Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 29, 2012 | Published
Journal Article Open

Convergence Analysis of Meshfree Approximation Schemes


This work is concerned with the formulation of a general framework for the analysis of meshfree approximation schemes and with the convergence analysis of the local maximum-entropy (LME) scheme as a particular example. We provide conditions for the convergence in Sobolev spaces of schemes that are n-consistent in the sense of exactly reproducing polynomials of degree less than or equal to n ≥ 1 and whose basis functions are of rapid decay. The convergence of the LME in W^(1,p)_(loc) (Ω) follows as a direct application of the general theory. The analysis shows that the convergence order is linear in h, a measure of the density of the point set. The analysis also shows how to parameterize the LME scheme for optimal convergence. Because of the convex approximation property of LME, its behavior near the boundary is singular and requires additional analysis. For the particular case of polyhedral domains we show that, away from a small singular part of the boundary, any Sobolev function can be approximated by means of the LME scheme. With the aid of a capacity argument, we further obtain approximation results with truncated LME basis functions in H^1(Ω) and for spatial dimension d > 2.

Additional Information

© 2012 Society for Industrial and Applied Mathematics. Submitted: 28 March 2011; accepted: 09 April 2012. Published online: 29 May 2012. This work was supported by the Department of Energy National Nuclear Security Administration under award DE-FC52-08NA28613 through Caltech's ASC/PSAAP Center for the Predictive Modeling and Simulation of High Energy Density Dynamic Response of Materials.

Attached Files

Published - 110828745.pdf


Files (309.4 kB)
Name Size Download all
309.4 kB Preview Download

Additional details

August 22, 2023
October 20, 2023