
Macroscopic dark matter detection with gravitational wave experiments

Yufeng Du,* Vincent S. H. Lee ,† Yikun Wang,‡ and Kathryn M. Zurek§

Walter Burke Institute for Theoretical Physics, California Institute of Technology,
Pasadena, California 91125, USA

(Received 11 August 2023; accepted 16 November 2023; published 4 December 2023)

We study signatures of macroscopic dark matter (DM) in current and future gravitational wave (GW)
experiments. Transiting DM with a mass of ∼105–1015 kg that saturates the local DM density can be
potentially detectable by GW detectors, depending on the baseline of the detector and the strength of the
force mediating the interaction. In the context of laser interferometers, we derive the gauge invariant
observable due to a transiting DM, including the Shapiro effect (gravitational time delay accumulated
during the photon propagation), and adequately account for the finite photon travel time within an
interferometer arm. In particular, we find that the Shapiro effect can be dominant for short-baseline
interferometers such as Holometer and GQuEST. We also find that proposed experiments such as Cosmic
Explorer and Einstein Telescope can constrain a fifth force between DM and baryons, at the level of
strength ∼103 times stronger than gravity for, e.g., kg mass DM with a fifth-force range of 106 m.
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I. INTRODUCTION

Astrophysical and cosmological evidence points to the
existence of dark matter (DM), but little has been deter-
mined about its microscopic nature, with even its possible
mass consistent with observation in the large range of
10−22 eV to 104M⊙ (see Ref. [1] for a recent review).
Direct detection of dark matter in terrestrial experiments
has focused on DM particles whose interactions with
the Standard Model particles are determined by the DM
abundance in the Universe. Such DM typically has mass
≲340 TeV [2], and has been the subject of a range of
experiments searching both for single particle inter-
actions (see Ref. [3] for a review) and collective wavelike
phenomena [4,5].
On the other hand, the direct detection of ultraheavy dark

matter (UHDM) is relatively unexplored, with primordial
black holes [6] being the most well-studied DM candidate
in this category. While unitarity bounds limit DM produc-
tion through thermal mechanisms above ∼100 TeV,
UHDM can be a composite state synthesized in a way
similar to Standard Model nuclei [7–10]. Such UHDM can
be searched for by direct scattering [11] or quantum
mechanical sensors [12,13].
In this work, we consider the detection of UHDM

beyond MPl via long-range forces, whether gravity or a
new fifth force between baryons and DM. Alongside

LIGO’s success in detecting gravitational waves (GWs)
from a binary black hole merger [14], a myriad of laser
interferometer experiments are either in operation or are
planned to commence operation in the near future [15]. DM
transiting in the solar system produces a weak gravitational
potential, and can in principle be observed by laser
interferometers. These effects have been analyzed previ-
ously in the context of pulsar timing arrays (PTAs) [16–21].
In addition, laser interferometer experiments with shorter
(∼ m) baselines, designed to measure quantum gravity
signature in causal diamonds (see Ref. [22] for a review),
can also be sensitive to transiting DM. This includes the
past experiment Holometer [23–25], an upcoming experi-
ment commissioned by Caltech and Fermilab under the
Gravity from the Quantum Entanglement of Space-Time
(GQuEST) Collaboration [26], and a 3D table-top inter-
ferometer proposed by the Gravity Exploration Institute at
the Cardiff University which probes the transverse corre-
lations of quantum gravity effects [27]. These GW detec-
tors generally operate at high frequency ≳10 Hz, which
corresponds to sensitivity toward DM with mass M ≲ kg
assuming that the DM saturates the local dark matter
density.
Detection of UHDM with laser interferometers has been

considered elsewhere in the literature [28–30]. Other works
model GW detectors as simple accelerometers and derive
the sensitivity due to transiting DM from mirror acceler-
ation [31–34]. In this work, we take a more careful
approach and formally derive the gauge invariant observ-
able on laser interferometers [35] from transiting DM.
In addition to the Doppler effect (which is usually the sole
effect considered in the literature), the Shapiro delay
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(gravitational time delay accumulated during the photon
propagation) and Einstein delay (gravitational redshift at
the detector) are also derived. Moreover, we discuss the
statistical formalism for detecting both single events and
a stochastic background of events. For other types of
GW detectors, we give an overview of those sensitive to
transiting DM and project the sensitivity assuming an
accelerometer signal.
Finally, we also consider the possibility that the DM

and baryon are coupled with an additional long-range
Yukawa interaction, also known as a fifth force [36]. Such
an interaction can arise very generally from an effective
Lagrangian with a scalar/vector/tensor mediator between
DM and baryons and is only weakly unconstrained by
cosmology for heavy DM with force range λ≲ 106 m,
even with stronger-than-gravity coupling. The existence
of a long-range fifth force can have profound implications
in DM searches, such as the creation of DM evaporation
barriers in celestial bodies [37]. Various experiments
searching for weak equivalence principle violating
forces have put constraints on specific models, such as
coupling through massive scalars [38,39]. Here we con-
sider a more general scenario without the assumption
of the specific microscopic interaction. We find that
high-frequency detectors are able to constrain the
Yukawa coupling constant to be ≲103 for a force range
λ > 106 m and M ∼ kg within one year of integration
time, which is roughly consistent with the findings of
Refs. [30,33].
Our paper is organized as follows. In Sec. II, we provide

a description of the gauge invariant strain from transiting
macroscopic DM and discuss various aspects of the signal.
In Sec. III, we provide a detailed derivation of the signal
spectrum. In Sec. IV, we derive the constraints from a
stochastic signal, where individual DM might be insuffi-
cient to produce a detector signature, but the collective
behavior from all DM passing by the detector can be
detectable. In Sec. V we discuss the various experiments we
consider in this work and their sensitivity curves to the
signal. In Sec. VI we place our results into context and
conclude.

II. DESCRIPTION OF MACROSCOPIC DARK
MATTER SIGNALS IN INTERFEROMETRY-

BASED GRAVITATIONAL WAVE DETECTORS

Transiting DM induces a gravitational field as a metric
perturbation hμν. This produces a strain in a GW detector,
hðtÞ ¼ ΔL=L (where L is the interferometer arm length),
which is the sum of three individual contributions:
(1) Doppler effect: acceleration of the mirrors.
(2) Shapiro delay: change in the photon travel time

within the interferometer arm.
(3) Einstein delay: time dilation of the clock proper time

(also known as gravitational redshift).

The total strain can be written in the general form

hðt; n̂Þ ¼ hDopplerðt; n̂Þ þ hShapiroðt; n̂Þ þ hEinsteinðtÞ; ð1Þ

where n̂ is the unit vector along the interferometer arm.
Note that the Einstein delay does not depend on the arm
orientation. A Michelson-Morley laser interferometer con-
sists of two arms and measures the difference between the
two arms,

hðt; n̂1; n̂2Þ ¼ hðt; n̂1Þ − hðt; n̂2Þ; ð2Þ

where n̂1 and n̂2 are the orientation of the two arms
respectively. We quickly see that the Einstein delay con-
tribution vanishes for laser interferometers, but can be
present in single-arm interferometers, such as PTAs and
long-baseline atom interferometers. In the following sec-
tions, we will suppress the unit vector dependence for
simplicity. We emphasize that individual contributions
from Eq. (1) are frame dependent, and only the sum is
gauge invariant and is hence an acceptable experimental
observable [35]. In Sec. III, we will review this gauge
invariant time delay and derive the resulting signal in full in
the context of a transiting DM.
In Fig. 1 we show the Fourier transformed strain,

h̃XðfÞ≡
R
dt expð−2πiftÞhXðtÞ, for each contribution

(X ¼ Doppler, Shapiro, or Einstein) and some choices
of the DM mass M, velocity v, perpendicular velocity v⊥,
impact parameter b, and perpendicular impact para-
meter b⊥, as specified in the figure caption. Here the

FIG. 1. Signal spectrum jhXðfÞj2 for Doppler effect, Shapiro
delay, and Einstein delay. Here we choose M ¼ 10−4 kg,
b ¼ 90 m, v ¼ 340 km=s, b⊥ ¼ 30 m, v⊥ ¼ 270 km=s,
L ¼ 4 km, and assume a single-arm GW detector for illustration
purposes. See the discussion of different length scales in
Sec. II A. The analytic expressions for the signal spectrum are
taken from Eq. (26) (Doppler), Eq. (32) (Shapiro), and Eq. (37)
(Einstein).
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perpendicular components (denoted by the subscript⊥) are
defined relative to the interferometer arm. Analytic for-
mulas for the spectrum are derived in Sec. III. We observe
that the signal is a simple power law in the frequency f
when f ≲ fτ, and rapidly drops to zero as f ≳ fτ, where
fτ ≡ 1=ð2πτÞ is the characteristic frequency of a transiting
DM as given by the characteristic timescale τ≡ b=v, or in
the b≲ L=2 limit of the Shapiro delay, τ⊥ ≡ b⊥=v⊥ (see
Sec. II A for a detailed discussion). In general, the signal
spectrum can be parametrized as

jh̃XðfÞj2 ¼ A2
X

����q̃X
�

f
fFSR

�����2
����s̃X

�
f
fτ

�����2; ð3Þ

where fFSR ≡ c=4πL is the detector’s free-spectral-range
(FSR) frequency, characterizing the time needed for the
photon to complete a roundtrip within the interferometer,
q̃XðxÞ is its associated spectral shape, and s̃XðxÞ is the
spectral shape of the DM signal. The constant coefficient
AX characterizes the amplitude of the signal. Explicit forms
of each component are derived in Sec. III. See Table I for a
summary of the analytic expressions.
Most laser interferometers designed to measure GWs

such as LIGO utilize Fabry-Pérot (FP) cavities to increase
interaction time between photons and the GW. A direct
consequence is that the detector peak sensitivity is dis-
placed from the FSR frequency by the cavity quality factor

Q ≫ 1, i.e., fpeak=fFSR ∼ 1=Q. As we will derive in
Sec. III, the effect of finite photon travel time produces
corrections to the signal spectrum in powers of ðf=fFSRÞ
[Eq. (26), Eq. (32), and Eq. (37)], and hence can be safely
ignored for these experiments. However, experimental
apparatus designed to measure quantum gravity effects
such as Holometer and GQuEST generally do not have FP
cavities, since the peak frequency of quantum gravity
signatures is naturally the frequency associated with the
photon travel time in the physical interferometer arm, i.e.,
the FSR frequency [35]. Hence these quantum gravity
detectors generally are most sensitive to signals that peak at
fFSR, and the photon travel time within the apparatus
cannot be neglected.
We discuss various important distance scales in Sec. II A

and suppression effects in Sec. II B. In Sec. II C and
Sec. II D we present and discuss the projected constraints
on DM interacting with the detectors gravitationally and
with a long-range fifth force, respectively.

A. Distance scales

The signal timescale and the corresponding frequency of
a transiting DM depend on its distance of closest encounter
with the detector. The distribution of DM around the
detector gives rise to a relation between the distance scale
and the DM density. Here we summarize various relevant
distance scales for the DM signals. For Doppler and
Einstein delay, since the DM effect only acts on a point
(the mirrors or the clock), the relevant distance scale is b.
For Shapiro delay, if the DM is sufficiently distant (≳L=2)
from the detector, then the entire interferometer arm is
effectively a point, and the relevant distance is still b.
However, for nearby DM (b ≲ L=2), the relevant scale for
Shapiro delay is the DM’s closest encounter to any point
along the arm rather than a specific point, denoted as b⊥
(note that b⊥ ≤ b by definition). The local statistical
distribution of b and b⊥ of DM has been studied and
derived in the appendix of Ref. [40]. In particular, the 90th
percentile minimum DM impact parameters, bmin and
b⊥;min, are given by

bmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
logð1 − pÞ

πnv̄T

r
¼ 9 km

�
M
kg

�
1=2

f−1=2DM

�
340 km=s

v̄

�
1=2

�
yr
T

�
1=2

;

b⊥;min ¼ −
logð1 − pÞ
nv̄⊥TL

¼ 300 km

�
M
kg

�
f−1DM

�
km
L

��
270 km=s

v̄⊥

��
yr
T

�
; ð4Þ

where p is the percentile of the minimal impact parameters
(taken to be 0.9 for the numerical estimate above), n ¼
ρDMfDM=M is the local DM number density, with
ρDM ¼ 0.46 GeV=c2=cm3, fDM the DM fraction in mass
M, v̄ and v̄⊥ are the average DM velocity and perpendicular
velocity respectively, and the estimate for b⊥;min only holds

when bmin < L. In Fig. 2 we show the distance scales from
LISA, LIGO, and GQuEST for different choices of DM
mass M. As will be discussed in the next subsection and
carefully verified in Sec. III, only DM with impact
parameter b≲ L can potentially generate sizable signals.
We see that bmin and b⊥;min coincide at ∼L. At those lower

TABLE I. Reference equations for Doppler, Shapiro, and
Einstein signal spectrum. A skeleton form of the spectrum is
given by Eq. (3). Here Δθ is the angular separation between the
two interferometer arms.

jh̃XðfÞj2 ¼ A2
X

���q̃X� f
fFSR

����2���s̃X� f
fτ

����2
One arm Two arm

Doppler Eq. (26) 4 sin2ðΔθ=2Þ× Eq. (26)
Shapiro Eq. (32) Eq. (34)
Einstein Eq. (37) 0
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mass ranges, the Shapiro effect is boosted by the fact that
b⊥ < b, but as we will see in the next section [cf. Eq. (32)],
the Shapiro delay in the b < L=2 limit suffers a suppression
factor of v=c. These competing factors lead to the
dominance of the Doppler effect in most experiments,
but the Shapiro effect has a slight edge for specific values of
L and M.
For reference, we also show the typical distance between

Earth and a pulsar observed in PTA experiments,
z0 ∼ 5 kpc. For M ≲ 10M⊙, which is the mass range
considered in most previous works on PTA [18–21,40],
z0 is the largest distance scale. This shows a natural mass
cutoff when extending the previous PTA results for DM
with mass M ≳ 10M⊙, as we do not expect DM to give
measurable signatures in PTAs if b≳ z0.

B. Tidal and Q suppression

Laser interferometers are mostly sensitive to DM
with impact parameter b ≲ L. The main reason is that if
b≳ L, the peak frequency of the signal fτ ≲ 2ðv=cÞfFSR ∼
10−3fFSR. Thus unless the Q factor is sufficiently large
(Q > 103), the peak DM frequency typically falls below the
sensitivity window of the GW detector. Notice that the
DM signal drops exponentially above such a signal peak
frequency. In addition, the strain due to DM with b≳ L
suffers suppression from two other effects, which we will
see explicitly from the derivation in Sec. III:

(1) Tidal suppression. Since an interferometer measures
differential quantities, when b≳ L, the interfero-
meter behaves like a dipole under a gravitational
field, and thus the signal can be suppressed by a
factor of L=b, which is commonly known as the tidal
effect.

(2) Q suppression. When b≳ L, the signal can evade
tidal suppression since the interferometer measures
the differential strain at slightly different times,
creating an envelope in Fourier space that is peaked
at fFSR.

1 When the signal is evaluated at the detector
peak sensitivity fpeak, the signal picks up a factor
of 1=Q.

When the signal with b > L is evaluated at frequency
f ¼ fτ, since ð1=QÞðfτ=fpeakÞ¼fτ=fFSR¼2ðv=cÞðL=bÞ,
we see that the Q-suppressed term is always weaker than
the tidally suppressed term for laser interferometers as
v ≪ c. However, for some types of interferometers, such as
atom interferometers, the speed of the probe can be much
slower than the DM speed. In that case fτ > fFSR is
possible even when b > L, and the Q-suppressed term
can dominate over the tidally suppressed term. We leave the
detailed treatment of these types of experiments for future
work. In Table II we summarize the suppression factors for
b≳ L for all contributions in Eq. (1), and for both one-arm
and two-arm interferometers, which will be justified in later
sections.

C. Projected sensitivity

To set the projected sensitivity for various current and
future GW detectors, we assume that the detector noise is
stationary and Gaussian with a one-sided power spectral
density SnðfÞ (in units of Hz−1). The deterministic signal-
to-noise ratio (SNR), assuming optimal filtering in a
matched filtering procedure, is given by [47]

SNR2
det ¼ 4

Z
∞

0

df
jh̃ðfÞj2
SnðfÞ

: ð5Þ

FIG. 2. Relevant distance scales for measuring transiting DM
signals as a function of DM mass M, assuming fDM ¼ 1 and a
local DM mass density of ρDM ¼ 0.46 GeV=c2=cm3. The length
scale for Doppler and Einstein effect is bmin, while the length
scale for Shapiro is bmin if bmin ≳ L=2 and b⊥;min otherwise. Note
that b⊥;min depends on the length scale of the detector baseline,
for which we choose three experiments with diverse baselines
(LISA, LIGO, and GQuEST) for illustration purposes. For
reference we also show a typical pulsar-Earth distance,
z0 ∼ 5 kpc, which is the largest distance scale for PTA searches
when M < 102M⊙.

TABLE II. Suppression factors for different contributions to the
strain when b≳ L. Here the notation “tidal + Q” denotes that the
signal is the sum of two terms, suppressed by the tidal and Q
factor respectively.

Suppression factor when b > L

One arm Two arm

Doppler TidalþQ TidalþQ
Shapiro 1 TidalþQ
Einstein 1 → 0

1Effects of finite photon travel time are discussed in the context
of gravitational waves in Refs. [41–44] and ultralight DM in
Refs. [45,46].
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For narrowband GW detectors, the deterministic SNR can
be approximated as SNR2

det ≈ ð4Δf=SnÞjh̃ðfpeakÞj2, where
Δf is the narrow frequency bandwidth.
On the signal side, the spectrum in Eq. (3) can be

greatly simplified assuming b < L for the purpose of

computing the SNR, which takes much simpler forms
truncated at f ¼ fτ. Here we show the approximated
form of the signal strain by quoting the results from
Sec. III and taking the f ≪ fτ limit of Eq. (26), Eq. (32),
and Eq. (37),

jh̃DopplerðfÞj2 ≈
4

3

�
8GML
c2bv

�
2
�
fFSR
f

�
4

cos2
�

f
2fFSR

�
Θðfτ − fÞ;

jh̃ShapiroðfÞj2 ≈
�
8πGM
c3

�
2
�
fFSR
f

�
2

cos2
�

f
4fFSR

�
Θðfτ⊥ − fÞ;

jh̃EinsteinðfÞj2 ≈
�
8GM
c2v

�
2
�
fFSR
f

�
2

sin2
�

f
2fFSR

�
log2

�
f
fτ

�
Θðfτ − fÞ; ð6Þ

for one-arm detectors. For two-arm interferometers
jh̃DopplerðfÞj2 should pick up a factor of 4 sin2ðΔθ=2Þ,
where Δθ is the angle between the two arms,
jh̃ShapiroðfÞj2 does not receive a correction when b < L=2
and Δθ ∼Oð1Þ, and jh̃EinsteinðfÞj2 ¼ 0. The simplified
spectrum is very accurate for the lower mass range where
b < L, but can underestimate the upper limits on fDM by
≲4 orders of magnitude on the higher mass range.

The 90th percentile upper limit on fDM is derived by
requiring bmin > L (in the high mass limit), and the 10th
percentile SNR to be less than 2 (in the low mass limit),
where the SNR is produced by DM with impact parameter
given by Eq. (4). Computing SNRdet in Eq. (5) using the
simplified signal strain in Eq. (6), the constraints on fDM
are then roughly given by

fLDM;Doppler ≲ 2 × 1016
�
kg
M

� �
yr
T

��
v̄

340 km=s

��
km
L

�
2
�
1

Q

�
4
�

Sn
10−46 Hz−1

��
kHz
Δf

�
;

fRDM;Doppler ≲ 80

�
M
kg

��
yr
T

��
340 km=s

v̄

��
km
L

�
2

;

ML
Shapiro ≲ 5 × 109 kg

�
1

Q

��
Sn

10−46 Hz−1

�
1=2

�
kHz
Δf

�
1=2

;

fRDM;Shapiro ≲ 3 × 102
�
M
kg

��
yr
T

��
270 km=s

v̄⊥

��
km
L

�
2

: ð7Þ

Here the superscripts “L” and “R” denote the low and high
mass regions of the parameter space, respectively. Note that
in the low mass regime, the SNR for the Shapiro effect
becomes independent of fDM, for which case we show the
constraint on the DM mass M instead.
In Fig. 3 we show the projected constraints for several

existing and proposed GW experiments based on laser
interferometry, assuming T ¼ 1 yr of observation time.
These experiments are discussed in Sec. V in more detail,
with the noise spectral densities plotted together in Fig. 6.
We derive the projections using a Monte Carlo simulation
to sample the DM initial conditions, compute the SNR with
the exact strain as derived and shown in Sec. III, and set the
SNR to 2. In the Monte Carlo simulation, the DM impact
parameters are randomly sampled and properly normalized
to the local DM density, while the velocity distribution is
taken to be the Standard Halo Model, i.e., an isotropic

Maxwell-Boltzmann distribution with v0 ¼ 220 km=s,
boosted by the solar system speed v0 ¼ 220 km=s,
and truncated at the escape velocity vesc ¼ 600 km=s.
The mean DM velocities are v̄ ¼ 340 km=s and
v̄⊥ ¼ 270 km=s [18]. The trajectories of DM, dependent
on time, are then parametrized by the impact parameters,
velocities, and arrival time of the DM [see Eq. (16) and
Eq. (17) for explicit forms and discussion in Sec. III]. The
constraints are reported in terms of fDM, defined to be the
fraction of DM as transiting point masses. We find that
for laser interferometers, the Doppler effect is dominant
over the Shapiro delay except for the high mass range in
Holometer and GQuEST (which appears as bumps in the
constraint curves). We see that gravitational signals from
transiting DM are out of reach for laser interferometry-
based GW detectors, even if the DM local density is
saturated. However, if there exists an additional long-range
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fifth force between DM and baryonic matter, GW detectors
can be sensitive to a fifth force ∼103 times stronger than
gravity within a year of observation, which will be
elaborated in Sec. II D. On the same plot, we show
projections from other types of high-frequency GW detec-
tors, which are modeled as accelerometers for simplicity.
More specifics are explained in Sec. V.

D. Fifth force

In the presence of a long-range DM-baryon Yukawa
force (also known as a fifth force), the potential can be
written as

ΦfifthðrÞ ¼ −α̃
GM
r

e−r=λ; ð8Þ

where α̃ is the coupling strength (normalized against
gravity), and λ is the force range. The effect of the fifth
force can be estimated using the same signal spectrum in
Eq. (3) but truncated at b ≳ λ for Doppler effect (note that a
fifth force coupled to B or B − L induces no Shapiro delay).
In Fig. 4 we show the resulting projected constraints
from the Monte Carlo simulation on α̃ for λ ¼ 1 m and
λ ¼ 106 m, alongside several existing fifth-force con-
straints. The finite force range introduces a cutoff mass
corresponding to bmin ∼ λ. We observe that constraints on α̃
for experiments with long baselines such as LISA and
LIGO significantly weaken when the force range λ drops
below the interferometer length. However, experiments
with shorter baselines such as Holometer and GQuEST
are less insensitive to the shorter force range as long as
λ≳ 1 m, since the peak sensitivity of these experiments
corresponds to the b ∼ 1 m scale.

Astrophysical constraints on the DM-baryon fifth force
include weak equivalence principle (WEP) tests, which
measure the differential acceleration of two baryonic bodies
toward the Galactic Center. Several existing WEP analyses
include perihelion precession (Sun-Mercury) [52], binary
pulsar (NS-white dwarf) [53], lunar laser ranging (Earth-
Moon), and torsion pendula (Be-Ti, Be-Al) [54], but have
been shown to be subdominant (upper limits on α̃ > 1020)
for λ < 106 m[21].Observation of neutron star (NS) surface
temperature can also place upper limits on the Yukawa
coupling constant since a large DM-baryon interaction leads
to a high NS temperature due to kinetic heating [21]. An
indirect bound on DM-baryon interaction comes from
combining [11] upper limits on DM self-interaction from
bullet cluster observation [48,49], and bounds on baryon-
baryon fifth force measured in Eötvös experiments such as
MICROSCOPE [50,51], which is shown in Fig. 4.While the
bullet cluster þMICROSCOPE bound is dominant over
the GW detector bounds for most mass ranges, if only a
subcomponent (say 1%) of DM is charged under the fifth
force, then the bullet cluster bound on DM self-interaction
does not exist, while the GW detector bounds will only
deteriorate linearly with the subcomponent fraction.

III. DERIVATION OF THE SIGNAL

The observable in a laser interferometer experiment is
the total photon roundtrip time within an interferometer
arm. In Ref. [35], this quantity is written as a sum of three
separate components, corresponding to the Doppler effect,
the Shapiro effect, and the Einstein time delay. The sum has
been explicitly shown in Ref. [35] to be invariant under
general gauge transformations. Here we follow Ref. [35]
and briefly summarize this gauge invariant quantity. Then,

FIG. 3. Projected 90th-percentile upper limits on transiting DM fraction from several existing and proposed GW detectors based on
laser interferometry, assuming T ¼ 1 yr of observation time and local DM density ρDM ¼ 0.46 GeV=c2=cm3. The limits are derived by
setting the 10th-percentile SNR defined in Eq. (5) to be 2, and the DM initial conditions are sampled using a Monte Carlo simulation.
Projections from other types of high-frequency GWexperiments are shown with dashed colored lines. See Sec. V for a description of the
experiments.
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we restrict ourselves to the scenario of a pointlike transiting
DM and explicitly derive the strain for each effect.
In the presence of a general metric perturbation

ds2 ¼ −ð1 −H0Þdt2 þ ð1þH2Þdr2 þ 2H1dtdr…; ð9Þ

the total photon travel time within a roundtrip, Tγ ,
in an interferometer centering at the origin can be computed
by including effects from the clock rate change, mirror
motion, and gravitational redshift in the photon geo-
desic [35]:

TγðtÞ ¼ Tout
γ ðtÞ þ T in

γ ðtÞ ¼ δτ þ 1

c

Z
LþrMðtþL

c;LÞ

rMðt;0Þ
dr

�
1þ 1

2
Hout

�
tþ r

c
; r

��

−
1

c

Z
rMðtþ2L

c ;0Þ

LþrMðtþL
c;LÞ

dr

�
1þ 1

2
Hin

�
tþ 2L − r

c
; r

��
; ð10Þ

FIG. 4. Projected 90th-percentile upper limits on the fifth-force Yukawa parameter from several existing and proposed GW detectors
based on laser interferometry, assuming T ¼ 1 yr of observation time and two choices of force range, λ ¼ 1 m and λ ¼ 106 m. Existing
constraints are shown in dotted lines. The gray line is the combined constraint from bullet cluster observation [48,49] and the
MICROSCOPE experiment [50,51], while the purple (red) lines are constraints from neutron star kinetic heating [21] with (without)
additional short-range DM-baryon interactions to facilitate energy transfer. The limits are derived by setting the 10th-percentile SNR
defined in Eq. (5) to be 2, and the DM initial conditions are sampled using a Monte Carlo simulation. Projections from other types of
high-frequency GW experiments are shown with dashed colored lines. See Sec. II D for a summary of existing fifth-force constraints,
and Sec. V for a description of the experiments.
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where t is the time when the photon leaves from the beamsplitter. Here Hout=in ≡H0 þH2 � 2H1, rMðt0; r0Þ denotes the
mirror position at time t0 with r0 being its spatial coordinate in the absence of metric perturbations, and δτ is the clock rate
change, corresponding to the Einstein time delay. Keeping the linear terms, one can obtain the total time delay:

cδTγ ≡ cTγ − 2L ¼ cδτ|{z}
Einstein

þ 2rM

�
tþ L

c
; L

�
− rMðt; 0Þ − rM

�
tþ 2L

c
; 0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Doppler

þ 1

2

Z
L

0

drHout

�
tþ r

c
; r

�
−
1

2

Z
0

L
drHin

�
tþ 2L − r

c
; r

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Shapiro

: ð11Þ

The second line shows the gravitational redshift experi-
enced by the photon between two unperturbed mirrors,
which corresponds to the definition of the Shapiro effect in
the literature [16,55]. The contribution from mirror motion,
corresponding to the Doppler effect, is the differential
position shift between the two mirrors during one photon
roundtrip obtained by solving the mirror geodesic equa-
tions, which, to leading order, can be written as [17]

rMðt; rÞ ≈
1

2

Z
t
dt0

Z
t0

dt00∂rH0ðt00; rÞ: ð12Þ

The choice of initial conditions in the above time integrals
can be subtle depending on the gauge choice, so it is more
convenient to work with the mirror acceleration instead.
The Doppler strain, which is a displacement quantity, is
related to the mirror acceleration, ãðfÞ, in the frequency
domain via jh̃DopplerðfÞj2 ∼ ð2πfÞ−4L−2jãðfÞj2 [56], cir-
cumventing the need to specify the mirrors’ initial con-
ditions. This is to be contrasted with the treatment of the
Doppler effect in PTAs, where the accelerations of the
pulsars / Earth are explicitly integrated over time to obtain
the shift in the pulsar phase [18–20,40].
The total time delay in Eq. (11) is shown to be invariant

under general gauge transformations [35]. Equipped with
this well-defined observable, we specialize to the case of a
transiting DM and compute each effect individually.
To compute the individual contributions, one has to fix a

gauge. We work with the harmonic gauge, where the metric
perturbation due to a nonrelativistic (v ≪ c) point particle
is given by [57]

ds2 ¼ −
�
1þ 2Φðt;xÞ

c2

�
c2dt2

þ
�
1 −

2Φðt;xÞ
c2

�
ðdx2 þ dy2 þ dz2Þ; ð13Þ

where Φ is the DM Newtonian potential

Φðt;xÞ ¼ −
GM

jx − rDMðtÞj
; ð14Þ

with rDMðtÞ being the DM trajectory. Assuming a straight-
line motion, we can completely specify rDMðtÞ using six
phase space parameters, fr0; vg,

rDMðtÞ ¼ r0 þ vt; ð15Þ
where r0 and v are the three-dimensional DM initial
position and velocity. While Eq. (15) is intuitive, it is
inconvenient to use in practice, since it does not explicitly
show the DM time of closest approach, when the signal is
maximized. For DM signals induced on a spatial point of
the detector (i.e., Doppler effect and Einstein delay), a more
convenient parametrization of Eq. (14) is [40]

rDMðtÞ ¼ bþ vðt − t0Þ; ð16Þ

where b is the impact parameter, and t0 can be interpreted
as the DM “arrival time.” Note that b is constrained to be
perpendicular to v; hence the total number of phase space
parameters fb; v; t0g is still six, and for an experiment with
total observation time T, only DM with arrival time within
the range −T=2 ≤ t0 ≤ T=2 can be feasibly detected.
One can rewrite Eq. (16) as rDMðtÞ ¼ bðb̂þ ηv̂Þ, where
η≡ ðt − t0Þ=τ is a dimensionless time parameter and
τ≡ b=v.
Finally, if the DM signal depends on the closest distance

between rDM and the experiment baseline (i.e., Shapiro
delay in the small impact parameter limit; see Sec. III B),
assumed to be aligned in n̂, then the most convenient
parametrization of Eq. (15) is

rDMðtÞ ¼ b⊥ þ bkn̂þ vðt − t0;⊥Þ; ð17Þ

where b⊥ and bk are the perpendicular and parallel
impact parameter respectively, and t0;⊥ is the time when
the DM reaches b⊥. The phase space parameters
are fb⊥; bk; v; t0;⊥g, where b⊥ is constrained to be
perpendicular to both n̂ and v̂, giving again a total of
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six independent parameters, as expected. The perpendicular
DM distance is r⊥ðtÞ≡ jrDMðtÞ × n̂j ¼ b⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2⊥

p
,

where η⊥ ≡ ðt − t0;⊥Þ=τ⊥, τ⊥ ≡ b⊥=v⊥ and v⊥ ≡ jv × n̂j.

A. Doppler effect

We start by studying the Doppler effect, focusing on a
one-arm GW detector. The Doppler effect is often the only
component of transiting DM signals considered in the
literature, such as Refs. [28,33], since it is the most
dominant contribution in most mass ranges. When unper-
turbed, suppose the two mirrors are located at rM1

(an inner
mirror close to the beamsplitter) and rM2

(an exterior mirror
at the edge of the arm), which are separated by a distance of
rM2

− rM1
¼ Ln̂. The laser measures the distance between

the two free-falling mirrors, with trajectories given by
rM1

ðtÞ and rM2
ðtÞ (with arguments), evaluated at times

separated by the photon transverse time:

hDopplerðtÞ ¼
n̂
L
·

	

rM2

�
tþ L

c

�
− rM1

ðtÞ
�

−


rM1

�
tþ 2L

c

�
− rM2

�
tþ L

c

���
: ð18Þ

This corresponds to the mirror motion term in Eq. (11). It is
in fact more natural to consider the Doppler signal as the
acceleration of the mirrors caused by the transiting DM.
The strain, which is a displacement quantity, is related to
the mirror acceleration along the interferometer arm,
aMa

ðtÞ ¼ n̂ · d2

dt2 rMa
ðtÞ for a ¼ 1, 2, by

d2

dt2
hDopplerðtÞ ¼

1

L

	

aM2

�
tþL

c

�
− aM1

ðtÞ
�

−


aM1

�
tþ 2L

c

�
− aM2

�
tþL

c

���
: ð19Þ

In the Newtonian limit, it is clear that the mirror accel-
erations are simply given by the gravitational potential from
the DM. Alternatively, to more explicitly relate to the gauge
invariant formalism developed in Ref. [35], one can also
derive the mirror acceleration using the metric perturbation
in Eq. (13), which is a standard general relativity calcu-
lation that we briefly review. The mirrors free fall in
accordance with the geodesic equation parametrized by
the coordinate time, which is d2

dt2 r
μ
Ma
ðtÞþΓμ

ρσ½drρMa
ðtÞ=dt�×

½drσMa
ðtÞ=dt�¼0. For the metric in Eq. (13), when the

source is moving slowly (v ≪ c), the Christoffel symbols

are Γ0
0i ¼ Γi

00 ¼ ∂iΦ=c2 and Γi
jk ¼ ðδjk∂iΦ − δik∂jΦ −

δij∂kΦÞ=c2 [57]. In the limit where the mirror is moving
very slowly (ṙMa

≪ c), the leading order geodesic equation
is ðd2=dt2ÞriMa

ðtÞ þ c2Γi
00 ¼ 0, and thus the mirror accel-

eration is given by the gradient of the potential

aMa
ðtÞ ¼ −

GM
Δr2Ma

ðtÞΔr̂Ma
ðtÞ · n̂; ð20Þ

where we define the distance between the mirrors and the
DM, ΔrMa

ðtÞ≡ rMa
− rDMðtÞ. This is of course the gravi-

tational force that the DM exerts on the mirrors. We now
take the DM trajectory in Eq. (16) choosing the unper-
turbed beamsplitter location as the coordinate origin.
Then the acceleration of the first mirror in Eq. (20) is
given by aM1

ðtÞ ¼ −n̂ · ðGM=b2Þðb̂þ ηv̂Þ=ð1þ η2Þ3=2
with the Fourier transform

ãM1
ðfÞ ¼ −

GM
bv

e−2πift0 s̃M1

�
f
fτ

�
with

s̃M1
ðxÞ≡ 2x½K1ðxÞb̂ − iK0ðxÞv̂� · n̂; ð21Þ

where we separated the magnitude and the signal shape for
clarity. The Doppler acceleration has a sharp peak at η ¼ 0
in real space, corresponding to the DM time of arrival as
expected. In Fourier space, the Doppler acceleration has a
weak log dependence on the frequency for f < fτ, but
quickly drops to zero when f > fτ. This behavior is in fact
general for all three types of signals, as we will see shortly.
The acceleration of the second mirror can be computed

using Eq. (15), Eq. (20), and ΔrM2
ðtÞ ¼ ΔrM1

ðtÞ þ Ln̂,

aM2
ðtÞ≈

8>><
>>:
−GM

L2 ; if b≪L

aM1
ðtÞþGML

b3



3ðb̂·n̂þηv̂·n̂Þ2
ð1þη2Þ5=2 − 1

ð1þη2Þ3=2

�
; if b≫L

:

ð22Þ

The Fourier transform is given by

ãM2
ðfÞ ≈

8<
:

0; if b ≪ L

ãM1
ðfÞ þ

�
L
b

�
ãtidalðfÞ; if b ≫ L

; ð23Þ

where we have approximated δðfÞ ∼ 0 and

ãtidalðfÞ ¼
GM
bv

e−2πift0 s̃tidal

�
f
fτ

�

s̃tidalðxÞ≡ 2x
nh

ðb̂ · n̂Þ2 − ðv̂ · n̂Þ2
i
xK0ðxÞ þ

h
ð2ðb̂ · n̂Þ2 þ ðv̂ · n̂Þ2 − 1Þ − 2iðb̂ · n̂Þðv̂ · n̂Þx

i
K1ðxÞ

o
: ð24Þ
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The total Doppler effect can be computed by Fourier transforming Eq. (19) and, using Eq. (23), we have

h̃DopplerðfÞ ≈ −
2

ð2πfÞ2L e−if=2fFSR

8>>>>>>><
>>>>>>>:

cos
�

f
2fFSR

�
ãM1

ðfÞ; if b ≪ L

2sin2
�

f
4fFSR

�
ãM1

ðfÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q-suppressed

−
�
L
b

�
ãtidalðfÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

tidal-suppressed

; if b ≫ L
: ð25Þ

Equation (25) is illuminating, as it shows that we can safely ignore the contribution from the second mirror if b ≪ L
since the acceleration of the first mirror is much greater than the second mirror. However, if b ≫ L, then both mirrors
experience similar acceleration from the same transiting DM. This leads to a suppression factor of (L=b), known as the
tidal factor as alluded to in Sec. II, which is well studied in the literature of accelerometers [29,33]. However, an additional
piece of the power spectrum is not suppressed by the tidal factor, but arises from the fact that a laser interferometer measures
the differential acceleration between the mirrors at a slightly different time. Defining Qf ≡ fFSR=f, the Doppler signal
is thus

jh̃DopplerðfÞj2 ≈
�
8GML
c2bv

�
2
�
fFSR
f

�
4

8>>>>><
>>>>>:

cos2
�

f
2fFSR

����s̃M1

�
f
fτ

����2; if b ≪ L

4sin4
�

f
4fFSR

����s̃M1

�
f
fτ

����2; if b ≫ L and 1=Qf ≫ L=b�
L
b

�
2
���s̃tidal� f

fτ

����2; if b ≫ L and 1=Qf ≪ L=b

; ð26Þ

where we assume that either the Q-suppressed or the tidal-
suppressed term dominates when b ≫ L. Effects from the
finite photon travel time in laser interferometers have
been considered previously in the literature of gravitational
wave [41–44] and ultralight DM [45,46]. However,
previous studies on macroscopic DM have generally
neglected this effect by treating the interferometer as a
simple accelerometer, which amounts to dropping the
sines and cosines of ∼ðf=fFSRÞ, the second term of

Eq. (26), and estimating s̃tidalðf=fτÞ ≈ s̃M1
ðf=fτÞ. This

treatment is well justified for GW detectors that utilize
FP cavities with Q ≫ 1 such as LIGO, but does not apply
to other laser interferometers such as Holometer and
GQuEST.
The average signal shape can be computed by taking the

amplitude squared of Eq. (21) and Eq. (24) while sub-
stituting the angular factors derived in the Appendix [see
Eq. (A2) and Eq. (A4)],

hjs̃M1
ðxÞj2i ¼ 4

3
x2½K2

0ðxÞ þ K2
1ðxÞ� ≈

4

3

	
1; if x ≪ 1

πxe−2x; if x ≫ 1

hjs̃tidalðxÞj2i ¼
X
i;j;k

cij;kxkKiðxÞKjðxÞ ≈
16

15

	
1; if x ≪ 1

πx3e−2x; if x ≫ 1
; ð27Þ

where cij;k are some Oð1Þ coefficients. We observe that
hjs̃tidalðxÞj2i ∼ ð4=5Þhjs̃M1

ðxÞj2i. The spectral shapes of the
tidal-suppressed piece and the Q-suppressed piece are in
fact very similar to each other (constant until fτ and then
exponential decay), but are suppressed by factors of
different physical origins. To set an upper limit on the
DM fraction, we compute the 10th percentile jh̃DopplerðfÞj2
using Eq. (26) with the impact parameter given by Eq. (4),

while taking the mean value of the angular factors and v.
In the limit where b ≪ L, one recovers Eq. (6). On the
other hand, if the interferometer has two arms separated
by an angle of Δθ, then we replace the angular factors in
Eq. (27) with the two-arm angular factors in Eq. (A5),
while removing the n̂-independent term in Eq. (24),
giving, up to Oð1Þ factors, a factor of 4 sin2ðΔθ=2Þ in
Eq. (26).
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B. Shapiro delay

The Shapiro delay has been studied extensively for
transiting DM signals in PTAs [16,18,40]. A pulsar located
at a distance of z0 from Earth has a long baseline of L ∼ kpc,
which is greater than the DM impact parameter even for DM
as heavy as 10M⊙. Hence most PTA works compute the
Shapiro signal assuming z0 > b, in which case it has been
shown that the relevant impact parameter is defined relative to
the line of sight between Earth and the pulsar, i.e., b⊥. For
laser interferometers, however, the baselineL can, in general,
be smaller than the DM impact parameter, b. In this section,
we show that if b > L, then the relevant impact parameter is,
in fact,b as the length scale of thedetector becomes negligible
and the detector becomes “pointlike,”which is consistentwith
Ref. [16]. In the opposite limit where b < L, an interferom-
eter becomes similar to the pulsar-Earth system, and the
relevant impact parameter is b⊥.
We choose the midpoint of the interferometer arm

as the coordinate origin in Eq. (17). The total Shapiro
delay is given by the change in the proper length of the
interferometer arm, measured over a photon roundtrip

hShapiroðtÞ ¼
1

L



Δl

�
tþ L

2c

�
þ Δl

�
tþ 3L

2c

��
; ð28Þ

where ΔlðtÞ is the shift in the proper arm length,
measured by a photon that passes through the midpoint
of the arm, rmid, at time t, i.e., ΔlðtÞ ¼ 1

2

R L=2
−L=2 dzhij

ðtþ z
c ; rmid þ zn̂Þninj. Under the DM gravitational field

in Eq. (13) and Eq. (14), and assuming that DM moves
in a straight line with a constant velocity according to
Eq. (15), the motion of rDMðtÞ within a one-way photon
travel time can be simply treated as rDMðtþ ðz=cÞÞ ¼
rDMðtÞ þ ðz=cÞv, and hence [16]

ΔlðtÞ ¼ GM
c2

Z
L=2

−L=2
dz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − rkÞ2 þ r2⊥

q ; ð29Þ

where we defined the parallel and perpendicular distance of
DM, relative to the arm midpoint, r⊥ ≡ j½rDMðtÞ − rmid� ×
n̂j and rk ≡ ½rDMðtÞ − rmid� · n̂, and used the nonrelativistic
limit n̂ − ðv=cÞv̂ ≈ n̂. The integral in Eq. (29) can now be
computed analytically [16],

ΔlðtÞ ¼ GM
c2

log

0
B@rk þ ðL=2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2⊥ þ ½rk þ ðL=2Þ�2

q
rk − ðL=2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2⊥ þ ½rk − ðL=2Þ�2

q
1
CA

≈
GM
c2

8>>><
>>>:

log
�
L2

r2⊥

�
; if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2⊥ þ r2k

q
≲ L=2

Lffiffiffiffiffiffiffiffiffiffi
r2⊥þr2k

p ; if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2⊥ þ r2k

q
≳ L=2

; ð30Þ

taking a simpler form in the two different limits. We
observe that when b≳ L=2, then the Shapiro delay depends
on the magnitude of b, similar to the Doppler effect.
However when b ≲ L=2, the effect only depends on the
perpendicular component and has a weak log boost from
the small distance (as opposed to the Doppler case). Using
the parametrization in Eqs. (16)–(17) for the upper and
lower entries of Eq. (30) and performing a Fourier trans-
form, we find2

Δl̃ðfÞ ≈GM
c2

8<
:

1
f e

−2πift0;⊥e−f=fτ⊥ ; if b≲ L=2

2L
v e−2πift0K0

�
f
fτ

�
; if b≳ L=2

: ð31Þ

We then Fourier transform the total Shapiro delay in
Eq. (28):

jh̃ShapiroðfÞj2 ¼
�
8πGM
c3

�
2

cos2
�

f
4fFSR

�

×

8<
:

�
fFSR
f

�
2
e−2f=fτ⊥ ; if b≲ L=2�

c
2πv

�
2
K2

0

�
f
fτ

�
; if b≳ L=2

: ð32Þ

We emphasize that Eq. (32) should be read with caution.
The two entries of Eq. (32) are decided by the relative
magnitude between b and L=2. If b≳ L=2, then the
Shapiro signal is cut off at the frequency corresponding
to b. Otherwise if b≲ L=2, then the Shapiro spectrum is
suppressed by factors of v=c compared to the Doppler
spectrum in Eq. (26), and is cut off at the frequency
corresponding to b⊥.
In a two-arm interferometer system with an Oð1Þ

(in radians) arm separation angle, the total Shapiro strain
is the difference between individual arm strains. If
b ≪ L=2, then the Shapiro delay for one of the arms
should be much stronger than that of the second arm
(it is statistically unlikely that the DM with the smallest
b⊥;1 for one arm also has a comparably small b⊥;2

relative to the second arm unless the angle between the
two arms is very small, which is in general not true
for any realistic GW detector). Otherwise, if b ≫ L=2,
then the two interferometer arms effectively become two
point detectors oriented toward directions n̂1 and n̂2, and
the total strain suffers a tidal suppression factor of L=b,
similar to the Doppler effect in Eq. (22). Using Eq. (30),
we find

2Useful Fourier transform integral:
R∞
−∞ dxe−ikx

log
�

1
αx2þβxþγ

�
¼ 2π

jkj e
ik β

2αe−
ffiffiffiffi
−Δ

p
2α jkj, where α; βγ ∈R, α > 0, γ > 0,

and Δ≡ β2 − 4αγ < 0. We dropped all delta functions as
usual.
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Δlðt; n̂1Þ − Δlðt; n̂2Þ ≈
GM
c2

8<
:

log
�

L2

jrDMðtÞ×n̂1j2
�
; if b≲ L=2

L2

2r2DMðtÞ
r̂DMðtÞ · ðn̂1 − n̂2Þ; if b≳ L=2

: ð33Þ

Taking the Fourier transform of Eq. (33) using Eq. (17) and Eq. (28), the total Shapiro strain is

jh̃ShapiroðfÞj2 ¼
�
8πGM
c3

�
2

cos2
�

f
4fFSR

�8>><
>>:

�
fFSR
f

�
2
e−2f=fτ⊥ ; if b≲ L=2�

L
8b

�
2
�

c
2πv

�
2
���s̃M1

�
f
fτ

����2; if b≳ L=2
; ð34Þ

where s̃M1
ðxÞ is defined in Eq. (21), but with n̂ replaced by

n̂1 − n̂2. Comparing Eq. (34) with Eq. (32), we see that the
Shapiro spectrum for a two-arm interferometer is identical
to that of a one-arm detector for b ≲ L=2, but picks up a
suppression factor of 4 sin2ðΔθ=2ÞðL=8bÞ2 when b≳ L=2.

C. Einstein delay

The gravitational effect due to the Einstein delay is given
by the difference of the clock proper time τ at the
beamsplitter over a photon roundtrip time

hEinsteinðtÞ ¼
c
L



τ

�
tþ 2L

c

�
− τðtÞ

�
: ð35Þ

The proper and coordinate times are related by dτðtÞ=dt ¼
1 − ð1=2Þh00, so that using Eq. (13) and Eq. (35), we write

d
dt

hEinsteinðtÞ ¼
1

cL



Φ
�
tþ 2L

c

�
−ΦðtÞ

�
; ð36Þ

where the DM gravitational potential Φ is evaluated at the
beamsplitter. Putting the DM trajectory in Eq. (15) with
the beamsplitter location chosen as the coordinate origin
into the potential, one finds ΦðtÞ¼−ðGM=bÞð1þη2Þ−1=2
with the Fourier transform Φ̃ðfÞ ¼ −ð2GM=vÞe−2πift0
K0ðf=fτÞ, giving the Einstein strain

jh̃EinsteinðfÞj2 ¼
�
8GM
c2v

�
2
�
fFSR
f

�
2

sin2
�

f
2fFSR

�
K2

0

�
f
fτ

�
:

ð37Þ

Note that the impact parameter only enters the spectrum
through the peak frequency fpeak, but not the amplitude.
If the interferometer has two arms, then the Einstein

delay contribution cancels between the two interferometer
arms, and thus the effect vanishes.

IV. STOCHASTIC SIGNAL

In the small DM mass limit, it is possible that each
individual DM is not sufficient to produce a sizable signal,
but the collective effect due to all DM passing by the

detector might be large enough to be measured. In this
limit, DM behaves collectively like a stochastic back-
ground. The total strain hðtÞ is given by summing over
strains haðtÞ from all individual DM:

hðtÞ ¼
X
a

haðtÞ: ð38Þ

Correlations from the stochastic DM field have been
previously studied in Ref. [18] in the context of PTAs.

A. Doppler effect

For a given v̂, the differential volume of an element in a
cylinder is dV ¼ vbdbdφdt0, where φ is the polar angle of
b on the plane perpendicular to v. We have assumed
monochronic DM masses. Using the parametrization in
Eq. (16), the autocorrelation function of h̃DopplerðfÞ is then
given by integrating over the volume

hh̃ðfÞh̃�ðf0Þi ¼ n
4π

Z
∞

bmin

bdb
Z

2π

0

dφ
Z

T=2

−T=2
dt0

×
Z

vesc

0

vfvðvÞdv
Z

π

0

sin θdθ

×
Z

2π

0

dϕh̃ðfÞh̃�ðf0Þ; ð39Þ

where fvðvÞ is the Maxwell-Boltzmann distribution for the
velocity, and θ and ϕ are the polar and azimuthal angles for
v respectively. The factor of 1=ð4πÞ comes from normali-
zation of the angular integration over θ and ϕ. Note that we
also set the lower limit of the integral over b to bmin as
defined in the rhs of Eq. (4). The integral is formally
divergent if we allow b → 0, which is a case of statistical
outliers skewing the mean of a distribution. Following the
treatment of Ref. [18] in the context of PTAs, the
divergence can be regulated by truncating the integral at
the 90th percentile of minimum impact parameter among
DM particles, which is insensitive to statistical outliers.
Since the DM trajectory in Eq. (15) is a function of

t − t0, the strain in Fourier space h̃ðfÞ can only depend on
t0 through a phase factor expð−2πift0Þ. Integrating over t0
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thus evaluates to a delta function in f − f0 in the limit when
fT ≫ 1: hh̃DopplerðfÞh̃Dopplerðf0Þi ¼ SDopplerðfÞδðf − f0Þ,
indicating that the stochastic signal is stationary when
the observation time is sufficiently large. The strain power
spectrum reads as

SDopplerðfÞ ¼
n
4π

Z
∞

bmin

bdb
Z

2π

0

dφ
Z

vesc

0

vfvðvÞdv

×
Z

π

0

sin θdθ
Z

2π

0

dϕjh̃ðfÞj2: ð40Þ

Anticipating that the signal’s dependence on the velocity is
going to be weak, we set the velocity to v̄, while integrating
over angular factors of b̂ · n̂ and v̂ · n̂ using Eq. (A2). We
show the analytic form for the Doppler effect and extend
the spectrum result for b < L to b → ∞, since we expect
the detector to only be sensitive to b < L. Then integrating
Eq. (40) with Eq. (26), we find3

SDopplerðfÞ ¼ BDoppler

�
fFSR
f

�
4

cos2
�

f
2fFSR

��
f

fτmin

�

× K0

�
f

fτmin

�
K1

�
f

fτmin

�
; ð41Þ

where fτmin
≡ v=ð2πbminÞ, and

BDoppler ≡ 128πL2G2MρDMfDM
3c4v̄

¼ 2 × 10−73 Hz−1
�
M
kg

�
fDM

�
340 km=s

v̄

��
L
km

�
2

:

ð42Þ

For stationary signals, considering the cross-correlation
between two detectors and the optimal matched filtering,
the stochastic SNR is given by

SNR2
X;stoc ¼ 2T

Z
∞

0

dfΓ2ðfÞ S2XðfÞ
Sn1ðfÞSn2ðfÞ

; ð43Þ

where Sn1;2ðfÞ are the one-sided autocorrelated power
spectral density of the two detectors 1,2, ΓðfÞ is the
cross-correlation function across detectors, and X can
correspond to the Doppler, Shapiro, or Einstein effect.
For simplicity, we assume ΓðfÞ ∼ 1, i.e., the two detectors
are colocated and aligned without correlated noise, and
Sn1ðfÞ ¼ Sn2ðfÞ ¼ SnðfÞ. Note that if there is only one
detector, then due to the random nature of both the signal
and the noise, no matched filtering can be applied.
In the first panel of Fig. 5, we show constraints on

the DM fraction fDM for LIGO, LISA, GQuEST, and

Holometer, which all have two detectors. For the mass
range and experimental parameters considered in this work,
the Doppler stochastic reach is subdominant compared
to the deterministic reach, which is consistent with the
conclusion of Ref. [28]. This can be explicitly shown by
estimating the SNR assuming both the signal and the noise
are constant within the experiment’s frequency window
Δf; using Eqs. (26) and (41), one observes

SNRstoc;Doppler

ðSNRdet;DopplerÞ2
≈

1ffiffiffiffiffiffiffiffiffiffi
TΔf

p K0ðxÞK1ðxÞ
x½K0ðxÞ2 þ K1ðxÞ2�

����
x¼fpeak=fτ

≈ −
1ffiffiffiffiffiffiffiffiffiffi
TΔf

p logðfpeak=fτÞ; ð44Þ

in the limit fpeak ≪ fτ, showing that the stochastic con-
straint grows logarithmically for lower masses. As for all
GW detectors considered in this work, including LIGO,
LISA, GQuEST, and Holometer, TΔf ≫ 1, and hence the
stochastic limit is subdominant for the whole mass range
as shown in Fig. 5. Notice that for PTAs, for example,
TΔf ∼ 1 thus the stochastic constraint can take over at a
relevant mass range [18].

B. Shapiro delay

The stochastic Shapiro delay can be derived in a similar
manner. Recall from Sec. III B that in the b ≪ L limit, the
impact parameter relative to the interferometer arm sets
the size of the signal. The volume of a differential element
is given by dV ¼ v⊥db⊥dbkdt0;⊥ [18]. The stochastic
Shapiro power spectrum is thus given by integrating the
Shapiro strain in Eq. (32) with the parametrization in
Eq. (17) over volume

SShapiroðfÞ ¼
n
4π

Z
∞

0

db⊥
Z

L=2

−L=2
dbk

Z
vesc

0

v⊥fv⊥ðv⊥Þdv

×
Z

π

0

sin θdθ
Z

2π

0

dϕjh̃ShapiroðfÞj2; ð45Þ

where we again assume that v points at a direction of ðθ;ϕÞ,
fv⊥ðv⊥Þ is the perpendicular (relative to the interferometer
arm) velocity distribution, andwe performed the integral over
t0;⊥ assumingfT ≫ 1. Anticipating that DMwithb⊥ < L=2
will dominate the stochastic signal, we perform the integral in
Eq. (45) using the upper entry of Eq. (32) and find

SShapiroðfÞ ¼ BShapiro

�
fFSR
f

�
3

cos2
�

f
4fFSR

�

× ð1 − e−ðf=2fFSRÞðc=v⊥ÞÞΘðL − b⊥;minÞ; ð46Þ

where
3Useful integral:

R
∞
a x½K2

0ðxÞ þ K2
1ðxÞ�dx ¼ aK0ðaÞK1ðaÞ for

a > 0.
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BShapiro≡64π2L2G2MρDMfDMv̄2⊥
c7

¼8×10−82Hz−1
�
M
kg

�
fDM

�
v̄⊥

270 km=s

�
2
�

L
km

�
2

;

ð47Þ

and we substituted the mean value, v̄⊥, of the velocity
distribution, and introduced a cutoff requiring b⊥;min < L
to ensure that there is a nonzero number of DMwith b⊥ < L.
The projected reach of the stochastic Shapiro signal

is shown in the second panel of Fig. 5, and is derived
by setting the SNR in Eq. (43) with the spectrum in
Eqs. (46)–(47) to be 2. Unlike the Doppler effect, the
stochastic Shapiro signal can actually have better reach
than the deterministic signal in the lower DM mass range,
such as M ≲ 106 kg for LIGO, for example. This can be
traced to the fact that the Shapiro deterministic signal
amplitude is independent of the DM mass once the DM

impact parameter becomes less than L. However, the
stochastic Shapiro spectrum scales linearly with the DM
mass, as is evident in Eq. (47), resulting in a larger SNR for
the relevant mass range.
The stochastic signal derived in this section in general

agrees with the results in Ref. [18] studied in the context of
PTAs. In particular, the stochastic spectrum in Eq. (42) and
that in Eq. (46) have the same scaling relations of M, fDM,
ρDM, v̄, v̄⊥, and L (up to the definition of the observable) as
the spectrum derived in Ref. [18]. A notable difference is
that Ref. [18] presented the stochastic signal as a nonsta-
tionary process, with a power spectrum that is a function of
both f and f0, as opposed to the stationary signal we
derived in this section, where the power spectrum is only a
function of f, similar to a stochastic GW background [58].
As discussed in Sec. IVA, one can explicitly demonstrate
that the stochastic DM signal is stationary by integrating
over the DM arrival time, t0 (Doppler) or t0;⊥ (Shapiro),
over the experimental time T. In the limit fT ≫ 1, which

FIG. 5. Projected 90th-percentile upper limits on stochastic DM signals from LIGO, LISA, GQuEST, and Holometer, assuming
T ¼ 1 year of observation time and local DM density ρDM ¼ 0.46 GeV=c2=cm3. The limits are derived by setting the 10th-percentile
SNR defined in Eq. (43) to be 2. See Sec. V for a description of the experiments.

DU, LEE, WANG, and ZUREK PHYS. REV. D 108, 122003 (2023)

122003-14



holds for all GW detectors considered in this work with
T ¼ 1 year, one finds that hh̃ðfÞh̃ðf0Þi is proportional to
δðf − f0Þ, which is the definition of a stationary process.
Physically, this demonstrates that for a sufficiently long
observation time, DM can arrive at any time during the
experiment, which is a uniformly random variable, and
hence the signal produced is stationary in nature.

V. GRAVITATIONAL WAVE EXPERIMENTS AND
NOISE CURVES

In this section, we discuss various types of GW experi-
ments that are sensitive to transiting macroscopic DM
signals, with a focus on laser interferometers. An overview
of experiments considered in this paper is given in Table III.
A collection of noise spectral densities for such experi-
ments can be found in Fig. 6.

A. Laser interferometers

Gravitational waves were first detected by LIGO and
Virgo [14]. Since then, laser interferometry laboratories,
both ongoing and proposed, have expanded their coverage
to encompass a broader range of signal frequencies. At
higher frequencies (≳Hz), the advanced LIGO and Virgo
are to be joined by Cosmic Explorer [66], Einstein
Telescope [64,65], and proposals such as NEMO [67]
and LIGO Voyager [61]. On the other hand, LISA [59] is
proposed to operate at lower frequencies below Hz. At the
same time, the experimental apparatus proposed mainly to
detect quantum gravity effects, such as Holometer [23],
GQuEST [26], and the 3D interferometer [27], are sensitive

to signals at high frequencies in the MHz range. While our
calculation cannot be applied directly to a 3D interfero-
meter, interesting signals from a transiting DM could in
principle be induced in such a device. We leave a detailed
analysis for future work.
The peak sensitivity frequency is typically set by the arm

length L and the quality factor Q of the FP cavity (if any),
fpeak ≃ c=ð4πQLÞ. Throughout the paper, for laser inter-
ferometers, we consider the sensitivity as obtained by a
two-arm configuration. The angle between the two arms is
given by the proposed detector geometry, as quoted in
Table III. Throughout this work, we have used the
published noise curves for all experiments as shown in
Fig. 6 unless otherwise specified. GQuEST is in principle a
narrowband detector utilizing novel photon counting tech-
niques to evade the standard quantum limit [26], where the
bandwidth and estimated sensitivity are given in Table III.
We note that the sensitivity of GQuEST given in Table III
assumes an integration time of 1000 s and a single
interferometer setup in which the autocorrelation is mea-
sured. Future development of a colocated setup, allowing
for cross-correlation and extended operation of GQuEST,
can lead to a better sensitivity than the conservative
estimate given in Table III.

B. Other types of gravitational wave detectors

1. Optically levitated sensors

Optically levitated sensors with tunable frequencies have
been proposed to detect GWs at high frequencies in the

TABLE III. Overview of GWexperiments with potential sensitivity to macroscopic DM signals through the Newtonian potential and a
fifth force. See Sec. V for a description of experiments and Fig. 6 for the experimental sensitivity curves.

Experiment Operating frequencya
SnðfpeakÞ
½Hz�−1 L [m]

Detector
geometryb

Laser interferometers

LISA [59] ½10−4; 1� Hz 10−40 2.5 × 109 π=3
LIGO (aLIGO, Voyager) [60,61] ½10; 104� Hz 10−47 4000 π=2
KAGRA [62] ½10; 104� Hz 10−47 3000 π=2
Virgo [63] ½10; 104� Hz 10−46 3000 π=2
ET [64,65] ½10; 104� Hz 10−49 105 π=3
CE [66] ½10; 104� Hz 10−50 4 × 104 π=2
NEMO [67] [1, 3] kHz 10−48 4000 π=2
GQuEST [26] 1.5 × 107 (30 MHz) 10−46 5 π=2
Holometer [25] [1, 8] MHz 10−46 39 π=2

Other gravitational wave detectors

Optically levitated sensor (100 m) [68,69] [10, 300] kHz (∼0.1f) ½10−42; 10−46� 100 Cavity
Bulk acoustic wave [70,71] MHz—GHz (∼10 Hz) 10−44 ∼10−3 Plate resonator
Spherical resonant mass [72,73] (Mini-GRAIL, Schenberg antenna) 3 kHz (100 Hz) 10−44 0.7 Spherical mass
Pulsar timing array (e.g., SKA [74]) ½10−9; 10−7� Hz 10−25 ∼1020 Timing array

aFor narrowband experiments, the readout bandwidth is additionally quoted in brackets.
bFor interferometers with two arms, we quote the angle between the two arms.
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∼½10; 300� kHz range [68,69]. Such a device consists of a
nanoscale or microscale sensor (sphere or disk) levitated
optically and placed at an antinode of a tunable trapping
laser inside an FP cavity. An interferometerlike configu-
ration [69] further increases the sensitivity by noise
cancellation between its two arms. A one-meter prototype
of the detector is under construction. The optically levitated
sensor is a resonant detector, where the motion of a
dielectric nanoparticle suspended at an antinode of the
cavity can be detected. The operating frequency is deter-
mined by the tunable trapping frequency of the nano-
particle: ω2

0 ¼ 1
ms

d2U
dx2 jx¼x0 , where ms is the nanoparticle

mass, U is the optical potential, and x0 is the antinode
location. The dominant noise source is from the Brownian
thermal motion of photon scattering from the nanoparticle,
which is suppressed at higher frequencies and cryogenic
temperatures. For such resonant sensors, we assume the test
mass to be free over the interaction timescale, so the
characteristic frequency of the signal is larger than the
trapping frequency, 2πfτ ≳ ω0.
In a local Lorentz frame with the inner mirror at the

origin, we treat both the levitated object and the end mirror
as free objects within one measurement, initially at xs and
lm. The relevant quantity measured is the displacement of
the levitated object from the antinode of the trapping laser,
Δx ¼ δxmin − δxs ¼ δlm − δxs. A detector specialized to
probe GW signals would benefit from having xs as small as

possible [68], so here we also work in the limit where
xs ≪ lm, treating the device as an interferometer with two
mirrors separated by a distance of ∼lm. We use the strain
sensitivity quoted in Ref. [69] to calculate the SNR, without
a careful treatment of the cavity response. The cavity
response might boost the signal on the higher frequency
end up to an order of magnitude (for the 100 m stack
detector). In addition to the classical Doppler acceleration,
we also consider the Shapiro effect, which can displace the
minimum of the optical potential and hence the sensor
location. We estimate the Shapiro strain using formulas
derived for laser interferometers in Sec. III B. We empha-
size that, while the leading order effect in an optically
levitated sensor is expected to be captured by the Doppler
component of the interferometry signal, the interferometry
treatment here is an approximation, where the total effects
are not gauge invariant in the setup of an optically levitated
sensor with a trapping potential. We leave a more detailed
calculation for future work.
We note that there are experiments with stand-

alone levitated or trapped test masses not included in this
paper [75–82]. They either operate at lower frequencies
comparable to laser interferometers or with lower accel-
eration sensitivities than the apparatus considered. Another
recent proposal involving an array of levitated mechanical
sensors and the projected sensitivity to composite DM can
be found in Ref. [83].

FIG. 6. Sensitivity curves of GWexperiments. The projected noise spectral densities for laser interferometers are plotted in solid lines.
Strain sensitivities for narrowband detectors are shown in shaded regions within the quoted bandwidths. Note that the presented
frequency range for the levitated sensor corresponds to the tunable frequency range of the trapping potential, rather than the
measurement bandwidth. See Table III for an overview of the GW experiments and Sec. V for a description of experiments.
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2. Resonant mass detectors

Resonant mass detectors have their origins at the
beginning of experimental GW physics, i.e., the Weber
bar experiment. In general, resonant vibration modes of the
test mass as induced by an external force can be sensed
through certain read-out systems. Along one direction of
the test mass, considering the fundamental mode, the strain
sensitivity of such detectors can be converted to acceler-
ation sensitivity according to h̃ðfÞ ∼ ãðfÞ=ð8Lf2Þ, where
L is the length of the resonant mass in such a direction [47].
To estimate the DM sensitivity, we consider the classical
Doppler acceleration as given by Eq. (21) projected onto
one direction. We acknowledge that the exact signal
induced by the DM’s potential requires a careful calculation
that can be done using the metric perturbation formalism.
However, as the DM sensitivity for such experiments is
suppressed, as shown in Figs. 3 and 4, we do not attempt to
refine the calculation further. Spherical resonant mass
experiments, such as Mini-GRAIL [72] and Schenberg
antenna [73], transform excited mechanical modes to
electrical signals. Such experiments operate at ∼kHz
frequencies, and the strain sensitivities are typically less
than laser interferometers operating at the same frequency.
At the same time, a new type of resonant mass detector, the
Bulk Acoustic Wave experiment, is designed to operate at
higher frequencies in the MHz–GHz range [70,71]. These
experiments generally sense the acoustic waves inside a
piezoelectric material along a certain direction (e.g., for a
cylinder, along the length) through the SQUID readout.
There is a broad range of operating frequencies depending
on the acoustic eigenmode. The strain sensitivity is
improved with a large mode quality factor and cryogenic
temperatures. Note that such experiments employ higher
resonance modes to achieve broadband sensitivity. To
convert the strain sensitivity, we have assumed the funda-
mental mode. Notice that at a similar frequency range,
membrane optomechanical experiments based on optical
cavities (see, e.g., [84]) can reach a similar acceleration
sensitivity of ∼10−5 m=s2=

ffiffiffiffiffiffi
Hz

p
. We do not make explicit

projections for such experiments and refer the readers to the
BAW projection as a reference.

3. Long-baseline atom interferometers

Long-baseline atom interferometers are another venue for
bothGWandDMdirect detection. There has been a growing
interest in such detectors and active proposals. Long-
baseline atom interferometers consisting of two spatially
separated single atom interferometers are proposed to
close the midband window between the low-frequency
LISA (∼0.01 Hz) and ground-based laser interferometers
(∼1 Hz). The operation frequency is limited by gravity
gradient noise on the lower end and the rate of relaunching
cold atoms on the higher end. With improved noise models
and space-based designs, some missions can cover a lower

frequency range even beyond LISA (see Ref. [85] for a
review). A long-baseline atom interferometer, such as
MAGIS [86,87], AEDGE [88], or AION [89], resembles
a single-arm laser interferometer that can perform differ-
ential phase measurements at any given time and benefit
fromnoise cancellation between the twodevices.Although a
single atom interferometer can also serve as an accelerom-
eter, the tidal effect is determined by the rather small wave
packet separation, typically ≲1 m, that would generally
suppress the sensitivity. Here we briefly discuss the pros-
pects for long-baseline atom interferometers and leave
detailed studies for both types of proposals for future work.
A long-baseline atom interferometer precisely measures the
light traveling time between the two atom interferometers
distantly separated by a baseline length L. The two atom
interferometers are run by a common laser. The laser drives
the atomic transition between the ground and excited states
and transfers 2πℏ=λ momentum to the atoms at each pulse,
where λ is the laser wavelength. Laser pulses applied at
different times serve as “mirrors” and the “beamsplitter” for
the interferometer. The phase of the interference fringe at
each atom interferometer depends both on the laser phase
and the phase accumulated by the atoms themselves. The
pair of atom interferometers serve as both precise inertia and
laser frequency reference. For the single-photon transition
scheme, the relative interference phase between the two
atom interferometers is given by Δϕ ¼ ωAð2L=cÞ, where
ωA is the atomic transition frequency, and the baseline length
determines the light traveling time. Thus, naively, the strain
on the baseline length hðtÞ ∼ ΔL=L, as induced by the
transiting DM interacting with the atom cloud and the
traversing photon through the Newtonian potential, can
be sensed by such detectors. However, the exact phase shift
as induced by the transiting DM depends on the internal
mechanism of the atom interferometry, as well as how the
photon propagates with space-time fluctuations. For exam-
ple, the Shapiro effect can be dominant in the high DMmass
regime, and cannot be captured by the classical acceler-
ometer projection based on the Doppler effect. The strain
sensitivity of proposed long-baseline atom interferometers
can be comparable to laser interferometers. Thus, we post-
pone the study of the gauge invariant phase calculation to
future work.

4. Pulsar timing arrays

Pulsar timing arrays have been studied as powerful and
complementary probes to DM subhalos at small masses
(M < 102M⊙) [16–19,40,90]. In this work, we appropri-
ately extend the results from [19] to lower masses using
analytic results, assuming observations of 200 pulsars
across 20 years of observational time, 2 weeks of cadence,
and 50 ns of white noise in the timing data, which
corresponds to an estimated scenario of the Square
Kilometer Array (SKA) experiment [91].
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VI. DISCUSSION AND CONCLUSION

In this paper, we consider the effects of transiting macro-
scopic dark matter on GW experiments, particularly laser
interferometers. Gravitational interaction and an additional
Yukawa interaction are both considered. We applied the
formal gauge invariant observable for laser interferometers
to the case of transiting DM. Importantly, in addition to the
Dopper effect, which is the only effect considered in existing
literature, the Shapiro effect and Einstein delay may also be
present for a generic interferometer design. The Shapiro
effect is the change in the messenger travel time along the
interferometer arm. The Einstein delay is the time dilation
of the clock’s proper time, which cancels between arms for
a two- or multi-baseline interferometer. We show that, for
most operating and proposed laser interferometers, the
Shapiro effect is subdominant compared to the Doppler
effect. However, we also observe that depending on the
experimental parameters, the Shapiro effect may take over
for higher DM masses.
In general, GWexperiments operating at higher frequen-

cies are sensitive to macroscopic DM with lower masses.
Across the landscape of experiments included in this paper,
apart from PTAs in the very low-frequency range, for laser
interferometers in the 10−4 Hz–kHZ range and high-
frequency apparatus (including Holometer and GQuEST)
in the kHZ–GHz range, the projections peak at DM masses
in the range of ∼1–1015 kg. The signal is dominated by
transiting DM with an impact parameter smaller than the
interferometer baseline length, i.e., b < L. This is a result
of several effects, such as the peak frequency of the DM
signal compared to that of the experiment, the tidal effect,
and the time differential effect of the strain measurement.
Typically the peak frequency is the dominant factor.
However, for experiments with a large quality factor, the
tidal effect may be the most relevant suppression for DM
with large impact parameters.
We have also investigated constraints from the stochastic

signal produced by an ensemble of transiting DM. We
found that for the Doppler effect, the constraints from
stochastic signals are always weaker than the deterministic
constraints. On the other hand, for the Shapiro effect, the
stochastic signal could dominate over the deterministic
signal in the low mass regime.
Lastly, we have left out the analysis of an important type

of GW experiment, i.e., atom interferometers, as the exact
gauge invariant observable induced by transiting DM is
different than that of laser interferometers. We postpone
such a study for future work.
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APPENDIX: ANGULAR FACTORS

In this Appendix we derive the mean values of angular
factors involving dot and cross products between v̂, b̂, and
n̂, assuming an isotropic distribution of v̂, and a uniform
distribution of b̂ constrained on a plane perpendicular to v̂.
We note that while the DM velocity in the lab frame has a
preferred direction, the isotropic velocity distribution is a
good approximation for analytic estimates, as verified by
the Monte Carlo simulation.
Without loss of generality, we set n̂ ¼ ð0; 0; 1Þ on the z

axis. In spherical coordinates, we write v̂ ¼ ðsin θ cosϕ;
sin θ sinϕ; cos θÞ. Since b̂ is constrained to be perpendi-
cular to v̂, we canwrite b̂ ¼ cosφb̂1 þ sinφb̂2, where b̂1 ¼
ð−sinϕ; cosϕ; 0Þ and b̂2¼ðcosθcosϕ;cosθsinϕ;−sinθÞ
are orthogonal unit vectors that are perpendicular to v̂.
Averages over an angular factor X are then computed by the
integral

hXi ¼ 1

8π2

Z
π

0

sin θdθ
Z

2π

0

dϕ
Z

2π

0

dφXðθ;ϕ;φÞ: ðA1Þ

One easily evaluates v̂ · n̂ ¼ cos θ, b̂ · n̂ ¼ − sin θ sinφ,
jv̂ × n̂j2 ¼ sin2 θ and jb̂ × n̂j2 ¼ cos2 ϕþ cos2 θ sin2 ϕ,
giving

hðv̂ · n̂Þ2i ¼ hðb̂ · n̂Þ2i ¼ 1

3

hjv̂ × n̂j2i ¼ hjb̂ × n̂j2i ¼ 2

3
: ðA2Þ

Cross terms between b̂ and v̂ include ðb̂ · n̂Þðv̂ · n̂Þ ¼
− sin θ cos θ sinφ and ðb̂ × n̂Þ · ðv̂ × n̂Þ ¼ sin θ cos θ sinφ,
which integrate to zero:

hðb̂ · n̂Þðv̂ · n̂Þi ¼ 0

hðb̂ × n̂Þ · ðv̂ × n̂Þi ¼ 0: ðA3Þ

Higher-order factors include ðb̂ · n̂Þ4 ¼ sin4 θ sin4 ϕ,
ðv̂ · n̂Þ4¼ cos4θ and ðb̂ · n̂Þ2ðv̂ · n̂Þ2 ¼ sin2 θ cos2 θ sin2 φ,

hðb̂ · n̂Þ4i ¼ hðv̂ · n̂Þ4i ¼ 1

5

hðb̂ · n̂Þ2ðv̂ · n̂Þ2i ¼ 1

15
: ðA4Þ
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For interferometers with two arms separated byΔθ, we set n̂1 ¼ ð0; 0; 1Þ and n̂2 ¼ ð0; sinΔθ; cosΔθÞ, again without loss of
generality. Then the angular differences between the two arms are

h½ðb̂ · n̂1Þ − ðb̂ · n̂2Þ�2i ¼ h½ðv̂ · n̂1Þ − ðv̂ · n̂2Þ�2i ¼
4

3
sin2

�
Δθ
2

�

h½ðb̂ · n̂1Þ2 − ðb̂ · n̂2Þ2�2i ¼ h½ðv̂ · n̂1Þ2 − ðv̂ · n̂2Þ2�2i ¼
4

15
sin2 Δθ

h½ðb̂ · n̂1Þðv̂ · n̂1Þ − ðb̂ · n̂2Þðv̂ · n̂2Þ�2i ¼
1

5
sin2Δθ: ðA5Þ

[1] D. Green et al., Snowmass theory frontier: Astrophysics and
cosmology, arXiv:2209.06854.

[2] K. Griest and M. Kamionkowski, Unitarity limits on the
mass and radius of dark matter particles, Phys. Rev. Lett. 64,
615 (1990).

[3] A. Mitridate, T. Trickle, Z. Zhang, and K. M. Zurek,
Snowmass white paper: Light dark matter direct detection
at the interface with condensed matter physics, Phys. Dark
Universe 40, 101221 (2023).

[4] D. Antypas, A. Banerjee, C. Bartram, M. Baryakhtar, J.
Betz, J. J. Bollinger et al., New horizons: Scalar and vector
ultralight dark matter, arXiv:2203.14915.

[5] L. Badurina, V. Gibson, C. McCabe, and J. Mitchell,
Ultralight dark matter searches at the sub-Hz frontier with
atom multigradiometry, Phys. Rev. D 107, 055002 (2023).

[6] B. Carr, F. Kuhnel, and M. Sandstad, Primordial black holes
as dark matter, Phys. Rev. D 94, 083504 (2016).

[7] M. B. Wise and Y. Zhang, Yukawa bound states of a large
number of fermions, J. High Energy Phys. 02 (2015) 023.

[8] M. B. Wise and Y. Zhang, Stable bound states of asym-
metric dark matter, Phys. Rev. D 90, 055030 (2014).

[9] M. I. Gresham, H. K. Lou, and K.M. Zurek, Early Universe
synthesis of asymmetric dark matter nuggets, Phys. Rev. D
97, 036003 (2018).

[10] M. I. Gresham, H. K. Lou, and K. M. Zurek, Nuclear
structure of bound states of asymmetric dark matter, Phys.
Rev. D 96, 096012 (2017).

[11] A. Coskuner, D. M. Grabowska, S. Knapen, and K. M.
Zurek, Direct detection of bound states of asymmetric dark
matter, Phys. Rev. D 100, 035025 (2019).

[12] Windchime Collaboration, Snowmass 2021 White paper:
The windchime project, arXiv:2203.07242.

[13] D. Carney et al., Mechanical quantum sensing in the search
for dark matter, Quantum Sci. Technol. 6, 024002 (2021).

[14] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese, K. Ackley et al., Observation of gravitational
waves from a binary black hole merger, Phys. Rev. Lett.
116, 061102 (2016).

[15] N. Aggarwal, O. D. Aguiar, A. Bauswein, G. Cella, S.
Clesse, A. M. Cruise et al., Challenges and opportunities of
gravitational-wave searches at MHz to GHz frequencies,
Living Rev. Relativity 24, 4 (2021).

[16] E. R. Siegel, M. P. Hertzberg, and J. N. Fry, Probing dark
matter substructure with pulsar timing, Mon. Not. R. Astron.
Soc. 382, 879 (2007).

[17] S. Baghram, N. Afshordi, and K. M. Zurek, Prospects for
detecting dark matter halo substructure with pulsar timing,
Phys. Rev. D 84, 043511 (2011).

[18] H. Ramani, T. Trickle, and K. M. Zurek, Observability of
dark matter substructure with pulsar timing correlations,
J. Cosmol. Astropart. Phys. 12 (2020) 033.

[19] V. S. H. Lee, A. Mitridate, T. Trickle, and K. M. Zurek,
Probing small-scale power spectra with pulsar timing arrays,
J. High Energy Phys. 06 (2021) 028.

[20] V. S. H. Lee, S. R. Taylor, T. Trickle, and K. M. Zurek,
Bayesian forecasts for dark matter substructure searches
with mock pulsar timing data, J. Cosmol. Astropart. Phys.
08 (2021) 025.

[21] M. I. Gresham, V. S. H. Lee, and K. M. Zurek, Astro-
physical observations of a dark matter-Baryon fifth force,
J. Cosmol. Astropart. Phys. 02 (2023) 048.

[22] K. M. Zurek, Snowmass 2021 white paper: Observational
signatures of quantum gravity, arXiv:2205.01799.

[23] Holometer Collaboration, First measurements of high fre-
quency cross-spectra from a pair of large Michelson
interferometers, Phys. Rev. Lett. 117, 111102 (2016).

[24] A. Chou, H. Glass, H. R. Gustafson, C. Hogan, B. L. Kamai,
O. Kwon et al., The Holometer: An instrument to probe
Planckian quantum geometry, Classical Quantum Gravity
34, 065005 (2017).

[25] Holometer Collaboration, Interferometric constraints on
quantum geometrical shear noise correlations, Classical
Quantum Gravity 34, 165005 (2017).

[26] L. McCuller, Single-photon signal sideband detection for
high-power Michelson interferometers, arXiv:2211.04016.

[27] S. M. Vermeulen, L. Aiello, A. Ejlli, W. L. Griffiths, A. L.
James, K. L. Dooley, and H. Grote, An experiment for
observing quantum gravity phenomena using twin table-top
3D interferometers, Classical Quantum Gravity 38, 085008
(2021).

[28] E. D. Hall, R. X. Adhikari, V. V. Frolov, H. Müller, and M.
Pospelov, Laser interferometers as dark matter detectors,
Phys. Rev. D 98, 083019 (2018).

MACROSCOPIC DARK MATTER DETECTION WITH … PHYS. REV. D 108, 122003 (2023)

122003-19

https://arXiv.org/abs/2209.06854
https://doi.org/10.1103/PhysRevLett.64.615
https://doi.org/10.1103/PhysRevLett.64.615
https://doi.org/10.1016/j.dark.2023.101221
https://doi.org/10.1016/j.dark.2023.101221
https://arXiv.org/abs/2203.14915
https://doi.org/10.1103/PhysRevD.107.055002
https://doi.org/10.1103/PhysRevD.94.083504
https://doi.org/10.1007/JHEP02(2015)023
https://doi.org/10.1103/PhysRevD.90.055030
https://doi.org/10.1103/PhysRevD.97.036003
https://doi.org/10.1103/PhysRevD.97.036003
https://doi.org/10.1103/PhysRevD.96.096012
https://doi.org/10.1103/PhysRevD.96.096012
https://doi.org/10.1103/PhysRevD.100.035025
https://arXiv.org/abs/2203.07242
https://doi.org/10.1088/2058-9565/abcfcd
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1007/s41114-021-00032-5
https://doi.org/10.1111/j.1365-2966.2007.12435.x
https://doi.org/10.1111/j.1365-2966.2007.12435.x
https://doi.org/10.1103/PhysRevD.84.043511
https://doi.org/10.1088/1475-7516/2020/12/033
https://doi.org/10.1007/JHEP06(2021)028
https://doi.org/10.1088/1475-7516/2021/08/025
https://doi.org/10.1088/1475-7516/2021/08/025
https://doi.org/10.1088/1475-7516/2023/02/048
https://arXiv.org/abs/2205.01799
https://doi.org/10.1103/PhysRevLett.117.111102
https://doi.org/10.1088/1361-6382/aa5e5c
https://doi.org/10.1088/1361-6382/aa5e5c
https://doi.org/10.1088/1361-6382/aa7bd3
https://doi.org/10.1088/1361-6382/aa7bd3
https://arXiv.org/abs/2211.04016
https://doi.org/10.1088/1361-6382/abe757
https://doi.org/10.1088/1361-6382/abe757
https://doi.org/10.1103/PhysRevD.98.083019


[29] J. Jaeckel, S. Schenk, and M. Spannowsky, Probing dark
matter clumps, strings and domain walls with gravitational
wave detectors, Eur. Phys. J. C 81, 828 (2021).

[30] C.-H. Lee, R. Primulando, and M. Spinrath, Discovery
prospects for heavy dark matter in KAGRA, Phys. Rev. D
107, 035029 (2023).

[31] N. Seto and A. Cooray, Search for small-mass black hole
dark matter with space-based gravitational wave detectors,
Phys. Rev. D 70, 063512 (2004).

[32] P. W. Graham, D. E. Kaplan, J. Mardon, S. Rajendran, and
W. A. Terrano, Dark matter direct detection with acceler-
ometers, Phys. Rev. D 93, 075029 (2016).

[33] S. Baum, M. A. Fedderke, and P.W. Graham, Searching for
dark clumps with gravitational-wave detectors, Phys. Rev. D
106, 063015 (2022).

[34] A. Kawasaki, Search for kilogram-scale dark matter with
precision displacement sensors, Phys. Rev. D 99, 023005
(2019).

[35] D. Li, V. S. H. Lee, Y. Chen, and K. M. Zurek, Interferom-
eter response to geontropic fluctuations, Phys. Rev. D 107,
024002 (2023).

[36] E. G. Adelberger, B. R. Heckel, and A. E. Nelson, Tests of
the gravitational inverse square law, Annu. Rev. Nucl. Part.
Sci. 53, 77 (2003).

[37] J. F. Acevedo, R. K. Leane, and J. Smirnov, Evaporation
barrier for dark matter in celestial bodies, arXiv:2303
.01516.
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