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P H Y S I C S

Fast and converged classical simulations of evidence for 
the utility of quantum computing before fault tolerance
Tomislav Begušić†, Johnnie Gray†, Garnet Kin-Lic Chan*

A recent quantum simulation of observables of the kicked Ising model on 127 qubits implemented circuits that 
exceed the capabilities of exact classical simulation. We show that several approximate classical methods, based 
on sparse Pauli dynamics and tensor network algorithms, can simulate these observables orders of magnitude 
faster than the quantum experiment and can also be systematically converged beyond the experimental accuracy. 
Our most accurate technique combines a mixed Schrödinger and Heisenberg tensor network representation 
with the Bethe free entropy relation of belief propagation to compute expectation values with an effective wave 
function–operator sandwich bond dimension >16,000,000, achieving an absolute accuracy, without extrapolation, in 
the observables of <0.01, which is converged for many practical purposes. We thereby identify inaccuracies in the 
experimental extrapolations and suggest how future experiments can be implemented to increase the classical 
hardness.

INTRODUCTION
As quantum computers mature, it is critical to benchmark their 
performance against classical simulations. One approach is to 
compare against exact classical simulations, such as state-vector 
methods that store the wave function amplitudes of the n qubits as 
a 2n-dimensional vector, or exact tensor network (TN) contrac-
tions (1–6), which have an exponential cost in circuit tree width 
(7). However, as qubit counts and circuit depths increase, quantum 
experiments are now beginning to exceed the capabilities of exact 
classical simulations.

A recent quantum experiment of this kind simulated the kicked 
Ising model on IBM’s 127-qubit processor (8). Using zero-noise ex-
trapolation (9) of the experimental data, Kim et al. (8) presented evi-
dence for the utility of quantum computing before fault tolerance. 
Starting from the ferromagnetic state, the experiment implemented 
the circuit

consisting of T steps of Clifford ZZ and non-Clifford X rotations. 
In Eq. 1, θh is a rotation angle that is varied, j and k run over all 127 
qubits, and 〈j, k〉 denotes neighbors on the heavy hexagon lattice of 
the Eagle quantum processor ibm_kyiv (Fig. 1A). It was argued in (8) 
that the expectation values 〈O〉 = 〈0∣U†OU∣0〉 of different Pauli ob-
servables O were not only beyond the reach of exact classical simula-
tions but, furthermore, could not be computed to the experimental 
accuracy with certain approximate classical techniques, such as ma-
trix product state (MPS) or isometric two-dimensional (2D) TN sim-
ulations (10).

However, in a recent unpublished, preliminary note by some of us 
(11) using an approximate classical method termed sparse Pauli 
dynamics (SPD), we showed that we could compute the experimental 
expectation values with an accuracy comparable to the experimental 

extrapolation, in a time faster than the experiment. The same 
conclusion was reached in multiple preprints from other groups (12–
16), including some of the authors of the original experiment (17). 
Nonetheless, as pointed out in (17), the remaining errors in the classi-
cal simulations, as well as in the extrapolated experimental data, still 
left considerable uncertainty in the precise values of the observables 
targeted in the original experiment.

Here, we show that multiple approximate classical methods can be 
converged for all examples studied in (8), including the 20-step dy-
namics involving 127 qubits, well beyond the results in the initial pre-
prints (12–14, 17) and with a remaining uncertainty substantially less 
than the experimental extrapolation error bars. To this end, we pro-
vide a full account and further extend the application, of the Clifford-
based SPD in (18) to larger-scale simulations. We further introduce 
new TN techniques that use lazy belief propagation (BP), in the 
Schrödinger picture [for projected entangled pair states (PEPSs)], in 
the Heisenberg picture [for projected entangled pair operators (PEPOs)], 
and in a mixed Schrödinger/Heisenberg picture (PEPS/PEPO expec-
tation value). An important component in these improved TN simu-
lations is the application of the Bethe free entropy BP formula, 
extending the ideas in (19), that allows us to completely avoid the ex-
pensive TN contraction and use large bond dimensions in the mixed 
Schrödinger/Heisenberg picture. We carefully benchmark the errors 
associated with these techniques and introduce a uniform norm met-
ric to compare the quality of the different approximations. In our 
most accurate simulations of the largest circuits in the mixed picture 
(Fig. 1B) and using the free entropy formula, we effectively evaluate a 
TN representation of the expectation value with bond dimension of 
16,777,216. Without resorting to any extrapolations, the associated 
absolute error that we achieve in the targeted observable is conserva-
tively estimated as <0.01. For many practical applications, this may be 
considered fully converged.

RESULTS
Approximate classical methods for quantum circuit 
expectation values
Various classical strategies have been developed to approximate 
quantum circuit expectation values with a cost that depends on 
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characteristics of the quantum circuit. For example, Clifford-based 
approaches (20–24) can treat circuits with large numbers of qubits 
and highly entangled states as long as there is only a small number of 
non-Clifford gates. Similarly, approximate TN methods provide ac-
curate results so long as the circuit generates a limited amount of en-
tanglement. In practice, the goal with such approximate techniques is 
to numerically converge the results with respect to a parameter con-
trolling the accuracy. Below, we describe approximate simulation 
methods in both the near-Clifford and TN categories and the innova-
tions that we use to converge the expectation values of the kicked 
Ising experiment.

Sparse Pauli dynamics
The SPD approach (11) was recently introduced as a variant of 
Clifford perturbation theory (18). It is based on representing a tar-
get observable in the Heisenberg picture as a sum of Pauli opera-
tors O =

∑
P∈ aPP, where  is some subset of n-qubit Paulis and 

aP are the corresponding complex coefficients. A Pauli rotation 
gate Uσ(θ) = e−iθσ/2, defined by a real rotation angle θ and a Her-
mitian n-qubit Pauli operator σ, transforms any n-qubit Pauli op-
erator P according to

Consequently, for each Pauli operator P ∈  that anticommutes 
with σ of the rotation gate, the representation of the observable O 
must be expanded to  ′ =  ∪ {σP}. This will, in general, lead to an 
exponential growth of the number of terms in the sum. However, if 

the rotation gate is Clifford, meaning that θ = kπ/2 for integer k, then 
only one of the terms in the right-hand side of Eq. 2 will remain and 
the number of Paulis will not increase. In SPD, we make use of this by 
initially transforming the non-Clifford Pauli rotation gates and the 
observable by the Clifford gates of the circuit. Similarly, we rewrite the 
Pauli rotation angles as θ = θ′ + kπ/2 with θ′ ∈ (−π/4, π/4], where 
the term proportional to π/2 is treated as a separate Clifford gate. To 
truncate the exponentially growing Pauli series representing the 
Heisenberg-evolved observable, in (11), we used a perturbative crite-
rion for adding or removing Pauli operators. Here, we formulate SPD 
using a threshold-based criterion, i.e., by truncating the Pauli repre-
sentation of the observable to those Paulis whose coefficients are 
greater than the prescribed threshold (see Methods for full details). 
Then, the accuracy of the simulation is systematically improved by 
reducing this threshold until convergence. [We note that, recently, 
other related Pauli-based approaches have been proposed, with trun-
cation based on Fourier expansion or Hamming weights of the Pauli 
operators (14, 16, 25, 26).]

TN simulations
In our TN simulations, we allow ourselves to partition the unitary 
between the evolution of the states and that of the observable O. Thus, 
in general, we evolve both a PEPS representation forward to step τ, 
∣ψ(0)〉 → ∣ψ(τ)〉 and a PEPO backward Φ(T + 1) → Φ(τ + 1) [note 
Φ(T + 1) = O]. In the limit that τ = T, only the PEPS is evolved 
(Schrödinger picture) and the entanglement is entirely stored in the 
state. Conversely, if τ = 0, then only the PEPO is evolved (Heisenberg 
picture), and the entanglement is stored in the operator. By allowing 
other values of τ (mixed picture), we can limit ourselves to moderate 

Uσ(θ)
†
PUσ(θ)=

{
cos(θ)P+ isin(θ)σP, {σ, P}=0

P, [σ, P]=0
(2)

Fig. 1. Schematic overview of the simulation. (A) Qubit layout of the quantum device used in (8). (B) Visualization of the full TN representation of the quantum circuit 
expectation value for 20 steps. Green tensors are entangling RZZ gates; orange tensors are RX rotations.
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entanglement growth in both the state and operator. A schematic 
overview of the TN methods is shown in Fig.  2 (further details in 
Methods and the Supplementary Materials). Below, we refer to the 
case of purely Schrödinger evolution (τ = T) as the “PEPS method,” 
the case of purely Heisenberg evolution (τ = 0) as the “PEPO method,” 
and the case of half and half (τ = T/2) as the “MIX method.” It is 
this MIX method that we find converges fastest and we show is the 
most accurate.

We use two key BP tools to perform these evolutions efficiently 
and, crucially, evaluate the final overlap 〈ψ(τ)∣Φ(τ + 1)∣ψ(τ)〉 at 
bond dimensions, χ, that are far beyond exact contraction.

The first is 2-norm BP compression. 2-norm BP compression is a 
version of simple update compression (27–29) where TN bonds are 
compressed by the singular value decomposition of the contraction of 
pairs of tensors, and the rest of the TN (the environment) is repre-
sented as a product of gauges. To obtain these gauges, the BP iteration 
is applied to the doubled TN used to compute the 2-norm (i.e., 
Fig. 2Bi for PEPS compression and Fig. 2Bii for PEPO compression). 
As well summarized in (30, 31), at the convergence of the BP proce-
dure, the BP messages correspond to working in the “super orthogo-
nal” gauge defined in (32). The key difference with the usual simple 
update formulation is that the BP message iteration allows for this 
gauge to be computed without modifying the original tensors. This 
then allows for the lazy computation of gauges without forming inter-
mediate tensors of large bond dimension (33, 34). We refer to this lazy 
implementation of 2-norm BP compression as L2BP. On a lattice 
such as heavy hex with coordination number 3, it scales as (χ4).The 

second tool, which we refer to as lazy 1-norm BP (L1BP) contraction, 
is an extension to quantum expectation values of recent work con-
necting BP techniques and TNs (19). The essential idea is to approxi-
mate the final overlap contraction between states and operators as the 
exponential of the Bethe free entropy (35). To obtain this, we first 
compute converged BP messages of the sandwich TN of the operators 
and states (Fig. 2Biii), and the value of the contraction is approxi
mated by a simple function of the contractions between tensors and con-
verged BP messages (Fig. 2E). In the quantum setting, we apply this 
relation despite the TN being nonpositive. L1BP contraction can be 
used to compute local and nonlocal operators (such as high weight 
Paulis) as well as the norms of ∣ψ〉 and Φ. On the heavy-hex lattice, 
assuming both ψ and Φ have bonds of size χ (this refers to the MIX 
method), it scales as (χ6). Using it, we here evaluate the expectation 
value of a PEPS/PEPO expectation value where the PEPS and PEPO 
each have bond dimension χ = 256, for a combined effective TN ex-
pectation value bond dimension of χ = 2563 = 16,777,216. L1BP 
contraction is exact for tree geometries but is only a heuristic approx-
imation away from such geometries. Consequently, we verify the ac-
curacy of the L1BP contraction for our expectation values in multiple 
ways in the simulations below.

For clarity, we briefly note some differences to other approaches. 
Tindall et al. (12) perform PEPS evolution using 2-norm BP to com-
press after each gate application. This is subtly different from our 
PEPS evolution, where, because of our lazy approach, it is natural to 
evolve and compress one or more full layers of gates simulta
neously, which we find improves accuracy. A second difference is that 

Fig. 2. TN simulation overview. Full discussion in main text and Methods. (A) schematic of mixed PEPS/PEPO evolution on toy hexagonal lattice. The PEPS (red) is evolved 
using the next unitary layer and then compressed using L2BP. The PEPO (pink) is evolved and compressed similarly. Green bonds, “physical” indices connecting a single 
site. Once all unitary layers have been incorporated, the remaining PEPS/PEPO/PEPS sandwich is contracted using L1BP. (B) BP on the lattice. Blue circles, tensors on sites 
(which represent lazy contraction of tensors from multiple layers, represented by internal dots). Each bond has left and right tensor messages (yellow/red pairs of dots). 
We run BP algorithms on three types of TNs that differ in the definition of the site tensors (shown in insets). (i) Site tensor when compressing the PEPS and its unitary up-
date, minimizing the 2-norm error (L2BP method). (ii) Site tensor when compressing the PEPO and its unitary update, minimizing the 2-norm error (L2BP method). (iii) Site 
tensor when using the Bethe free entropy formula to evaluate the PEPS-PEPO-PEPS expectation value (L1BP method). (C) Lazy BP contraction for updating a single mes-
sage. (D) Lazy 2-norm belief propagation (L2BP) compression of a local site. From converged messages, pairs of projectors (purple rectangles), from the top right ap-
proximation, are found for each bond. Projectors adjacent to each site are then contracted in, yielding single tensors with maximum dimension χ. (E) Lazy 1-norm belief 
propagation (L1BP) TN contraction. Given converged messages, the global contracted value is estimated from contractions of tensors and messages.
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Tindall et al. (12) evaluate the observables using the approximate local 
density matrices computed in the BP approach, rather than our L1BP 
expression. We discuss the implications of this for the accuracy of 
〈Z62〉 at θh > π/4 later. Last, in another paper that appeared at the same 
time as our preprint, Liao et al. (15) perform PEPO Heisenberg evolu-
tion using simple update (27), before contracting the final PEPO ex-
actly at τ = 0. In our PEPO method, we apply entire layers of gates 
simultaneously, and the use of L1BP contraction enables us to directly 
contract Φ with log2(χ)/2 layers remaining, avoiding the extra com-
pression steps in (15).

Simulation of expectation values of the kicked Ising circuit
We start with a brief recapitulation of the results in the unpublished 
note (11), recomputed using the slightly modified SPD algorithm in 
the current work, as well as from fast but approximate TN simula-
tions. In Fig. 3, we show these classical simulations of the experimen-
tal data of (8). The observables include the magnetization MZ = ∑j 
〈Zj〉/n and two high-weight Pauli observables (X13,29,31Y9,30Z8,12,17,28,32 
and X37,41,52,56,57,58,62,79Y75Z38,40,42,63,72,80,90,91) after five steps (T = 5 in 
Eq. 1), another weight-17 Pauli observable X37,41,52,56,57,58,62,79Y38,40,42,

63,72,80,90,91Z75 for a circuit consisting of five steps and an additional 
layer of X rotations, and 〈Z62〉 after 20 steps of the circuit in Eq. 1. 
Exact benchmarks, computed with an exact TN simplification and 
contraction method (36), are shown for the first four examples. [We 
note that the exact result shown in Fig. 3D was not computed in (8).]

The data generated using SPD are simulated within on average 10 s 
per point on a single core of a laptop computer and are compatible 
with the experimental zero-noise extrapolated data. As observed in 

(11), this is three orders of magnitude faster than the reported quan-
tum wall-clock run time for Fig. 3 (D and E) (4 and 9.5 hours, respec-
tively) and faster than the hypothesized run time of IBM’s Eagle 
processor without any classical processing steps (estimated at about 
5 min for Fig. 3E). We also show data from the MIX TN method with 
χ = 64. The bond dimension here is chosen such that the most expen-
sive computations (Fig. 3, A and E) complete in less than 3 min of 
computation time on a single consumer graphics processing unit 
(GPU) [Fig. 3 (B to D); only require about 10 s per point]. We see 
again that the TN simulations generate data compatible with the 
experimental zero-noise extrapolated data faster than the run time of 
the quantum processor.

We next turn to computing more accurate data using the approxi-
mate SPD and TN approaches. To do so, in Fig. 4, we first show the 
absolute errors of these approximate simulation methods for the ex-
amples in Fig. 3 (A to D) corresponding to shallow circuits, where we 
have access to an exact result. Our fast SPD results already match the 
exact values very well, with a maximum error over all points on the 
order of 10−3. The magnetization can be computed numerically ex-
actly with SPD (zero threshold) within ∼15 min per point on a single 
core, while the error of the other three observables can be evaluated 
with a maximum error around 10−4 (Fig. 4, B to D, dark blue line), 
where the most expensive points take up to 45 min, 5 hours, and 
6 hours (see table S2), respectively, on four cores in our Python imple-
mentation. For these shallow-depth circuits, the TN calculations with 
χ = 64 (as discussed, taking a maximum of 3 min on the consumer 
GPU) already result in no truncation; thus, the error is solely due to 
the 1-norm BP contraction approximation. These errors are shown 

A B C

D E

Fig. 3. Expectation values of the quantum circuit in Eq. 1. (A) Magnetization; (B) X{3}Y{2}Z{5} ≡ X13,29,31Y9,30Z8,12,17,28,32; (C) X{8}Y{1}Z{8} ≡ X37,41,52,56,57,58,62,79Y75Z38,40,42,63,72,80,90,91, 
all after five steps; (D) X{8}Y{8}Z{1} ≡ X37,41,52,56,57,58,62,79Y38,40,42,63,72,80,90,91Z75 for a five-step circuit with an additional X-rotation layer, and (E) 〈Z62〉 after 20 steps. The re-
sults presented include the exact benchmarks calculated using TN contraction [“Exact,” (A) to (D)], SPD results obtained within on average 10 s per point on a single 
core of a laptop computer (“SPD 10s”), MIX TN results on a single GPU under 3 min (“MIX 3 min”), and the zero-noise extrapolated quantum experiment (“Quantum”) 
of (8). All data apart from the quantum simulations were computed at θh between zero and π/2 in increments of π/32. Thresholds used for the SPD simulations are 
reported in table S1.
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for the PEPS method, the PEPO method, and the MIX method for the 
observables computed in Fig. 4 (B to D); in all cases, they are less than 
10−4.We now discuss converging the most difficult observable in (8), 
namely, 〈Z62〉 with a 20-step circuit. For orientation, we first give re-
sults for a simpler nine-step circuit for this observable where we can 
still compute an exact benchmark. The data are presented in Fig. 5. 
For the nine-step expectation value (Fig. 5A), all results agree to with-
in 0.01 with the exact TN benchmark. At our used parameters (see 
table S3 for SPD thresholds and table S4 for TN χ values), the largest 
errors appear at the highly non-Clifford points in the middle of the 
studied θh range. For the 20-step circuit (Fig. 5B; SPD thresholds in 
table S3, up to χ = 320; for TN methods, see table S4), we no longer 
have exact data, but we can still examine the maximum spread across 
all the methods. We find this to be less than 0.045. Notably, at each 
computed θh, the spread in the classical results is substantially smaller 
than the error bar in the experimental extrapolation at a similar θh.

In Fig. 6, we show the convergence with respect to threshold (for 
SPD) and bond dimension (for the TN methods). At intermediate 
θh, the SPD data appears to be less converged than the TN data at the 
smallest accessible values of the threshold. Both Heisenberg picture 
methods, namely, PEPO and SPD, exhibit a non-monotonic conver-
gence behavior (see fig.  S3), similar to the Heisenberg picture 

matrix-product operator (MPO) simulations of (17). In turn, PEPS 
and (to some extent) MIX simulations exhibit a monotonic conver-
gence with respect to χ. Figure 6C shows that the MIX results are the 
most converged among the three TN methods. In the Supplemen-
tary Materials, we provide three estimates of the residual error of the 
MIX method with respect to χ: These estimates range from well less 
than 10−2 to perhaps as small as 10−3.

It is useful to define a metric that allows us to compare the results 
of different approximate methods on a more equal footing. For this, 
we use the norm as a common convergence parameter and an ap-
proximate measure of fidelity. For PEPS, we use the wave function 
norm Nψ = ∥ψ∥; for operator-based methods (PEPO and SPD), we 
use the Frobenius norm NO =

√
Tr(O†O)∕2n ; and for the mixed-

picture approach, we use NMIX = NψNO. These are shown in Fig. 7A as 
functions of the rotation angle θh in the 20-step simulation. Note that 
achieving an accurate fidelity is expected to be much harder than 
computing an expectation value; thus, this represents a stringent test 
of the accuracy of the classical methods. We find that the operator-
based approaches (SPD and PEPO) follow a similar trend, where the 
norm is close to 1 for Clifford and near-Clifford angles and low or 
even near zero for intermediate values of θh. Conversely, the PEPS 
approach yields near-zero norms at large θh, even near the Clifford 

A B C D

Fig. 4. Absolute errors of approximate methods for the observables presented in  Fig. 3. (A) Magnetization; (B) X{3}Y{2}Z{5} ≡ X13,29,31Y9,30Z8,12,17,28,32; (C) X{8}Y{1}Z{8} ≡ 
X37,41,52,56,57,58,62,79Y75Z38,40,42,63,72,80,90,91, all after five steps; (D) X{8}Y{8}Z{1} ≡ X37,41,52,56,57,58,62,79Y38,40,42,63,72,80,90,91Z75 for a five-step circuit with an additional X-rotation layer. 
We show the SPD results obtained within on average 10 s per point (SPD 10 s), converged SPD results (“SPD”), and the three TN methods (B to D): PEPS, PEPO, and 
MIX. Thresholds used for the converged SPD simulations are reported in table S1.

A B

Fig. 5. Expectation value of 〈Z62〉. (A) After 9 steps; (B) after 20 steps of the circuit in Eq. 1, as calculated with SPD and PEPS, PEPO, and MIX TN methods. For the 9-step 
result, we compare these to the exact benchmark; for the 20-step result, we compare the spread of these classically simulated expectation values with the confidence 
intervals (CI) of the extrapolation procedure used in the quantum simulation experiment (8). All data were computed at θh between zero and π/2 in increments of π/32. 
Thresholds used for SPD are reported in table S3, and bond dimensions used for TN simulations are in table S4.
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angle π/2. The MIX approach achieves norms ∼1 for θh < 10π/32 and 
outperforms all other approaches for θh < 13π/32, although it still 
yields near-zero norm near π/2. However, both the PEPS and MIX 
approaches correctly find that the expectation values vanish at the 
high-θh points, indicating that any complicated entanglement gener-
ated by the circuit is not reflected in the expectation value. In Fig. 7 (B 
and C), we plot the convergence of 〈Z62〉 against norm. Similar to that 
in fig. S3, we observe non-monotonic convergence in the expectation 
value for the Heisenberg-based methods, while PEPS and MIX show 
smooth and monotonic convergence with norm. Notably, the MIX 
method achieves a large norm for all nonzero 〈Z62〉.

The above studies support the convergence of our simulation 
methods with respect to the threshold/bond dimension and demon-
strate, in particular, that estimates from the MIX TN method are par-
ticularly well converged with respect to χ. However, as discussed 
earlier, the TN methods implemented here include an additional ap-
proximation in the form of the 1-norm BP (L1BP) contraction that 

introduces an uncontrolled error into the expectation value. We now 
verify the accuracy of this approximation in three separate ways. The 
first verification is that, for exactly accessible reference quantities such 
as the depth 5 and depth 9 observables or the 31 qubit circuits in (13), 
we can directly see that the total error (i.e., including truncation) is 
<10−3 in all cases. The second verification is that, in the case of the 
PEPS method, when the bond dimension is too large for exact con-
traction of the observable but still small enough that we can contract 
amplitudes, i.e., 〈x∣ψ〉 for a given bit string x, we can compute an un-
biased Monte Carlo estimation of the observable by sampling from 
the state. In all our checks, we find that L1BP contraction is consistent 
with such estimates, which themselves are accurate to about 0.1 to 1% 
limited by shot noise (see Fig. 8A). The final check that we can per-
form is that, for PEPO evolution when the final bond dimension is 
small enough, χ ≲ 128, we can exactly contract 〈0∣Φ∣0〉. In this re-
gime, we find a discrepancy with L1BP ≲ 5 × 10−4, as shown in Fig. 8 
(B and C). From these checks of the L1BP approximation, as well as 

A B C

Fig. 6. Convergence of 〈Z62〉 after 20 steps. (A) SPD with respect to the threshold; (B) the PEPS, PEPO, and MIX methods with respect to bond dimension χ. The results 
are presented for a range of θh values indicated by different markers. (C) Zoom-in on the convergence of the MIX method at θh = 6π/32, 8π/32, and 10π/32 (see fig. S1 for 
other values of θh).

A B C

Fig. 7. Convergence analysis of norm and 〈Z62〉 after 20 steps. Norm as a function of angle θh (A) and the convergence of 〈Z62〉 after 20 steps for SPD and PEPO (B), and 
PEPS and MIX (C) methods with respect to the norm. θh values are indicated by different markers. Horizontal lines in (B) correspond to the highest-χ MIX results at respec-
tive θh.
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the convergence studies with respect to χ and norm, we can conserva-
tively estimate that the MIX TN method, without extrapolation, 
provides results for the 20-step circuit 〈Z62〉 to an absolute accuracy of 
better than 0.01. The most expensive (i.e., largest χ) MIX calculations 
required to reach this accuracy took approximately 1 day of computa-
tion time on a NVidia A100 GPU. A more complete set of timing data 
is provided in the Supplementary Materials.

We now use our converged estimates of 〈Z62〉 from the 20-step 
circuit using the MIX method to assess the accuracy of the ex-
trapolated experimental results as well as results from other classi-
cal simulations. In Fig. 9A, we see that most of the experimental 
data points agree with our results, but the experimental extrapola-
tion at 6π/32 has a significant error outside of its error bars, and 
that the data at 7π/32 are also at the limit of its error bars. It is in-
teresting to see that these highly non-Clifford circuits, which are in 
some ways more challenging classically, are also challenging for 
the experimental extrapolation.

In Fig. 9B, we show the MPS and MPO results from (8) and (17). 
As already argued in those works, these results are not well con-
verged, and this is confirmed by our accurate data.

In Fig. 9C, we show results from the BP-TN approach of (12). The 
unextrapolated data (χ = 500) agree well with our data up to 8π/32 but 
deviate slightly at larger angles, where they are slightly above our MIX 
results. In (12), 〈Z62〉 is computed using the approximate local density 
matrices associated with the 2-norm BP messages, rather than the 
L1BP contraction. This implicitly renormalizes the PEPS wave func-
tion after compression, due to how the local density matrices are de-
fined in terms of the BP messages. We find that such a renormalization 
leads to convergence behavior from above, as observed in their data 
around θh ∼ 1. On the other hand, the MIX method (where we do not 
renormalize the state) converges from below. As argued from Fig. 7, 
the unextrapolated MIX results are likely of higher fidelity than the 
PEPS results near θh ∼ 1. We note that the extrapolated data from (12) 
is in good agreement with our unextrapolated MIX data for all θh. 
This is illustrated in the inset that compares convergence at θh = 0.7, 
showing extrapolation for the BP-PEPS method in (12), our own 

PEPS method (where the state is not renormalized after compression) 
and the reference MIX result.

In Fig. 9D, we see that the reduced 31-qubit model of (13) is in 
good agreement with our results at small and large angles but shows 
substantial deviation at intermediate θh, with a discrepancy of ∼0.1. 
(Figure S7 shows that our MIX approach accurately reproduces the 
exact 31-qubit result, indicating that the discrepancy in Fig. 9D arises 
due to the model reduction to 31 qubits.) Next, in Fig. 9E, the observ-
able’s back-propagation on Pauli paths (OBPPP) method of (14), 
which is itself closely related to SPD, shows good agreement with our 
data for larger angles of θh > 5π/32 but exhibits larger errors at low θh, 
where all other classical simulations and the quantum simulations 
agree very well. In the absence of additional convergence data for 
OBPPP, it is difficult to say whether the agreement at the other points 
is fortuitous or not. Last, in Fig. 9F, we compare against the PEPO 
method described in the recent preprint (15), which used simple up-
date style Heisenberg evolution along with exact contraction of the 
final TN. We show both the highest χ result of that paper and their 
extrapolated result. We see that, although the largest χ data are in 
good agreement with our reference data, the extrapolated data in (15) 
overshoot considerably. We can trace this to non-monotonic conver-
gence of Heisenberg picture methods (clearly seen in the SPD and 
PEPO data in Fig. 7B; see also inset of Fig. 9F), which renders such 
extrapolations misleading.

DISCUSSION
Our work demonstrates that classical algorithms can simulate the ex-
pectation values of the quantum circuits corresponding to the kicked 
Ising dynamics experiment on 127 qubits, not only faster than but 
also well-beyond the accuracy of the current quantum experiments. 
For this specific experiment, the classical data may be considered for 
practical purposes to be converged, and this brings to a close the ques-
tion of quantum utility. However, we also identify that, for certain 
parameters of the quantum circuits, the accuracy in the classical 
simulation of expectation values is achieved despite a low estimated 

A
B

C

Fig. 8. Verifying L1BP contraction for PEPS and PEPO evolution. (A) Comparison of 〈Z62〉 computed by L1BP contraction (lines) and via Monte Carlo sampling (markers 
with error bars) for the PEPS method at 20 steps at a range of χ and θh. The sampled points are computed from 10,000 shots each. (B) Expectation values 〈Z62〉 for a 20-step 
circuit computed with L1BP contraction (y axis) and exact (x axis) contraction at different values of θh and for different bond dimensions χ. (C) histogram of the absolute 
errors of all points shown. Note that, to enable exact contraction, we evolve the PEPO all the way to time 0, and the final layer is not compressed leading to a contribution 
of ×4 to χ. This is slightly different to the PEPO method elsewhere in the text.

D
ow

nloaded from
 https://w

w
w

.science.org at C
alifornia Institute of T

echnology on January 18, 2024



Begušić et al., Sci. Adv. 10, eadk4321 (2024)     17 January 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e s

8 of 12

global fidelity (as measured by the error in the global norm). Identify-
ing physically relevant observables with a stronger sensitivity to the 
global fidelity, for example, through analyses similar to that in (13), 
will therefore be key to designing future experiments to demonstrate 
quantum utility. Last, the advances in classical simulation methods 
reported here hold promise for many areas of quantum simulation 
and highlight the rich landscape of approximate classical algorithms 
that have yet to be explored for the simulation of quantum circuits 
and quantum dynamics.

METHODS
Sparse Pauli dynamics
Let us consider an observable O =

∑
P∈ aPP that is a sum of a sub-

set  of n-qubit Pauli operators P with complex coefficients aP. To 
compute its expectation value

for a quantum circuit U, in SPD, we apply the circuit gates to the 
observable in the Heisenberg picture

where we introduced the Liouville-space unitary operator  . Specifi-
cally, we consider circuits composed of Clifford gates and, possibly, 
non-Clifford, Pauli rotation gates Uj ≡ Uσj(θj) = exp(−iθjσj/2). For the 
rotation gates, we first transform the angles θj = θ�

j
+ kπ∕2 , where 

the integer multiple of π/2 forms a separate Clifford operator and 
∣ θ�

j
∣ < π∕4 . We can now write the Heisenberg-evolved observable as

where j corresponds to Clifford operators and j corresponds to 
Pauli rotation gates. Because Clifford operators transform any Pauli 
operator into another Pauli operator, we can apply them to the Pau-
li rotation gates and observable to arrive at

where ̃ j corresponds to a rotation gate Uσ̃j
(θj) with ̃σj = ̃N … ̃ jσj 

and, similarly, Õ = ̃N … ̃1O . This is also known as Clifford re-
compilation and has been used in the context of stabilizer-state 
simulations (37). In the remainder, we assume that the observ-
able and Pauli rotation gates have been transformed as above. 
Applying a non-Clifford Pauli rotation gate Uσ(θ) to the observ-
able O =

∑
P∈ aPP yields

where the new set of Pauli operators is  ′ =  ∪ {σP∣P ∈ , {σ, 
P} = 0} and the updated coefficients are

⟨O ⟩ = ⟨0∣U†
OU∣0⟩ (3)

U
†

OU =O (4)

O = NN … 11O (5)

O = ̃ N … ̃ 1Õ (6)

Uσ(θ)
†
OUσ(θ) =

∑

P∈ �

a
�
P
P (7)

a
�
P
=

{
aPcos(θ)+ iaσPsin(θ), {σ, P}=0

aP , [σ, P]=0 (8)

A B C

FED

Fig. 9. Comparison of various simulation results for 〈Z62〉. Expectation values 〈Z62〉 for a 20-step circuit computed with the reference, MIX method (shown in all panels, 
labeled “This work”); (A) the zero-noise extrapolated quantum simulation (“Quantum”); (B) MPS and MPO approaches (8, 17); (C) BP-TN method of (12) with χ = 500 and 
the extrapolated χ → ∞ result, the inset compares convergence at θh = 0.7 with our MIX and PEPS methods; (D) exact state-vector simulation on a reduced 31-qubit 
model (13); (E) OBPPP approach of (14) (data used with permission from Z. Liu); (F) PEPO method of (15) with χ = 256 and the extrapolated result, the inset compares 
convergence at θh = 7π/32 with that of our MIX and PEPO methods. The estimated error bars of the MIX method (less than 0.01) are smaller than the plot markers. Hori-
zontal black lines in the insets of (C) and (F) correspond to the MIX results at highest available χ, while the dotted cyan (C) and green (F) lines correspond to the extrapola-
tion fits of (12) and (15), respectively.
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In general, 2 ∣∣ ≥ ∣ ′∣ ≥ ∣∣, i.e., the number of Pauli operators 
representing the observable grows with each applied gate, leading to 
the worst-case scaling of (2N ). As an approximation to the exact 
Heisenberg evolution, we replace the quantum circuit   by

where Πδ(
∑

P∈ a
�
P
P) =

∑
P∈ � aPP so that ∣aP ∣ ≥ δ for all P ∈ 

� . 
In words, the exact representation of the observable is truncated after 
each gate to only include the terms whose coefficients are greater than 
the prescribed threshold δ. This can be considered an alternative to 
methods that truncate the sum based on the Hamming weight of Pauli 
operators, i.e., the number of nonidentity Pauli matrices appearing in a 
Pauli operator (14, 38, 39).

We store Pauli operators as 2n bit strings (z1, … , zn, x1, … ,

xn) ∈ {0, 1}2n and integer phases q so that P = (− i)q
∏n

i=1
Z
zi
i
X

xi
i

 . In 
the implementation, the bit strings are encoded into arrays of 64-bit un-
signed integers of length n64 = 2⌈n/64⌉. Therefore, we can represent a 
sum of NPauli Pauli operators as a NPauli × n64 array p of Pauli operators, a 
NPauli integer array of phases q, and an array a of NPauli complex co
efficients. The Pauli operator array is sorted so that finding a Pauli in 
p takes [n64log2(NPauli)] time. Insertion and deletion of Pauli opera-
tors are implemented in a way that preserves this ordering. Overall, the 
algorithm to apply a single Pauli rotation gate Uσ(θ) can be described as 
follows (see Fig. 10):

1. � Find Pauli operators representing the observable (i.e., rows 
of the array p) that anticommute with σ, compute new Pauli 
operators σ · P for all P that anticommute with σ, and store 
them in a separate array pnew.

2. � Check which rows of pnew are already in p.
3. � For new Pauli operators, compute the coefficients as 

a�
�P

= isin(θ)aP and store these in a new array anew. For all 
Paulis that are already in the representation of the observ-
able, update the coefficients according to Eq. 8.

4. � Delete rows of p and elements of the phase (q) and coefficient 
(a) arrays where ∣a∣ < δ.

5. � Insert rows of pnew into p (and analogously for q and a arrays) 
where ∣anew∣ ≥ δ.

Last, the expectation value is the sum of elements of a that corre-
spond to Pauli operators with xi∈{1, …, n} = 0 (i.e., those consisting only 
of identity and Z matrices) and the Frobenius norm of an operator in 

Pauli representation is the 2-norm of its vector of coefficients, NO = ∥a∥. 
Figure S6 shows how the computational cost of the method and the 
Frobenius norm of the evolved operator scale with the threshold.

TN simulations
Our TN method involves three basic stages: (i) Schrödinger evolution of 
a PEPS forward in time, ∣ψ(0)〉 → ∣ ψ(τ)〉; (ii) Heisenberg evolution of a 
PEPO backward in time, Φ(T + 1) → Φ(τ + 1); and (iii) contraction of 
the expectation (a TN “sandwich”) between the two, 〈ψ(τ)∣Φ(τ + 
1)∣ψ(τ)〉. At the limit τ = T, we call this the “PEPS method”; when τ = 0, 
we call this the “PEPO method”; and, lastly, we also study the case 
τ = T/2, which we dub the “MIX method.” This approach allows us 
to exploit low entanglement in both the Schrödinger and Heisenberg 
pictures (40), alongside the device geometry, yielding a very efficient 
description of the overall dynamics.

We use two particular techniques that enable the steps above: (i) 
L2BP compression of both the PEPS and the PEPO as they evolve and 
(ii) L1BP contraction of the final expectation. The first is equivalent to 
methods already demonstrated for wave functions (27, 31, 32) and 
operators (41) but with an efficient “lazy” implementation that allows 
us to globally compress large and complex TNs. The second is an ex-
tension of an idea that has only recently been introduced in the con-
text of TNs (19) and allows us to (approximately) compute nonlocal 
quantities such as high weight observables and the norm of the PEPS 
and PEPO very efficiently.

We first set up a TN representation of

where O is the target observable, with ∣0〉 we denote ⊗i=1. . N∣0i〉 for 
sites {i}, and Ut contains all gates in layer t of a depth T circuit. We 
decompose any entangling gates spatially so that every tensor is asso-
ciated to a single site, i, and layer, t. We take as our initial PEPS ∣ψ(0)〉 = 
∣0〉 and initial PEPO as Φ(T + 1) = O. For each PEPS evolution step, 
we take the object Ut+1∣ψ(t)〉 and use L2BP compression with 
maximum bond dimension χ to yield the next PEPS ∣ψ(t + 1)〉. Simi-
larly, for each PEPO evolution step, we take the object U†

t−1
Φ(t)Ut−1 

and use L2BP compression to yield Φ(t − 1). This is sketched in 
Fig. 2A. Last, we evaluate the resulting TN with L1BP contraction.

To define L2BP compression and L1BP contraction, we first intro-
duce “lazy” BP for TNs, an iterative message passing algorithm. 

SPD = ΠδN … Πδ1 (9)

⟨O ⟩ = ⟨0∣
�

t = 1..T

U
†
t
O

�

t =T ..1

Ut ∣0⟩

Fig. 10. Scheme representing the computation of U†

�
(
∑

P
a
P
P)U

�
 within SPD. (A) The observable is represented by an array of Pauli operators P with corresponding 

coefficients aP. (B) In SPD, we identify which P commute with σ (white) and which do not (gray). For P that anticommute with σ, we compute σ · P (orange). (C) Coefficients 
are updated according to Eq. 8. This requires that we find Pauli operators σ · P that existed in the initial observable, which is accomplished by keeping the Pauli arrays or-
dered and performing a binary search. New Pauli operators that were not in the representation of the initial observable are shown in orange and not crossed out. (D) After 
all coefficients have been updated, we find Pauli operators whose coefficients are below threshold (additional two crossed out elements in the scheme). (E) Last, the re-
maining Pauli operators are merged into a new array representing the updated observable.
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Consider first a TN with a single effective tensor, T[i], at each site i, 
with bonds between pairs {(i, j)}. We define vector messages mi→j and 
mj→i for each bond (Fig. 2B) and then iterate all messages according to 
the update contraction in Fig. 2C until convergence (30, 35, 42–44). 
Because the update is linear, we can allow T[i] to itself be a network of 
tensors per site, with multi-bond connections, as long as we can still 
lazily perform the contraction of the combined collection with input 
messages, thereby avoiding forming the dense version of T[i] (see 
Fig.  2B, insets). Exact contraction of these unstructured networks 
then becomes the dominant computational step, and we make use of 
recent advances to do so efficiently and with controlled memory (2, 
45). The lazy approach improves both the memory and cost scaling of 
BP, which we explicitly detail in the Supplementary Materials. Other 
recent works (33, 34) have used a similar approach to BP where the 
sites are themselves networks, and (12, 31) can be thought of as using 
a lazy network of two tensors per site.

Now, we describe L2BP compression. To run BP and compress a 
TN, say, ∣ψ〉 or Φ, with dangling indices, we first have to form the 2-
norm object 〈ψ∣ψ〉 or 〈〈Φ∣Φ〉〉 by tracing each dangling index with its 
dual to form a scalar network, shown in Fig. 2B (i and ii). In our case, we 
always have the PEPS or PEPO as well as the full next layer of gates. The 
messages in this case factorize as positive semidefinite matrices of size 
d × d, where d is the total size of shared bonds between i and j in our 
original TN. Once converged, we can take each pair mi→j and mj→i 
and compute RA and RB as the “reduced factors” of an approx
imate orthogonalization around that bond. This is done by eigen-
decomposition, with mi→j =WAλAW

†

A
 giving RA =

√
λAW

†

A
 and, 

similarly, mj→i =WBλBW
†

B
 giving RB = (

√
λBW

†

B
)T . Taking the 

truncated SVD RARB ≈ UσV†, we can define the optimal projectors 
PA = RBVσ−1/2 and PB = σ−1/2U†RA and insert them into our original 
TN. Once this has been done for every bond, we can group and con-
tract each site’s tensors now with all adjacent projectors, yielding a 
single tensor per site with maximum single bond dimension χ (31, 46, 
47). This process is depicted in Fig. 2D.

Next, we describe L1BP contraction. Here, we again consider that 
we have multiple tensors per site but arranged in a TN that contracts 
to a scalar such as 〈ψ(τ)∣Φ(τ + 1)∣ψ(τ)〉 and that we can perform the 
message updates lazily. Note that this is a real but not strictly positive 
quantity. To estimate the contracted value (or “1-norm”), we make use 
of an interpretation of the TN as the exponential of the Bethe free 
entropy exp(F) = Z (19, 35). Given converged messages, we can 
estimate

where the index k runs over neighbors of i and □ ⋅ □ denotes con-
traction. This quantity is shown graphically in Fig. 2E. Note that each 
message appears exactly once in the numerator and once in the de-
nominator, so its overall normalization does not matter. Given the 
nonpositive structure of our TN, it is not a priori clear that the mes-
sages should converge and Z be accurate in this case, but, as demon-
strated in the Results section, for this problem, we find it to perform 
well. Notably, it allows us to compute not just high weight observables 
but also do so without relying on the renormalization of marginals/
local environments. For both the PEPS and PEPO methods (with the 
exception of the PEPO benchmark in Fig. 8), we start performing the 
L1BP contraction once the cost of doing so is similar to continuing 
compression. For PEPS, this is at τ = T − 2, and, for PEPO, this is 

τ = log2(χ)/2 [which likely results in the faster convergence compared 
to (15) seen in Fig. 9F]. For the MIX method with χ = 256, we note the 
final overlap sandwich contraction, if flattened to a single 2D TN, 
would require a bond dimension of 2563 ∼ 16,000,000 (or if flattened 
to a 1D TN, a bond dimension of 2563×4 ∼ 1029).

There are two sources of error with this TN method. The first is the 
bond truncation performed during the PEPS and PEPO evolution. 
This is a well-understood source of error, and we know that, as 
χ → (2T ), the TN becomes exact, with the L2BP aspect functioning 
simply as a gauge in which to perform the truncation when χ < (2T ). 
Heuristically, if a computation converges in χ before this point, then it 
is usually assumed to be close to the exact value. We can also assess 
how much of the TN has been truncated away by computing 〈ψ∣ψ〉 or 
〈〈Φ∣Φ〉〉/2n, i.e., the norm, after all compressions. Because the action 
of the projectors PA and PB can only decrease this quantity from the 
exact value of 1, it serves as a reasonable proxy of fidelity. In our case, 
using L1BP contraction, we can compute this norm and find that, in 
all exactly accessible contexts, as it approaches 1, it also heralds high 
accuracy. The second source of error comes from the L1BP contrac-
tion of the final scalar TN. This method also has an exact limit when 
the underlying network becomes a tree. Away from this regime, it be-
comes only a heuristic but can be accurate, for example, in cases with 
sparse connectivity without strongly correlated loops.

To verify the accuracy of L1BP, one approach in the main text for 
the PEPS method is to use Monte Carlo sampling of the expectation 
value (Fig. 8A). We do so efficiently by sampling from the approxi-
mate distribution ∣〈x∣ψ〉∣2 ≈ ω(x) where ω is the probability of sam-
pling configuration x via BP decimation sampling. This works as 
follows: We compute all approximate qubit reduced density matrices, 
{ρi}, using BP; we then sample a value for the qubit with maxi∣Tr(Zρi)∣ 
according to diag(ρi). We then condition on that value and restart BP 
on the remaining qubits. When all qubits have been fixed, we have a 
full string x, approximate probability ω(x), and, from exact contrac-
tion, can obtain the true probability p(x) = ∣〈x∣ψ〉∣2 (which is much 
easier than the exact observable due to only having a single layer). 
This is sufficient to perform efficient importance sampling allowing us 
to compute unbiased Monte Carlo estimates of observables, to verify 
the accuracy of L1BP contraction.

Overall, we note that the methods presented here are easily imple-
mented for arbitrary geometries and gates and thus should be a useful 
tool in a wide variety of both real and imaginary time evolution set-
tings. There are also various obvious pathways to improving the fidel-
ity, for example, by matching the PEPS/PEPO norms to dynamically 
set the τ balance in the MIX method. One could also compress much 
larger blocks of gates or use MPS as the messages as in (34). Given the 
equivalence of BP compression to simple update, itself equivalent to 
cluster update (28, 29) with “zero cluster size,” an interesting question 
is whether the environment correlations can be systematically in-
creased in a similar manner. However, we find that we can reach suf-
ficient fidelities across the relevant range of observables with the MIX 
method without invoking such improvements. The maximum values 
of χ used are listed in table S4.

All TN simulations were performed using quimb (48) and co-
tengra (45). As well as controlling complexity through the bond di-
mension χ, we use a truncation cutoff κ = 5 × 10−6 throughout such 
that each local truncation error is ∣AB − APAPBB∣ < κ. We also use 
light-cone cancellation (although this is also easily found in the PEPO 
picture by the truncation with a nonzero κ). We performed the PEPS 
and MIX simulations in single precision but did find that the PEPO 

⟨O ⟩ ≈ Z = (
�

i

T [i] ⋅ ⊗
k
mk→i)∕ (

�

{(i,j)}

mi→j ⋅mj→i)
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simulation requires double precision. To give an approximate sense of 
timings, all simulations up to 9 steps or 20 steps with χ ≲ 64 take on 
the order of min or less, including the cost of contraction path optimi-
zation. For large χ, we run calculations on a NVidia A100 GPU, with 
the most expensive points (MIX method with χ = 192, θh > 8π/32, for 
example) taking about a day. The “Mix 3 min” method shown in Fig. 3 
was executed on a NVidia 4070 Ti. A more detailed runtime analysis 
on a subset of the data can be found in the Supplementary Materials.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S10
Tables S1 to S4
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