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Improved machine learning algorithm for
predicting ground state properties

Laura Lewis1,5 , Hsin-Yuan Huang 1,2,6, Viet T. Tran3, Sebastian Lehner3,
Richard Kueng3 & John Preskill1,4

Finding the ground state of a quantum many-body system is a fundamental
problem in quantum physics. In this work, we give a classical machine learning
(ML) algorithm for predicting ground state properties with an inductive bias
encoding geometric locality. The proposed ML model can efficiently predict
ground state properties of an n-qubit gapped local Hamiltonian after learning
fromonlyOðlogðnÞÞ data about otherHamiltonians in the samequantumphase
ofmatter. This improves substantially upon previous results that requireOðncÞ
data for a large constant c. Furthermore, the training and prediction time of
the proposed ML model scale as Oðn lognÞ in the number of qubits n.
Numerical experiments on physical systems with up to 45 qubits confirm the
favorable scaling in predicting ground state properties using a small training
dataset.

Finding the ground state of a quantum many-body system is a funda-
mental problemwith far-reaching consequences for physics, materials
science, and chemistry. Many powerful methods1–7 have been pro-
posed, but classical computers still struggle to solve many general
classes of the ground state problem. To extend the reach of classical
computers, classical machine learning (ML) methods have recently
been adapted to study this and related problems both empirically and
theoretically8–35. A recent work36 proposes a polynomial-time classical
ML algorithm that can efficiently predict ground state properties of
gapped geometrically local Hamiltonians, after learning from data
obtainedbymeasuringotherHamiltonians in the samequantumphase
of matter. Furthermore36, shows that under a widely accepted con-
jecture, no polynomial-time classical algorithm can achieve the same
performance guarantee. However, although the ML algorithm given
in36 uses a polynomial amount of training data and computational
time, the polynomial scaling OðncÞ has a very large degree c. Here,
f ðxÞ=OðgðxÞÞ denotes that f(x) is asymptotically upper bounded by
g(x) up to constant factors with respect to the limit n→∞. Moreover,
when the prediction error ϵ is small, the amount of training data grows
exponentially in 1/ϵ, indicating that a very small prediction error can-
not be achieved efficiently.

In this work, we present an improvedML algorithm for predicting
ground state properties. We consider an m-dimensional vector
x∈ [−1, 1]m that parameterizes an n-qubit gapped geometrically local
Hamiltonian given as

HðxÞ=
X
j

hjð x!jÞ, ð1Þ

where x is the concatenation of constant-dimensional vectors
x!1, . . . , x

!
L parameterizing the few-body interaction hjð x!jÞ. Let ρ(x)

be the ground state of H(x) and O be a sum of geometrically local
observables with ∥O∥∞ ≤ 1.We assume that the geometry of the n-qubit
system is known, but we do not know how hjð x!jÞ is parameterized or
what the observable O is. The goal is to learn a function h*(x) that
approximates the ground state property TrðOρðxÞÞ from a classical
dataset,

x‘,y‘
� �

, 8‘= 1, . . . ,N, ð2Þ

where y‘ ≈TrðOρðx‘ÞÞ records the ground state property for xℓ∈ [−1, 1]m

sampled from an arbitrary unknown distribution D. Here,
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y‘ ≈TrðOρðx‘ÞÞ means that yℓ has additive error at most ϵ. If
y‘ = TrðOρðx‘ÞÞ, the rigorous guarantees improves.

The setting considered in this work is very similar to that in36,
but we assume the geometry of the n-qubit system to be known,
which is necessary to overcome the sample complexity lower bound
of N = nΩ(1/ϵ) given in36. Here, f(x) =Ω(g(x)) denotes that f(x) is
asymptotically lower bounded by g(x) up to constant factors. One
may compare the setting to that of finding ground states using
adiabatic quantum computation37–44. To find the ground state prop-
erty TrðOρðxÞÞ of H(x), this class of quantum algorithms requires the
ground state ρ0 of another Hamiltonian H0 stored in quantum
memory, explicit knowledge of a gapped path connecting H0 and
H(x), and an explicit description of O. In contrast, here we focus on
ML algorithms that are entirely classical, have no access to quantum
state data, and have no knowledge about the Hamiltonian H(x), the
observable O, or the gapped paths between H(x) and other
Hamiltonians.

TheproposedMLalgorithmuses a nonlinear featuremap x↦ϕ(x)
with a geometric inductive bias built into the mapping. At a high level,
the high-dimensional vectorϕ(x) contains nonlinear functions for each
geometrically local subset of coordinates in them-dimensional vector
x. Here, the geometry over coordinates of the vector x is defined using
the geometry of the n-qubit system. The ML algorithm learns a func-
tion h*(x) =w* ⋅ϕ(x) by training an ℓ1-regularized regression
(LASSO)45–47 in the feature space. An overview of the ML algorithm is
shown in Fig. 1. We prove that given ϵ =Θ(1), Here, the notation f(x) =
Θ(g(x)) denotes that f ðxÞ=OðgðxÞÞ and f(x) =Ω(g(x)) both hold. Hence,
f(x) is asymptotically equal to g(x) up to constant factors. the improved
ML algorithm can use a dataset size of

N =O log nð Þð Þ, ð3Þ

to learn a function h*(x) with an average prediction error of at most ϵ,

E
x ∼D

∣h*ðxÞ � TrðOρðxÞÞ∣2 ≤ ϵ, ð4Þ

with high success probability.
The sample complexity N =O log nð Þð Þ of the proposed ML algo-

rithm improves substantially over the sample complexity of N =OðncÞ
in the previously best-known classical ML algorithm36, where c is a very
large constant. The computational time of both the improved ML
algorithm and the ML algorithm in36 is OðnNÞ. Hence, the logarithmic
sample complexity N immediately implies a nearly linear computa-
tional time. In addition to the reduced sample complexity and com-
putational time, the proposedML algorithmworks for any distribution

over x, while the best previously known algorithm36 works only for the
uniform distribution over [−1, 1]m. Furthermore, when we consider the
scaling with the prediction error ϵ, the best known classical ML algo-
rithm in36 has a sample complexity of N =nOð1=ϵÞ, which is exponential
in 1/ϵ. In contrast, the improvedMLalgorithmhas a sample complexity
of N = logðnÞ2polylogð1=ϵÞ, which is quasi-polynomial in 1/ϵ.

We also discuss a generalization of the proposedML algorithm to
predicting ground state representations when trained on classical
shadow representations48–52. In this setting, the proposed ML algo-
rithm yields the same reduction in sample and time complexity com-
pared to36 for predicting ground state representations.

Results
The central component of the improvedML algorithm is the geometric
inductive bias built into our featuremapping x 2 ½�1,1�m 7!ϕðxÞ 2 Rmϕ .
To describe the ML algorithm, we first need to present some defini-
tions relating to this geometric structure.

Definitions of the geometric inductive bias
We consider n qubits arranged at locations, or sites, in a d-dimensional
space, e.g., a spin chain (d = 1), a square lattice (d = 2), or a cubic lattice
(d = 3). This geometry is characterized by the distance dqubitði,i0Þ
between any two qubits i and i0. Using the distance dqubit between
qubits, we candefine the geometry of local observables. Given any two
observables OA,OB on the n-qubit system, we define the distance
dobs(OA,OB) between the two observables as the minimum distance
between the qubits thatOA andOB act on. We also say an observable is
geometrically local if it acts nontrivially only on nearby qubits under
the distance metric dqubit. We then define S(geo) as the set of all geo-
metrically local Pauli observables, i.e., geometrically local observables
that belong to the set {I, X, Y, Z}⊗n. The size of S(geo) isOðnÞ, linear in the
total number of qubits.

With these basic definitions in place, we now define a few more
geometric objects. The first object is the set of coordinates in the m-
dimensional vector x that are close to a geometrically local Pauli
observable P. This is formally given by,

IP≜ c 2 f1, . . . ,mg : dobsðhjðcÞ,PÞ≤ δ1

n o
, ð5Þ

where hj(c) is the few-body interaction term in the n-qubit Hamiltonian
H(x) whose parameters x!jðcÞ include the variable xc∈ [ − 1, 1], and δ1 is
an efficiently computable hyperparameter that is determined later.
Each variable xc in the m-dimensional vector x corresponds to exactly
one interaction terms hjðcÞ =hjðcÞð x!jðcÞÞ, where the parameter vector
x!jðcÞ contains the variable xc. Intuitively, IP is the set of coordinates that
have the strongest influence on the function TrðPρðxÞÞ.

Fig. 1 | Overview of the proposed machine learning algorithm. Given a vector
x∈ [−1, 1]m that parameterizes a quantum many-body Hamiltonian H(x), the algo-
rithm uses a geometric structure to create a high-dimensional vector ϕðxÞ 2 Rmϕ .

TheML algorithm then predicts properties or a representation of the ground state
ρ(x) of Hamiltonian H(x) using the mϕ-dimensional vector ϕ(x).
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The second geometric object is a discrete lattice over the space
[−1, 1]m associated to each subset IP of coordinates. For any geome-
trically local Pauli observable P∈ S(geo), we define XP to contain all
vectors x that take on value 0 for coordinates outside IP and take on a
set of discrete values for coordinates inside IP. Formally, this is given by

XP≜
x 2 ½�1,1�m : if c =2 IP , xc = 0

if c 2 IP , xc 2 0, ± δ2, ± 2δ2, . . . , ± 1
� �

( )
, ð6Þ

where δ2 is an efficiently computable hyperparameter to be deter-
mined later. The definition of XP is meant to enumerate all sufficiently
different vectors for coordinates in the subset IP⊆ {1,…,m}.

Now given a geometrically local Pauli observable P and a vector x
in thediscrete latticeXP⊆ [−1, 1]m, the thirdobject is a setTx,Pof vectors
in [−1, 1]m that are close to x for coordinates in IP. This is formally
defined as,

Tx,P≜ x0 2 ½�1,1�m : �δ2

2
< xc � x0

c ≤
δ2

2
,8c 2 IP

� �
: ð7Þ

The setTx,P is defined as a thickened affine subspace close to the vector
x for coordinates in IP. If a vector x0 is in Tx,P, then x0 is close to x for all
coordinates in IP, but x0 may be far away from x for coordinates outside
of IP. Examples of these definitions are given in Supplementary Figs. 1
and 2.

Feature mapping and ML model
Wecan nowdefine the featuremapϕ taking anm-dimensional vector x
to anmϕ-dimensional vectorϕ(x) using the thickened affine subspaces
Tx0 ,P for every geometrically local Pauli observable P∈ S(geo) and every
vector x0 in the discrete lattice XP. The dimension of the vector ϕ(x) is
given by mϕ =

P
P2SðgeoÞ jXP j. Each coordinate of the vector ϕ(x) is

indexed by x0 2 XP and P∈ S(geo) with

ϕðxÞx0 ,P≜1 x 2 Tx0 ,P

� 	
, ð8Þ

which is the indicator function checking if x belongs to the thickened
affine subspace. Recall that this means each coordinate of the mϕ-
dimensional vector ϕ(x) checks if x is close to a point x0 on a discrete
lattice XP for the subset IP of coordinates close to a geometrically local
Pauli observable P.

The classicalMLmodel we consider is an ℓ1-regularized regression
(LASSO) over the ϕ(x) space. More precisely, given an efficiently
computable hyperparameter B >0, the classicalMLmodel finds anmϕ-
dimensional vector w* from the following optimization problem,

min
w 2 Rmϕ

k wk1 ≤B

1
N

XN
‘ = 1

∣w � ϕðx‘Þ � y‘∣
2, ð9Þ

where fðx‘,y‘ÞgN‘= 1 is the training data. Here, xℓ∈ [−1, 1]m is an m-
dimensional vector that parameterizes a Hamiltonian H(x) and yℓ
approximates TrðOρðx‘ÞÞ. The learned function is given by
h*(x) =w* ⋅ϕ(x). The optimization does not have to be solved exactly.
We only need to find a w* whose function value is OðϵÞ larger than the
minimum function value. There is an extensive literature53–59 improving
the computational time for the above optimization problem. The best
known classical algorithm58 has a computational time scaling linearly in
mϕ/ϵ

2 up to a log factor, while the best known quantum algorithm59 has
a computational time scaling linearly in

ffiffiffiffiffiffiffi
mϕ

p
=ϵ2 up to a log factor.

Rigorous guarantee
The classical ML algorithm given above yields the following sample
and computational complexity. This theorem improves substantially

upon the result in36, which requires N =nOð1=ϵÞ. The proof idea is given
in Section “Methods”, and the detailed proof is given in Supplementary
Sections 1, 2, 3. Using the proof techniques presented in this work, one
can show that the sample complexity N = logðn=δÞ2polylogð1=ϵÞ also
applies to any sum of few-body observables O =∑jOj with ∑j∥Oj∥∞≤1,
even if the operators {Oj} are not geometrically local.

Theorem 1. (Sample and computational complexity). Given
n,δ >0, 1

e > ϵ>0 and a training data set fx‘,y‘gN‘ = 1 of size

N = logðn=δÞ2polylogð1=ϵÞ, ð10Þ

where xℓ is sampled from an unknown distribution D and
jy‘ � TrðOρðx‘ÞÞj≤ ϵ for any observable O with eigenvalues between −1
and 1 that can be written as a sum of geometrically local observables.
With a proper choice of the efficiently computable hyperparameters
δ1, δ2, and B, the learned function h*(x) =w* ⋅ϕ(x) satisfies

E
x ∼D

∣h*ðxÞ � TrðOρðxÞÞ∣2 ≤ ϵ ð11Þ

with probability at least 1 − δ. The training and prediction time of the
classical ML model are bounded by OðnNÞ=n logðn=δÞ2polylogð1=ϵÞ.

The output yℓ in the training data can be obtained by measuring
TrðOρðx‘ÞÞ for the sameobservableOmultiple times and averaging the
outcomes. Alternatively, we can use the classical shadow
formalism48–52,60 that performs randomized Pauli measurements on
ρ(xℓ) to predict TrðOρðx‘ÞÞ for a wide range of observables O. We can
also combine Theorem 1 and the classical shadow formalism to use our
ML algorithm to predict ground state representations, as seen in the
following corollary. This allows one to predict ground state properties
TrðOρðxÞÞ for a large number of observables O rather than just a single
one. We present the proof of Corollary 1 in Supplementary Section 3B.

Corollary 1. Given n, δ >0, 1
e > ϵ>0 and a training data set

fx‘,σT ðρðx‘ÞÞgN‘= 1 of size

N = logðn=δÞ2polylogð1=ϵÞ, ð12Þ

where xℓ is sampled from an unknown distribution D and σT(ρ(xℓ)) is
the classical shadow representation of the ground state ρ(xℓ) using T
randomized Pauli measurements. For T = ~OðlogðnÞ=ϵ2Þ, then the pro-
posed ML algorithm can learn a ground state representation ρ̂N,T ðxÞ
that achieves

E
x ∼D

jTrðOρ̂N,T ðxÞÞ � TrðOρðxÞÞj2 ≤ ϵ ð13Þ

for any observable O with eigenvalues between −1 and 1 that can be
written as a sum of geometrically local observables with probability at
least 1 − δ.

We can also show that the problem of estimating ground state
properties for the class of parameterizedHamiltoniansHðxÞ=Pjhjð x!jÞ
considered in this work is hard for non-ML algorithms that cannot learn
from data, assuming the widely believed conjecture that NP-complete
problems cannot be solved in randomized polynomial time. This is a
manifestation of the computational power of data studied in61. The
proof of Proposition 1 in36 constructs a parameterizedHamiltonianH(x)
that belongs to the family of parameterizedHamiltonians considered in
this work and hence establishes the following.

Proposition 1. (A variant of Proposition 1 in36). Consider a randomized
polynomial-time classical algorithm A that does not learn from data.
Suppose for any smooth family of gapped 2D Hamiltonians
HðxÞ=Pjhjð x!jÞ and any single-qubit observable O,A can compute
ground state properties TrðOρðxÞÞ up to a constant error averagedover
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x∈ [−1, 1]m uniformly. Then, NP-complete problems can be solved in
randomized polynomial time.

This proposition states that even under the restricted settings of
considering only 2D Hamiltonians and single-qubit observables, pre-
dicting ground state properties is a hard problem for non-ML algo-
rithms.Whenone consider higher-dimensionalHamiltonians andmulti-
qubit observables, the problem only becomes harder because one can
embed low-dimensional Hamiltonians in higher-dimensional spaces.

Numerical experiments
We present numerical experiments to assess the performance of the
classical ML algorithm in practice. The results illustrate the improve-
ment of the algorithm presented in this work compared to those con-
sidered in36, the mild dependence of the sample complexity on the
system size n, and the inherent geometry exploited by the ML models.
We consider the classical ML models previously described, utilizing a
randomFourier featuremap62.While the indicator function featuremap
was a useful tool to obtain our rigorous guarantees, random Fourier
features aremore robust and commonly used in practice.Moreover, we
still expect our rigorous guarantees to hold with this change because
Fourier features can approximate any function, which is the central
property of the indicator functions used in our proofs. Furthermore, we
determine the optimal hyperparameters using cross-validation to
minimize the root-mean-square error (RMSE) and then evaluate the
performance of the chosen ML model using a test set. The models and
hyperparameters are further detailed in Supplementary Section 4.

For these experiments, we consider the two-dimensional anti-
ferromagnetic random Heisenberg model consisting of 4 × 5 = 20 to
9 × 5 = 45 spins as considered in previous work36. In this setting, the
spins are placed on sites in a 2D lattice. The Hamiltonian is

H =
X
hiji

JijðXiX j + Y iY j +ZiZ jÞ, ð14Þ

where the summation ranges over all pairs 〈ij〉 of neighboring sites on
the lattice and the couplings {Jij} are sampled uniformly from the
interval [0, 2]. Here, the vector x is a list of all couplings Jij so that the
dimension of the parameter space is m =O(n), where n is the system
size. The nonnegative interval [0, 2] corresponds to antiferromagnetic
interactions. To minimize the Heisenberg interaction terms, nearby
qubits have to form singlet states. While the square lattice is bipartite
and lacks the standard geometric frustration, the presence of disorder
makes the ground state calculation more challenging as neighboring
qubits will compete in the formation of singlets due to themonogamy
of entanglement63.

We trained a classical MLmodel using randomly chosen values of
the parameter vector x = {Jij}. For each parameter vector of random
couplings sampleduniformly from [0, 2], we approximated the ground
state using the same method as in36, namely with the density-matrix
renormalization group (DMRG)64 based on matrix product states
(MPS)65. The classical ML model was trained on a data set
fx‘,σT ðρðx‘ÞÞgN‘= 1 with N randomly chosen vectors x, where each x
corresponds to a classical representation σT(ρ(xℓ)) created from T
randomized Pauli measurements48. For a given training set size N, we
conduct 4-fold cross validation on the N data points to select the best
hyperparameters, train a model with the best hyperparameters on the
N data points, and test the performance on a test set of size N. Further
details are discussed in Supplementary Section 4.

The ML algorithm predicted the classical representation of the
ground state for a new vector x. These predicted classical repre-
sentations were used to estimate two-body correlation functions, i.e.,
the expectation value of

Cij =
1
3
ðXiX j + Y iY j + ZiZ jÞ, ð15Þ

for each pair of qubits 〈ij〉 on the lattice. Here, we are using the com-
bination of our ML algorithm with the classical shadow formalism as
described in Corollary 1, leveraging this more powerful technique to
predict a large number of ground state properties.

In Fig. 2A, we can clearly see that the ML algorithm proposed in
this work consistently outperforms the ML models implemented in36,
which includes the rigorous polynomial-time learning algorithm based
on Dirichlet kernel proposed in36, Gaussian kernel regression66,67, and
infinite-width neural networks68,69. Figure 2A (Left) and (Center) show
that as the number T of measurements per data point or the training
set size N increases, the prediction performance of the proposed ML
algorithm improves faster than the other ML algorithms. This obser-
vation reflects the improvement in the sample complexity dependence
on prediction error ϵ. The sample complexity in36 depends exponen-
tially on 1/ϵ, but Theorem 1 establishes a quasi-polynomial dependence
on 1/ϵ. From Fig. 2A (Right), we can see that the ML algorithms do not
yield a substantially worse prediction error as the system size n
increases. Thisobservationmatcheswith the logðnÞ sample complexity
in Theorem 1, but not with the poly(n) sample complexity proven in36.
These improvements are also relevant when comparing the ML pre-
dictions to actual correlation function values. Figure 3 in36 illustrates
that for the average prediction error achieved in their work, the pre-
dictions by the ML algorithm match the simulated values closely. In
this work, we emphasize that significantly less training data is needed
to achieve the same prediction error36 and agree with the simulated
values.

An important step for establishing the improved sample com-
plexity in Theorem 1 is that a property on a local region R of the
quantum system only depends on parameters in the neighborhood of
region R. In Fig. 2B, we visualize where the trained ML model is
focusing on when predicting the correlation function over a pair of
qubits. A thicker and darker edge is considered to be more important
by the trained MLmodel. Each edge of the 2D lattice corresponds to a
coupling Jij. For each edge, we sum the absolute values of the coeffi-
cients in the ML model that correspond to a feature that depends on
the coupling Jij. We can see that the ML model learns to focus only on
the neighborhood of a local region Rwhen predicting the ground state
property.

Discussion
The classical ML algorithm and the advantage over non-ML algorithms
as proven in36 illustrate the potential of using ML algorithms to solve
challenging quantummany-body problems. However, the classical ML
model given in36 requires a large amount of training data. Although the
need for a large dataset is a common trait in contemporary ML
algorithms70–72, one would have to perform an equally large number of
physical experiments to obtain suchdata. Thismakes the advantage of
ML over non-ML algorithms challenging to realize in practice. The
sample complexity N =OðlognÞ of the ML algorithm proposed here
illustrates that this advantage could potentially be realized after
training with data from a small number of physical experiments. The
existence of a theoretically backed ML algorithm with a logðnÞ sample
complexity raises the hope of designing good ML algorithms to
address practical problems in quantum physics, chemistry, and
materials science by learning from the relatively small amount of data
that we can gather from real-world experiments.

Despite the progress in this work, many questions remain to be
answered. Recently, powerful machine learning models such as graph
neural networks have been used to empirically demonstrate a favor-
able sample complexity when leveraging the local structure of
Hamiltonians in the 2D randomHeisenberg model29,30. Is it possible to
obtain rigorous theoretical guarantees for the sample complexity of
neural-network-based ML algorithms for predicting ground state
properties? An alternative direction is to notice that the current results
have an exponential scaling in the inverse of the spectral gap. Is the
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exponential scaling a fundamental nature of this problem?Or do there
existmore efficientMLmodels that can efficiently predict ground state
properties for gapless Hamiltonians?

We have focused on the task of predicting local observables in the
ground state, but many other physical properties are also of high
interest. Can ML models predict low-energy excited state properties?
Could we achieve a sample complexity of N =OðlognÞ for predicting
any observable O? Another important question is whether there is a
provable quantum advantage in predicting ground state properties.
Couldwedesign quantumMLalgorithms that canpredict ground state
properties by learning from far fewer experiments than any classical
ML algorithm? Perhaps this could be shown by combining ideas from
adiabatic quantumcomputation37–44 and recent techniques for proving
quantumadvantages in learning fromexperiments73–77. It remains to be
seen if quantum computers could provide an unconditional super-
polynomial advantage over classical computers in predicting ground
state properties.

Methods
We describe the key ideas behind the proof of Theorem 1. The proof
is separated into three parts. The first part in Supplementary Sec-
tion 1 describes the existence of a simple functional form that
approximates the ground state property TrðOρðxÞÞ. The second part
in Supplementary Section 2 gives a new bound for the ℓ1-norm of the
Pauli coefficients of the observableO when written in the Pauli basis.
The third part in Supplementary Section 3 combines the first two
parts, using standard tools from learning theory to establish the
sample complexity corresponding to the prediction error bound
given in Theorem 1. In the following, we discuss these three parts in
detail.

Simple form for ground state property
Using the spectral flow formalism78–80, we first show that the
ground state property can be approximated by a sum of local
functions. First, we write O in the Pauli basis as O=

P
P2fI,X ,Y ,Zg�nαPP.

Then, we show that for every geometrically local Pauli observable

P, we can construct a function fP(x) that depends only on
coordinates in the subset IP of coordinates that parameterizes
interaction terms hj near the Pauli observable P. The function fP(x)
is given by

f PðxÞ=αPTrðPρðχPðxÞÞÞ, ð16Þ

where χP(x)∈ [−1, 1]m is defined as χP(x)c = xc for coordinate c∈ IP and
χP(x)c = 0 for coordinates c∉ IP. The sum of these local functions fP can
be used to approximate the ground state property,

TrðOρðxÞÞ≈
X

P2SðgeoÞ
f PðxÞ: ð17Þ

The approximation only incurs an OðϵÞ error if we consider
δ1 =Θðlog2ð1=ϵÞÞ in the definition of IP. The key point is that correla-
tions decay exponentiallywithdistance in the ground state of a gapped
local Hamiltonian; therefore, the properties of the ground state in a
localized region are not sensitive to the details of the Hamiltonian at
points far from that localized region. Furthermore, the local function fP
is smooth. The smoothness property allows us to approximate each
local function fP by a simple discretization,

f PðxÞ≈
X
x02XP

f Pðx0Þ1 x 2 Tx0 ,P

� 	
: ð18Þ

One could also use other approximations for this step, such as
Fourier approximation or polynomial approximation. In fact, we apply
a Fourier approximation instead in the numerical experiments, as
discussed in Supplementary Section 4. For simplicity of the proof, we
consider a discretization-based approximation with δ2 =Θ(1/ϵ) in the
definition of Tx0 ,P to incur atmost anOðϵÞ error. The point is that, for a
sufficiently smooth function fP(x) that depends only on coordinates in
IP and a sufficientlyfine lattice over the coordinates in IP, replacing x by
the nearest lattice point (based only on coordinates in IP) causes only a
small error. Using the definition of the feature map ϕ(x) in Eq. (8), we

Fig. 2 | Predicting ground state properties in 2D antiferromagnetic random
Heisenbergmodels. a Prediction error. Each point indicates the root-mean-square
error for predicting the correlation function in the ground state (averaged over
Heisenberg model instances and each pair of neighboring spins). We present log-
log plots for the scaling of prediction error ϵwith T andN: the slope corresponds to
the exponent of the polynomial function ϵ(T), ϵ(N). The shaded regions show the

standard deviation over different spin pairs. b Visualization. We plot how much
each coupling Jij contributes to the prediction of the correlation function over
different pairs of qubits in the trained ML model. Thicker and darker edges cor-
respond to higher contributions. We see that the ML model learns to utilize the
local geometric structure.
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have

TrðOρðxÞÞ≈
X

P2SðgeoÞ

X
x02XP

f Pðx0ÞϕðxÞx0 ,P =w
0 � ϕðxÞ, ð19Þ

where w0 is an mϕ-dimensional vector indexed by x0 2 XP and P∈ Sgeo

given by w0
x0 ,P = f Pðx0Þ. The approximation is accurate if we consider

δ1 =Θðlog2ð1=ϵÞÞ and δ2 =Θ(1/ϵ). Thus, we can see that the ML algo-
rithm with the proposed feature mapping indeed has the capacity to
approximately represent the target function TrðOρðxÞÞ. As a result, we
have the following lemma.

Lemma 1. (Training error bound). The function given by w0 � ϕðxÞ
achieves a small training error:

1
N

XN
‘= 1

∣w0 � ϕðx‘Þ � y‘∣
2 ≤0:53ϵ: ð20Þ

This lemma follows from the two facts that w0 � ϕðxÞ≈TrðOρðxÞÞ
and TrðOρðx‘ÞÞ≈ y‘.

Norm inequality for observables
The efficiency of an ℓ1-regularized regression depends greatly on the ℓ1
norm of the vectorw0. Moreover, the ℓ1-normofw0 is closely related to
the observable O =∑jOj given as a sum of geometrically local obser-
vables with ∥O∥∞≤1. In particular, again writing O in the Pauli basis as
O=

P
Q2fI,X ,Y ,Zg�nαQQ, the ℓ1-norm k w0k1 is closely related to

P
Q∣αQ∣,

which we refer to as the Pauli 1-norm of the observable O. While it is
well known that

X
Q

∣αQ∣
2 = TrðO2Þ=2n ≤ k Ok21, ð21Þ

theredonot seem tobemanyknown results characterizing
P

Q∣αQ∣. To
understand the Pauli 1-norm, we prove the following theorem.

Theorem 2. (Pauli 1-norm bound). Let O=
P

Q2fI,X ,Y ,Zg�nαQQ be an
observable that can be written as a sum of geometrically local obser-
vables. We have,

X
Q

jαQj≤C k Ok1, ð22Þ

for some constant C.
A series of related norm inequalities are also established in81.

However, the techniques used in this work differ significantly from
those in81.

Prediction error bound for the ML algorithm
Using the construction of the local function fP(xc, c∈ IP) given in Eq.
(16) and the vector w0 defined in Eq. (19), we can show that

k w0k1 ≤ max
P2SðgeoÞ

∣XP ∣
X
Q

∣αQ∣

 !
≤ 1 +

2
δ2

� �polyðδ1Þ X
Q

∣αQ∣

 !
: ð23Þ

The second inequality follows by bounding the size of our discrete
subset XP and noticing that ∣IP∣ = poly(δ1). The norm inequality in The-
orem 2 then implies

k w0k1 ≤C k Ok1 1 +
2
δ2

� �polyðδ1Þ
≤ 2poly logð1=ϵÞ, ð24Þ

because ∥O∥∞ ≤ 1 and δ1 =Θðlog2ð1=ϵÞÞ,δ2 =Θð1=ϵÞ. This shows that
there exists a vector w0 that has a bounded ℓ1-norm and achieves a
small training error. The existence of w0 guarantees that the vectorw*

found by the optimization problem with the hyperparameter B≥ k
w0k1 will yield an even smaller training error. Using the normbound on
w0, we can choose the hyperparameter B to be B=2poly logð1=ϵÞ. Using
standard learning theory46,47, we can thus obtain

E
x ∼D

∣h*ðxÞ � TrðOρðxÞÞ∣2 ≤ 1
N

XN
‘ = 1

∣w* � ϕðx‘Þ � y‘∣
2
+O B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðmϕ=δÞ

N

s0
@

1
A

ð25Þ

with probability at least 1 − δ. The first term is the training error forw*,
which is smaller than the training error of 0.53ϵ for w0 from Lemma 1.
Thus, the first term is bounded by 0.53ϵ. The second term is deter-
mined by B and mϕ, where we know thatmϕ ≤ jSðgeoÞjð1 + 2

δ2
Þpolyðδ1Þ and

jSðgeoÞj=OðnÞ. Hence, with a training data size of

N =O logðn=δÞ2polylogð1=ϵÞ
 �

, ð26Þ

we can achieve a prediction error of ϵ with probability at least 1 − δ for
any distribution D over [−1, 1]m.

Data availability
Source data are available for this paper. All data can be found or
generated using the source code at https://github.com/lllewis234/
improved-ml-algorithm83.

Code availability
Source code for an efficient implementation of the proposed proce-
dure is available at https://github.com/lllewis234/improved-ml-
algorithm83.

References
1. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev.

136, B864–B871 (1964).
2. Kohn, W. Nobel lecture: Electronic structure of matter—wave func-

tions and density functionals. Rev. Mod. Phys. 71, 1253–1266 (1999).
3. Ceperley, D. & Alder, B. Quantum Monte Carlo. Science 231,

555–560 (1986).
4. Sandvik, A. W. Stochastic series expansion method with operator-

loop update. Phys. Rev. B 59, R14157–R14160 (1999).
5. Becca, F. & Sorella, S. Quantum Monte Carlo Approaches for Cor-

related Systems. Cambridge University Press, (2017).
6. White, S. R. Densitymatrix formulation for quantum renormalization

groups. Phys. Rev. Lett. 69, 2863–2866 (1992).
7. White, S. R. Density-matrix algorithms for quantum renormalization

groups. Phys. Rev. B 48, 10345–10356 (1993).
8. Carleo, G. et al. Machine learning and the physical sciences. Rev.

Mod. Phys. 91, 045002 (2019).
9. Carrasquilla, J. Machine learning for quantum matter. Adv. Phys. X

5, 1797528 (2020).
10. Deng, Dong-Ling, Li, X. & Das Sarma, S. Machine learning topolo-

gical states. Phys. Rev. B 96, 195145 (2017).
11. Carrasquilla, J. & Melko, R. G. Machine learning phases of matter.

Nat. Phys. 13, 431 (2017).
12. Carleo, G. & Troyer, M. Solving the quantum many-body problem

with artificial neural networks. Science 355, 602–606 (2017).
13. Torlai, G. & Melko, R. G. Learning thermodynamics with Boltzmann

machines. Phys. Rev. B 94, 165134 (2016).
14. Nomura, Y., Darmawan, A. S., Yamaji, Y. & Imada, M. Restricted

boltzmann machine learning for solving strongly correlated quan-
tum systems. Phys. Rev. B 96, 205152 (2017).

15. van Nieuwenburg, EvertP. L., Liu, Ye-Hua & Huber, S. D. Learning
phase transitions by confusion. Nat. Phys. 13, 435 (2017).

16. Wang, L. Discovering phase transitions with unsupervised learning.
Phys. Rev. B 94, 195105 (2016).

Article https://doi.org/10.1038/s41467-024-45014-7

Nature Communications |          (2024) 15:895 6

https://github.com/lllewis234/improved-ml-algorithm
https://github.com/lllewis234/improved-ml-algorithm
https://github.com/lllewis234/improved-ml-algorithm
https://github.com/lllewis234/improved-ml-algorithm


17. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E.
Neural message passing for quantum chemistry. International
conference on machine learning. PMLR (2017).

18. Torlai, G. et al. Neural-network quantum state tomography. Nat.
Phys. 14, 447–450 (2018).

19. Vargas-Hernández, R. A., Sous, J., Berciu, M. & Krems, R. V. Extra-
polating quantum observables with machine learning: inferring
multiple phase transitions from properties of a single phase. Phys.
Rev. Lett. 121, 255702 (2018).

20. Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller, K.-R. & Maurer,
R. J. Unifyingmachine learning and quantumchemistry with a deep
neural network for molecular wavefunctions. Nat. Commun. 10,
1–10 (2019).

21. Glasser, I., Pancotti, N., August, M., Rodriguez, I. D. & Cirac, J. I.
Neural-network quantum states, string-bond states, and chiral
topological states. Phys. Rev. X 8, 011006 (2018).

22. Caro, M. C. et al. Out-of-distribution generalization for learning
quantum dynamics. Preprint at arXiv https://doi.org/10.48550/
arXiv.2204.10268 (2022).

23. Rodriguez-Nieva, J. F. & Scheurer, M. S. Identifying topological
order through unsupervised machine learning. Nat. Phys. 15,
790–795 (2019).

24. Qiao, Z., Welborn, M., Anandkumar, A., Manby, F. R. & Miller III, T.
F. Orbnet: deep learning for quantum chemistry using symmetry-
adapted atomic-orbital features. J. Chem. Phys. 153, 124111
(2020).

25. Choo, K., Mezzacapo, A. & Carleo, G. Fermionic neural-network
states for ab-initio electronic structure. Nat. Commun. 11,
2368 (2020).

26. Kawai, H. & Nakagawa, Y. O. Predicting excited states from ground
state wavefunction by supervised quantum machine learning.
Mach. Learn. 1, 045027 (2020).

27. Moreno, JavierRobledo, Carleo, G. & Georges, A. Deep learning the
hohenberg-kohnmaps of density functional theory. Phys. Rev. Lett.
125, 076402 (2020).

28. Kottmann, K., Corboz, P., Lewenstein, M. & Acín, A. Unsupervised
mapping of phase diagrams of 2d systems from infinite projected
entangled-pair states via deep anomaly detection. SciPost Phys. 11,
025 (2021).

29. Wang, H., Weber, M., Izaac, J. & Yen-Yu Lin, C. Predicting properties
of quantumsystemswithconditional generativemodels. Preprint at
arXiv https://doi.org/10.48550/arXiv.2211.16943 (2022).

30. Tran, V. T. et al. Using shadows to learn ground state properties of
quantum hamiltonians. Machine Learning and Physical Sciences
Workshop at the 36th Conference on Neural Information Proces-
sing Systems (NeurIPS), (2022).

31. Mills, K., Spanner, M. & Tamblyn, I. Deep learning and the schrö-
dinger equation. Phys. Rev. A 96(Oct), 042113 (2017).

32. Saraceni, N., Cantori, S. & Pilati, S. Scalable neural networks for the
efficient learning of disordered quantum systems. Phys. Rev. E 102,
033301 (2020).

33. Huang, C. & Rubenstein, B. M. Machine learning diffusion monte
carlo forces. J. Phys. Chem. A 127, 339–355 (2022).

34. Rupp, M., Tkatchenko, A., Müller, Klaus-Robert & Von Lilienfeld, O.
A. Fast and accurate modeling of molecular atomization energies
with machine learning. Phys. Rev. Lett. 108, 058301 (2012).

35. Faber, F. A. et al. Prediction errors of molecular machine learning
models lower than hybrid dft error. J. Chem. Theory Comput. 13,
5255–5264 (2017).

36. Huang, Hsin-Yuan, Kueng, R., Torlai, G., Albert, V. V. & Preskill, J.
Provably efficient machine learning for quantum many-body pro-
blems. Science 377, eabk3333 (2022).

37. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum com-
putation by adiabatic evolution. Preprint at arXiv https://doi.org/10.
48550/arXiv.quant-ph/0001106 (2000).

38. Mizel, A., Lidar, D. A. & Mitchell, M. Simple proof of equivalence
between adiabatic quantum computation and the circuit model.
Phys. Rev. Lett. 99, 070502 (2007).

39. Childs, A.M., Farhi, E. & Preskill, J. Robustness of adiabatic quantum
computation. Phys. Rev. A 65, 012322 (2001).

40. Aharonov, D. et al. Adiabatic quantum computation is equivalent to
standard quantum computation. SIAM Rev. 50, 755–787 (2008).

41. Barends, R. et al. Digitized adiabatic quantum computing with a
superconducting circuit. Nature 534, 222–226 (2016).

42. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod.
Phys. 90, 015002 (2018).

43. Du, J. et al. Nmr implementation of a molecular hydrogen quantum
simulation with adiabatic state preparation. Phys. Rev. Lett. 104,
030502 (2010).

44. Wan, K. & Kim, I. Fast digital methods for adiabatic state prepara-
tion. Preprint at arXiv https://doi.org/10.48550/arXiv.2004.
04164 (2020).

45. Santosa, F. & Symes, W. W. Linear inversion of band-limited
reflection seismograms. SIAM J. Sci. Stat. Comput. 7,
1307–1330 (1986).

46. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R.
Stat. Soc. 58, 267–288 (1996).

47. Mohri, M., Rostamizadeh, A. & Talwalkar, A. Foundations of Machine
Learning. (The MIT Press, 2018).

48. Huang, Hsin-Yuan, Kueng, R. & Preskill, J. Predicting many proper-
ties of a quantum system from very few measurements. Nat. Phys.
16, 1050–1057 (2020).

49. Elben, A. et al. Mixed-state entanglement from local randomized
measurements. Phys. Rev. Lett. 125, 200501 (2020).

50. Elben, A. et al. The randomized measurement toolbox. Nat. Rev.
Phys. 5, 9–24 (2023).

51. Wan, K., Huggins, W. J., Lee, J. & Babbush, R. Matchgate shadows
for fermionic quantum simulation. Commun. Math. Phys. 404,
1–72 (2023).

52. Bu, K., Koh, Dax Enshan, Garcia, R. J. & Jaffe, A. Classical shadows
with pauli-invariant unitary ensembles. Npj Quantum Inf. 10,
6 (2024).

53. Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. Least angle
regression. Ann. Stat. 32, 407–499 (2004).

54. Daubechies, I., Defrise, M. & De Mol, C. An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint.
Commun. Pure Appl. Math. 57, 1413–1457 (2004).

55. Combettes, P. L. & Wajs, ValérieR. Signal recovery by proximal
forward-backward splitting. Multiscale Model. Simul. 4,
1168–1200 (2005).

56. Cesa-Bianchi, N., Shalev-Shwartz, S. & Shamir, O. Efficient learning
with partially observed attributes. J. Mach. Learn. Res. 12,
2857–2878 (2011).

57. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for
generalized linearmodels via coordinate descent. J. Stat. Softw.33,
1 (2010).

58. Hazan, E. & Koren, T. Linear regression with limited observation. In
Proceedings of the 29th International Conference on Machine
Learning, 1865–1872 (2012).

59. Chen, Y. & de Wolf, R. Quantum algorithms and lower bounds for
linear regression with norm constraints. Leibniz Int. Proc. Inf. 38,
1–21 (2023).

60. Van Kirk, K., Cotler, J., Huang, Hsin-Yuan & Lukin, M. D. Hardware-
efficient learning of quantum many-body states. Preprint at arXiv
https://doi.org/10.48550/arXiv.2212.06084 (2022).

61. Huang, H.-Y. et al. Power of data in quantummachine learning.Nat.
Commun. 12, 1–9 (2021).

62. Rahimi, A. & Recht, B. Random features for large-scale kernel
machines. In Proceedings of the 20th International Conference on
Neural Information Processing Systems, 1177–1184 (2007).

Article https://doi.org/10.1038/s41467-024-45014-7

Nature Communications |          (2024) 15:895 7

https://doi.org/10.48550/arXiv.2204.10268
https://doi.org/10.48550/arXiv.2204.10268
https://doi.org/10.48550/arXiv.2211.16943
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.2004.04164
https://doi.org/10.48550/arXiv.2004.04164
https://doi.org/10.48550/arXiv.2212.06084


63. Liu, L., Shao, H., Lin, Yu-Cheng, Guo, W. & W Sandvik, A. Random-
singlet phase in disordered two-dimensional quantum magnets.
Phys. Rev. X 8, 041040 (2018).

64. White, S. R. Densitymatrix formulation for quantum renormalization
groups. Phys. Rev. Lett. 69, 2863 (1992).

65. Schollwoeck, U. The density-matrix renormalization group in the
age of matrix product states. Ann. Phys. 326, 96–192 (2011).

66. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20,
273–297 (1995).

67. Murphy, K. P. Machine Learning: A Probabilistic Perspective. (MIT
press, 2012).

68. Jacot, A., Gabriel, F. & Hongler. C. Neural tangent kernel: Con-
vergence and generalization in neural networks. In NeurIPS, pp.
8571–8580 (2018).

69. Novak, R. et al. Neural tangents: Fast and easy infinite neural net-
works in python. In International Conference on Learning Repre-
sentations (2020).

70. Brown, T. et al. Languagemodels are few-shot learners.Adv. Neural
Inf. Process. Syst. 33, 1877–1901 (2020).

71. Deng, J. et al. Imagenet: a large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern recogni-
tion, pp. 248–255. (IEEE, 2009).

72. Saharia, C. et al. Photorealistic text-to-image diffusion models with
deep language understanding. Adv. Neural Inf. Process. Syst. 35,
36479–36494 (2022).

73. Aharonov, D., Cotler, J. S. & Qi, Xiao-Liang. Quantum algorithmic
measurement. Nat. Commun. 13, 887 (2022).

74. Chen, S., Cotler, J., Huang, Hsin-Yuan & Li, J. Exponential separa-
tions between learning with and without quantummemory. In 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 574–585. (IEEE, 2022).

75. Huang, Hsin-Yuan, Flammia, S. T. & Preskill, J. Foundations for
learning from noisy quantum experiments. Preprint at arXiv https://
doi.org/10.48550/arXiv.2204.13691 (2022).

76. Huang, Hsin-Yuan, Kueng, R. & Preskill, J. Information-theoretic
boundsonquantumadvantage inmachine learning. Phys. Rev. Lett.
126, 190505 (2021).

77. Huang, Hsin-Yuan et al. Quantum advantage in learning from
experiments. Science 376, 1182–1186 (2022).

78. Bachmann, S., Michalakis, S., Nachtergaele, B. & Sims, R. Auto-
morphic equivalence within gapped phases of quantum lattice
systems. Commun. Math. Phys. 309, 835–871 (2012).

79. Hastings, M. B. & Wen, X.-G. Quasiadiabatic continuation of quan-
tum states: the stability of topological ground-state degeneracy
and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005).

80. Osborne, T. J. Simulating adiabatic evolution of gapped spin sys-
tems. Phys. Rev. A 75, 032321 (2007).

81. Huang, Hsin-Yuan, Chen, S. & Preskill, J. Learning to predict arbi-
trary quantum processes. PRX Quantum 4, 040337 (2022).

82. Onorati, E., Rouzé, C., França, Daniel Stilck & Watson, J. D. Efficient
learning of ground and thermal states within phases of matter.
Preprint at arXiv https://doi.org/10.48550/arXiv.2301.12946 (2023).

83. Lewis, L. et al. Improved machine learning algorithm for predicting
ground state properties. improved-ml-algorithm. https://doi.org/
10.5281/zenodo.10154894 (2023).

Acknowledgements
The authors thank Chi-Fang Chen, Sitan Chen, Johannes Jakob Meyer,
and Spiros Michalakis for valuable input and inspiring discussions. We

thank EmilioOnorati, CambyseRouzé, Daniel Stilck França, and JamesD.
Watson for sharing a draft of their new results on efficiently predicting
properties of states in thermal phases of matter with exponential decay
of correlation and in quantum phases of matter with local topological
quantum order82. LL is supported by Caltech Summer Undergraduate
Research Fellowship (SURF), Barry M. Goldwater Scholarship, and Mel-
lon Mays Undergraduate Fellowship. HH is supported by a Google PhD
fellowship and a MediaTek Research Young Scholarship. JP acknowl-
edges support from the U.S. Department of Energy Office of Science,
Office of Advanced Scientific Computing Research (DE-NA0003525,
DE-SC0020290), the U.S. Department of Energy, Office of Science,
National Quantum Information Science Research Centers, Quantum
Systems Accelerator, and the National Science Foundation (PHY-
1733907). The Institute for Quantum Information and Matter is an NSF
Physics Frontiers Center.

Author contributions
H.H. and J.P. conceived the project. L.L. and H.H. developed the math-
ematical aspects of this work. L.L., H.H., S.L., and V.T. conducted the
numerical experiments andwrote the open-source code. L.L., H.H., R.K.,
and J.P. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45014-7.

Correspondence and requests for materials should be addressed to
Laura Lewis.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45014-7

Nature Communications |          (2024) 15:895 8

https://doi.org/10.48550/arXiv.2204.13691
https://doi.org/10.48550/arXiv.2204.13691
https://doi.org/10.48550/arXiv.2301.12946
https://doi.org/10.5281/zenodo.10154894
https://doi.org/10.5281/zenodo.10154894
https://doi.org/10.1038/s41467-024-45014-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Improved machine learning algorithm for predicting ground state properties
	Results
	Definitions of the geometric inductive�bias
	Feature mapping and ML�model
	Rigorous guarantee
	Numerical experiments

	Discussion
	Methods
	Simple form for ground state property
	Norm inequality for observables
	Prediction error bound for the ML algorithm

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




