂
2 log(2𝑚𝜑)

𝑁
+𝑀2

√︃
log 1

𝛿

2𝑁
≤ 𝜖3

2
. (S54)

We can upper bound 𝑚𝜑 using the same approach as in the proof of Lemma 14. Explicitly, using
Eq. (S34) and Eq. (S36), we have

𝑚𝜑 =
∑︁

𝑃∈𝑆(geo)

|𝑋𝑃 | ≤
∑︁

𝑃∈𝑆(geo)

(︃
2

⌈︃√︀
𝐶 ′𝑞(𝑏𝑑 + 𝑐𝑑𝛿𝑑1)

𝜖1

⌉︃
+ 1

)︃𝑞(𝑏𝑑+𝑐𝑑𝛿
𝑑
1)

(S55a)

30

= 2𝒪(polylog(1/𝜖1))𝒪(𝑛), (S55b)

where the last equality follows because |𝑆(geo)| = 𝒪(𝑛). Plugging everything into the left hand side of
Eq. (S54), we have

2𝐵𝑀

√︂
2 log(2𝑚𝜑)

𝑁
+𝑀2

√︃
log 1

𝛿

2𝑁
(S56a)

≤ 2
√
2
(︁
2𝒪(polylog(1/𝜖1))

)︁2√︃ log
(︀
2 · 2𝒪(polylog(1/𝜖1))𝒪(𝑛)

)︀
𝑁

(S56b)

+
1√
2

(︁
2𝒪(polylog(1/𝜖1))

)︁2√︃ log 1
𝛿

𝑁
(S56c)

= 2𝒪(polylog(1/𝜖1))
1√
𝑁

(︃√︀
𝒪(polylog(1/𝜖1)) +𝒪(log(𝑛)) +

√︂
log

1

𝛿

)︃
. (S56d)

To upper bounded the above by 𝜖3
2 , we choose

𝑁 =
4

𝜖23

(︁
2𝒪(polylog(1/𝜖1))

)︁2(︃√︀
𝒪(polylog(1/𝜖1)) +𝒪(log(𝑛)) +

√︂
log

1

𝛿

)︃2

(S57a)

= 2𝒪(log(1/𝜖3)+polylog(1/𝜖1)) log(𝑛/𝛿). (S57b)

Together, the training data size 𝑁 given above guarantees that 𝑅(ℎ*) ≤ (𝜖1 + 𝜖2)
2 + 𝜖3 with probability

at least 1− 𝛿.

F. Computational time for training and prediction

Finally, we find the computation time required for the ML algorithm’s training and prediction. To
this end, we utilize standard results about the training time of the LASSO algorithm [17].

Proof of computational time in Theorem 5. The training time is dominated by the time required for ℓ1-
regularized regression (LASSO) over the feature space defined by the feature map 𝜑. It is well-known that
to obtain a training error at most (𝜖3/2) larger than the optimal function value, the LASSO algorithm on
the feature space can be executed in time 𝒪

(︁
𝑚𝜑 log𝑚𝜑

𝜖23

)︁
[17], where 𝑚𝜑 is the dimension of the feature

space. By Eq. (S55b), we know that

𝑚𝜑 = 𝒪(𝑛)2𝒪(polylog(1/𝜖1)) (S58)

Plugging this into the time required for LASSO, we have

𝒪
(︂
𝑚𝜑 log𝑚𝜑

𝜖23

)︂
= 𝒪

(︃
𝒪(𝑛)2𝒪(polylog(1/𝜖1)) log

(︀
𝒪(𝑛)2𝒪(polylog(1/𝜖1))

)︀
𝜖23

)︃
(S59a)

= 𝒪(𝑛2𝒪(log(1/𝜖3)+polylog(1/𝜖1)) (𝒪(polylog(1/𝜖1)) +𝒪(log(𝑛)))) (S59b)

= 𝑛 log 𝑛 2𝒪(log(1/𝜖3)+polylog(1/𝜖1)) (S59c)
= 𝒪(𝑛𝑁), (S59d)

where the last equality follows by the definition of the training data size 𝑁 .
The prediction time is the amount of time it takes to compute ℎ*(𝑥) = w* · 𝜑(𝑥ℓ), which takes time

𝒪(𝑚𝜑). This can also be upper bounded by 𝒪(𝑛𝑁).

IV. DETAILS OF NUMERICAL EXPERIMENTS

For the numerical experiments, we consider the two-dimensional antiferromagnetic Heisenberg model.
In this setting, spin-1/2 particles are placed on sites in a 2D lattice. The Hamiltonian is

𝐻 =
∑︁
⟨𝑖𝑗⟩

𝐽𝑖𝑗(𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗 + 𝑍𝑖𝑍𝑗), (S1)

31

where the summation ranges over all pairs ⟨𝑖𝑗⟩ of neighboring sites on the lattice and the couplings
{𝐽𝑖𝑗} are sampled uniformly from the interval [0, 2]. Here, the parameter 𝑥 is a list of all couplings 𝐽𝑖𝑗
so that the dimension of the parameter space is 𝑚 = 𝑂(𝑛), where 𝑛 is the system size. This is the
same class of Hamiltonians considered in previous work [1]. We are interested in predicting ground state
properties, which in this case are the two-body correlation functions for each pair of qubits on the lattice.
In particular, this correlation function is the expectation value of

𝐶𝑖𝑗 =
1

3
(𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗 + 𝑍𝑖𝑍𝑗), (S2)

for each pair of qubits ⟨𝑖𝑗⟩.
We generated training and testing data for this model using the same method as [1]. For completeness,

we briefly discuss this here. For each parameter vector of random couplings sampled uniformly from [0, 2],
we approximated the ground state using the density-matrix renormalization group (DMRG) [18] based
on matrix product states (MPS) [19]. We first consider an initial random MPS with bond dimension
𝜒 = 10 and variationally optimize it using a singular value decomposition cutoff of 10−8. We terminate
the DMRG runs when the change in energy is less than 10−4. After DMRG converges, we perform
randomized Pauli measurements by locally rotating into the corresponding Pauli bases and sampling the
rotated state [20]. In this work, we utilize two different data sets: one which is the same as in [1] and
the other which is generated in the same way but contains more data points.

We consider classical machine learning models given by first performing a feature mapping 𝜑 on the
input vector 𝑥 and then running ℓ1-regularized regression (LASSO) over the feature 𝜑(𝑥) space, as
described in Section III A. However, while the indicator function feature map was a useful tool to obtain
our rigorous guarantees, it is often hard to discretize a high-dimension parameter space into 𝑋𝑃 in
practice. Thus, we instead utilize random Fourier features [21]. One can think of this as a single layer
of a randomly initialized neural network. Explicitly, this feature map is

𝜑 : 𝑧 ↦→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos
(︁

𝛾√
𝑙
(𝜔1 · 𝑧)

)︁
sin
(︁

𝛾√
𝑙
(𝜔1 · 𝑧)

)︁
...

cos
(︁

𝛾√
𝑙
(𝜔𝑅 · 𝑧)

)︁
sin
(︁

𝛾√
𝑙
(𝜔𝑅 · 𝑧)

)︁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (S3)

where 𝑙 is the length of the vector 𝑧, 𝛾 > 0 and 𝑅 > 0 are tunable hyperparameters, and 𝜔𝑖 are 𝑙-
dimensional vectors sampled from a multivariate standard normal distribution. Here, for each vector
𝑧, 𝜑(𝑧) is a 2𝑅-dimensional vector. Thus, the hyperparameter 𝑅 determines the length of the feature
vector. We consider a set of different hyperparameters:

𝑅 ∈ {5, 10, 20, 40}, (S4)
𝛾 ∈ {0.4, 0.5, 0.6, 0.65, 0.7, 0.75}. (S5)

Using this feature map, the ML algorithm is implemented as follows. First, we decompose 𝑥 into
several vectors corresponding to local regions of a given local term of the Hamiltonian. This is analogous
to the discretization of the parameter space using 𝑋𝑃 . Explicitly, the decomposition is performed in the
following way. First, recall that in the 2D antiferromagnetic Heisenberg model, qubits are placed on sites
in a 2D lattice. Thus, each local term can be viewed as an edge between neighboring sites on the lattice.
We construct a local region around this edge by including all edges within an ℓ1-distance 𝛿1. This is
analogous to Eq. (S11). Now, for each vector resulting from the decomposition of 𝑥, we apply the feature
map 𝜑 and concatenate all vectors together to obtain 𝜑(𝑥). Finally, we run the LASSO algorithm using
scikit-learn, a Python package [22]. Here, LASSO optimizes the objective function

1

2𝑁
‖𝑦 −𝑋𝑤‖22 + 𝛼‖𝑤‖1, (S6)

where 𝑁 is the amount of training data, 𝑦 is a vector of the training data labels {𝑦ℓ}𝑁ℓ=1, 𝑋 is a matrix
of the training data inputs {𝑥ℓ}𝑁ℓ=1, 𝑤 is a vector of coefficients we want to learn, and 𝛼 > 0 is a
regularization parameter. We consider a set of different regularization parameters

𝛼 ∈ {2−8, 2−7, 2−6, 2−5}. (S7)

32

We consider several different classical ML models, corresponding to these choices of hyperparameters
𝑅, 𝛾, 𝛼. Thus, we perform model selection to determine the optimal choice of these hyperparameters.
To this end, we consider 𝑀 different values of the parameter 𝑥 = {𝐽𝑖𝑗}, where 𝑀 is as big as 900.
From these 𝑀 data points, we randomly choose half of these points as training data (i.e., 𝑁 = 𝑀/2)
and the remaining half is test data. For each ground state property we want to predict, we choose
one value of each of 𝑅, 𝛾, 𝛼 such that the root-mean-square error is minimized when performing 4-fold
cross-validation, which is also implemented using scikit-learn. Finally, we test the performance of the
ML model with these chosen hyperparameters using the test data.

For each vector 𝑥 that we tested on, we would predict the correlation functions for all pairs of qubits
⟨𝑖𝑗⟩. Hence, the prediction error is averaged over a large number of predictions. Despite 𝑀/2 being
only of around 50, the prediction errors reported in the plots are statistically sound given the large
total number of predictions. The standard deviation of the exact correlation functions in the data varies
slightly across different system sizes. The standard deviation for system size 4× 5 is around 0.192, 5× 5
is around 0.199, 6× 5 is around 0.187, 7× 5 is around 0.193, 8× 5 is around 0.190, 9× 5 is around 0.187.
When the standard deviation is smaller, the prediction error will also be smaller. To judge the difficulty
to predict the correlation functions across different system sizes, we normalize the standard deviation
to be the average standard deviation of 0.191. We also include experiments where we vary the training
data size 𝑁 or the classical shadow size 𝑇 , i.e., the number of randomized Pauli measurements used to
approximate the ground state. The left figure of Figure 2A fixes the training set size 𝑁 to be 50, system
size 𝑛 to be 9 × 5 = 45, and varies the classical shadow size 𝑇 ∈ {50, 100, 250, 500, 1000}. The center
figure of Figure 2A fixes the shadow size 𝑇 to be 500, system size 𝑛 to be 9 × 5 = 45, and varies the
training data size varies from 𝑁 ∈ {10, 30, 50, 75, 90, 150, 250, 350, 450}. The right figure of Figure 2A
fixes the training set size 𝑁 = 250 and shadow size 𝑇 = 500, and varies the system size from 4 × 5 to
9× 5. The numerical results of these experiments are summarized in Figure 2.

[1] Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Victor V Albert, and John Preskill. Provably efficient
machine learning for quantum many-body problems. Science, 377(6613):eabk3333, 2022.

[2] Sven Bachmann, Spyridon Michalakis, Bruno Nachtergaele, and Robert Sims. Automorphic equivalence
within gapped phases of quantum lattice systems. Commun. Math. Phys., 309(3):835–871, 2012.

[3] Elliott H Lieb and Derek W Robinson. The finite group velocity of quantum spin systems. In Statistical
mechanics, pages 425–431. Springer, 1972.

[4] Matthew B Hastings and Xiao-Gang Wen. Quasiadiabatic continuation of quantum states: The stability of
topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B, 72(4):045141, 2005.

[5] Tobias J Osborne. Simulating adiabatic evolution of gapped spin systems. Phys. Rev. A, 75(3):032321, 2007.
[6] Matthew B Hastings. Locality in quantum systems. arXiv:1008.5137, 2010.
[7] Sergey Bravyi, Matthew B Hastings, and Frank Verstraete. Lieb-robinson bounds and the generation of

correlations and topological quantum order. Phys. Rev. Lett., 97(5):050401, 2006.
[8] Iosif Pinelis. Exact lower and upper bounds on the incomplete gamma function. arXiv preprint

arXiv:2005.06384, 2020.
[9] Fadil Santosa and William W. Symes. Linear inversion of band-limited reflection seismograms. SIAM Journal

on Scientific and Statistical Computing, 7(4):1307–1330, 1986.
[10] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:

Series B (Methodological), 58(1):267–288, 1996.
[11] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. The MIT

Press, 2018.
[12] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum system from

very few measurements. Nat. Phys., 16:1050––1057, 2020.
[13] Andreas Elben, Richard Kueng, Hsin-Yuan Huang, Rick van Bijnen, Christian Kokail, Marcello Dalmonte,

Pasquale Calabrese, Barbara Kraus, John Preskill, Peter Zoller, and Benoît Vermersch. Mixed-state entan-
glement from local randomized measurements. Phys. Rev. Lett., 125:200501, 2020.

[14] Andreas Elben, Steven T Flammia, Hsin-Yuan Huang, Richard Kueng, John Preskill, Benoît Vermersch,
and Peter Zoller. The randomized measurement toolbox. arXiv preprint arXiv:2203.11374, 2022.

[15] Kianna Wan, William J Huggins, Joonho Lee, and Ryan Babbush. Matchgate shadows for fermionic quantum
simulation. arXiv preprint arXiv:2207.13723, 2022.

[16] Kaifeng Bu, Dax Enshan Koh, Roy J Garcia, and Arthur Jaffe. Classical shadows with pauli-invariant
unitary ensembles. arXiv preprint arXiv:2202.03272, 2022.

[17] Elad Hazan and Tomer Koren. Linear regression with limited observation. arXiv preprint arXiv:1206.4678,
2012.

[18] Steven R White. Density matrix formulation for quantum renormalization groups. Physical review letters,

33

69(19):2863, 1992.
[19] Ulrich Schollwoeck. The density-matrix renormalization group in the age of matrix product states. Ann.

Phys., 326(1):96 – 192, 2011. January 2011 Special Issue.
[20] Andrew J. Ferris and Guifre Vidal. Perfect sampling with unitary tensor networks. Phys. Rev. B, 85:165146,

2012.
[21] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in neural

information processing systems, 20, 2007.
[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12:2825–2830, 2011.

