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Abstract

The rapid advancements in quantum computing as ushered in a new era for computer simulations, presenting ground-
breaking opportunities across diverse disciplines. Central to this revolution is the quantum processor’s capacity to
entangle qubits, unlocking unprecedented possibilities for addressing computational challenges on an extreme scale,
far beyond the reach of classical computing. In this study, we explore how quantum computing can be employed to
enhance computational mechanics. Our focus is on the analysis of Representative Volume Element (RVE) within the
framework of multiscale solid mechanics. We introduce an innovative quantum algorithm designed to solve the RVE
problem. This algorithm is capable of compute RVEs of discretization size N in O(Poly log(N)) time, thus achieving
an exponential speed-up over traditional classical computing approaches that typically scales linearly with N. We
validate our approach with case studies including the solution of one and two dimensional Poisson’s equation, as well
as an RVE of a composite bar with piece-wise constant phases. We provide quantum circuit designs that requires only
O(Poly log(N)) universal quantum gates,underscoring the efficiency of our approach. Our work suggests a major way
in which quantum computing can be combined with and brought to bear on computational mechanics.
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1. Introduction

The phenomenal advances in computational mechanics from its early beginnings in the late 1950s to today follow
the exponential increase in computing power over the same period of time [23, 37]. This progress is most evident from
the increase of finite element problem sizes from less than hundreds (< 102) to hundreds billions (> 1011) of elements
over the same time period [12, 26]. As widely known, Moore’s law stipulates a two-fold increase in the density of
transistors on a circuit every two years. The consensus is that future improvements in computing power will be limited
because of the physical limitations in shrinking logic gate sizes further. A naive scaling up of current computing
technologies without an increase is transistor densities is believed as highly problematic because of excessive cost
and energy consumption. Using quantum systems to perform computations provides one possible solution to this
impasse. Quantum computers were envisaged in early 1980s by Feynman [19], Benioff [5] and Manin [28]. Feynman
was motivated by the impossibility of simulating a reasonably sized quantum system with classical computers. For
instance, the state of a quantum system consisting of np particles contained in a box in R3 is described by a complex-
valued wave function ψ(x) : R3np 7→ C. The discretisation of this configuration space with only ten cells in each
dimension leads to a discretised system with 103np degrees of freedom, rendering the problem unsolvable beyond a
few particles.

Feynman argued to efficiently simulate quantum systems, one needs non-classical computers that must use phe-
nomena unique to quantum mechanics. The same argument was put forward by Manin in his book in Russian;
see [34]. In contrast to both, Benioff was concerned with energy dissipation in classical computers resulting from the
irreversibility of the elementary operations. For instance, in a classical computer an AND gate has two binary inputs
and one binary output and is irreversible as it is impossible to deduce from the single output the respective inputs.
This irreversibility is associated with a loss of energy [6, 27]. Benioff proposed an alternative quantum-based classi-
cal computer design in which every operation is encoded as the solution of the reversible time-dependent Schrödinger
equation governing quantum mechanics. The notion of a quantum computer, as envisaged by Feynman and Manin,
was finally formalised in the seminal work by Deutsch [16] a few years later. In the same work, Deutsch discussed
the advantages of a quantum computer in solving problems beyond the simulation of quantum systems, which led to
an initial flurry of quantum algorithms, like Grover’s algorithm of unstructured search [21] and Shor’s algorithm for
prime factorisation [39].
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To develope an intuitive understanding of quantum computing, adopting a physical viewpoint of computing is
expedient. Briefly, computing is always tied to a physical representation, and a computer is a machine. As Deutsch
stated: ”a computing machine is any physical system whose dynamical evolution takes it from one of a set of ’input’
states to one of a set of ’output’ states”. The input state of a quantum computer is chosen from the configuration
space of a quantum system. According to the postulates of quantum mechanics, the configuration of the system
with n quantum particles is described by a state vector |q⟩, see [36].1 The ket |·⟩ merely indicates that q is a quantum
mechanical vector. Each particle is referred as a qubit and has two states. These two-states can be, for instance, the
up and down spin states of a spin 1/2 particle, ground and excited states of an atom, or the horizontal and vertical
polarisation of a photon [17]. Owing to quantum entanglement, the state vector of n qubits is the Hilbert space C2n

,
i.e. |q⟩ ∈ C2n

. Notice that this space is exponentially larger than the configuration space of n classical particles which
is only C2n, see [24]. The time evolution of the state vector |q(t)⟩ is governed by the Schrödinger equation and the state
vector |q(T )⟩ at time t = T is given by the unitary mapping UC : |q(0)⟩ 7→ |q(T )⟩. The evolution operator UC ∈ C2n×2n

is unitary, i.e. U−1
C = U†C , i.e. length preserving and bijective. A universal quantum computer can implement any

such unitawhitry operator UC . Hence, as a physical system a quantum computer performs computation by evolving a
chosen |q(0)⟩ to |q(T )⟩ using a prudently designed unitary UC . Therefore, quantum computers are sometimes referred
as analog machines and their ability to simultaneously evolve the t state vector |q(t)⟩ as quantum parallelism.

We provided so far a simplified and abstract description of quantum computing which requires further elabora-
tion. In computational mechanics the initial state |q(0)⟩ may represent the forcing, the final state |q(T )⟩ the solution
and UC the discretised inverse solution operator. A classical forcing vector q ∈ CN , with N = 2n, is encoded
as the components, usually called amplitudes, qi(0) ∈ C of a state vector |q(0)⟩ =

∑
i qi(0) |i⟩ of a system with n

qubits. The basis vectors |i⟩ ∈ {|0⟩ , |1⟩ , . . . |2n − 1⟩} provide a labelling of the 2n possible states of the quantum
system. This encoding is referred to as state preparation and, for instance, can be accomplished with the unitary
mapping UI(q) : |0 . . . 0⟩ 7→ |q(0)⟩. Here, |0 . . . 0⟩ is a known initial state and UI(q) a unitary matrix. Algorithms for
state preparation can be found, e.g., in [3, 30, 38]. Subsequent application of the previously mentioned unitary UC

performs the desired computation. As widely studied, any unitary matrix can be constructed as the composition of a
few elementary unitary matrices [4, 15]. These elementary unitaries are of size 2 × 2 and 4 × 4 and are applied to a
single or two qubits as a time. In gate-based quantum computing the composition of the unitaries UI and UC from
elementary unitaries, also referred to as gates, are visualised in circuit diagrams. On a more practical level, a quantum
algorithm is implemented by designing the arrangement of the elementary gates in a quantum SDK, like Qiskit [13],
Cirq [11], PyQuil [40] and Pennylane [7]. See also the textbooks [1, 25, 35, 46] on known quantum algorithms and
their circuit implementations. The state vector |q(T )⟩ after the completion of the computation is interrogated by mea-
surement. According to the measurement postulate of quantum mechanics, the magnitude of the amplitude |qi|

2 is
equal to the probability to find the quantum system in the state labelled |i⟩, see [36]. After the state is collapsed into
the state |i⟩ repeated measurements will yield the same result |i⟩. More specifically, we can only infer the statistics of
components of |q(T )⟩ or, more generally, the statistics of the projection of |q(T )⟩ to some subspace.

As detailed, quantum computing relies exclusively on unitary operations and measurement, so it is essential to
reassess existing computational mechanics approaches for their suitability and develop new methods. In this paper,
we consider the homogenisation of microstructured materials, like multi-phase composites consisting of materials
with different properties or polycrystalline materials. The characteristic length scale of the microstructure is much
smaller than the size of the macroscopic specimen to be analysed. Therefore, it is reasonable to derive the effective
material properties, like diffusivity or Young’s modulus, of the homogenised macroscopic boundary value problem
from micro-level boundary value problems, fully considering the microstructure. In computational homogenisation,
the micro- and macro-level boundary value problems are all suitably discretised and solved sequentially. The micro-
level domain is usually a rectangular prism called the representative volume element (RVE). The boundary conditions
for the RVE are chosen as periodic, and the prescribed average of the gradient of the solution, or strain gradient, is
given by the macroscale boundary value problem. We solve the periodic microscale problem by discretising all fields
using a band-limited Fourier interpolation, also known as Whittaker-Shannon interpolation, [10, 43]. In computational
homogenisation, this approach was first pioneered by Moulinec and Suquet [31]; see also the recent review paper [20].
The resulting discrete system of equations is classically solved using a fixed-point iteration and the Fast Fourier

1The state vector |q⟩ and wave function ψ(x) are equivalent representations of a quantum system. In quantum computing usually only state
vectors are used.
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Transform (FFT). The FFT has the computational complexity O(N log N), where N is the number of degrees of
freedom. The corresponding quantum algorithm, the Quantum Fourier Transform (QFT), has remarkably the polylog
complexity O((log N)2), i.e. a polynomial of log N, see [14]. The solution of the RVE problem on a quantum computer
requires, beyond QFT and the already mentioned state preparation, the implementation of simple algebraic operations,
like the division by a scalar, in the Fourier space. To this end, we first approximate functions by piecewise polynomials
using Chebyshev interpolation and subsequently encode the polynomials utilising a sequence of elementary rotation
gates [41, 45]. Furthermore, we propose a quantum version of the fixed-point iteration to minimise the number of
costly measurement operations.

2. Computational homogenisation

We review the computational homogenisation of periodic composites with a scalar solution field governed by the
non-homogenous Poisson equation [29, 31, 32]. Such problems arise, for instance, in electrical and heat conduction,
flow in porous media or antiplane elasticity. In computational homogenisation the solution field is determined by
solving iteratively a sequence of macroscopic specimen level and microstructure level problems. The gradient of the
solution field of the specimen-level problem serves as the input to the microstructure-level problems. In turn, the
specimen level fluxes are obtained by averaging the microstructure level fluxes.

2.1. Problem formulation

The microstructure-level problem is given by the representative volume element (RVE). We refer to this problem
as an RVE even in the one and two-dimensional case as typical in the literature. We assume an RVE domain in the
shape of the square □ = (0, L)2 ∈ R2 with an edge length of L, and the coordinates of the points x ∈ □ are denoted
by x = (x0 x1)T. Note that the microstructure level problem is usually referred to as an RVE even in case of one and
two-dimensional problems. We consider, for the sake of concreteness, an antiplane elasticity problem and name our
variables accordingly. The shear modulus µ(x) in the RVE is periodic, i.e.,

µ(x0, x1) = µ(x0 + L, x1) = µ(x0, x1 + L) . (1)

Furthermore, the RVE is subject to the uniform average strain vector γ ∈ R2 determined by solving the macroscopic
specimen level problem. The respective deformation of the RVE is characterised by a scalar transverse displacement
field u(x) ∈ R with the shear strain vector

γ(x) = ∇u(x) , (2)

where ∇ denotes the gradient operator and γ(x) ∈ R2. The displacement field u(x) ∈ R consists of an affine component
due to the applied γ and a fluctuating component v(x) so that

u(x) = γ · x + v(x) , (3)

which implies the strain decomposition

γ(x) = γ + ∇v(x) . (4)

The fluctuating displacement v(x) ∈ R must satisfy the periodicity condition

v(x0, x1) = v(x0 + L, x1) = v(x0, x1 + L) . (5)

The decomposition (4) and the periodicity condition (5) ensure that the applied γ is indeed the average strain

1
L2

∫ L

0

∫ L

0
γ dx0 dx1 =

1
L2

∫ L

0

∫ L

0

(
γ + ∇v(x)

)
dx0 dx1 = γ . (6)
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The stress field vector σ(x) ∈ R2 of the micro-structure level satisfies the equilibrium equation

∇ · σ(x) = 0 , (7)

and the constitutive equation

σ(x) = µ(x)γ(x) = µ(x)
(
γ + ∇v(x)

)
. (8)

Hence, the boundary value problem for micro-structure can be summarised as

∇ · (µ(x)∇v(x)) + γ · ∇µ(x) = 0 . (9)

To ensure the periodicity of the displacement field v(x) the Dirichlet boundary conditions must be chosen such
tat v(x0, 0) = v(x0, L) and v(0, x1) = v(L, x1).

It is not possible to solve the boundary value problem (11) using a Fourier-based approach because of the non-
constant µ(x). Therefore, we first introduce a constant reference shear modulus µ0 and rewrite the constitutive equation
as (8) as

σ(x) = (µ(x) − µ0)γ(x) + µ0γ(x) = τ(x) + µ0γ(x) , (10)

where τ(x) is referred to as the polarisation stress. Subsequently, we use the equilibrium (7) to define the fixed point
iteration

µ0∇ · ∇v(s+1)(x) + ∇ · τ(s)(x) = 0 . (11)

The polarisation stress τ(s) at iteration step s depends on the known displacement v(s) and the applied strain γ.

2.2. Periodic solutions

In preparation for the Fourier discretisation of the incremental RVE problem, we consider a polarisation stress
vector consisting of a single wave with a period L, (spatial) frequency vector ξ = (ξ0 ξ1)T with ξ0 = ξ1 = 2π/L and
a complex amplitude τ̂ ∈ C2, i.e.,

τ(x) = τ̂(ξ)eiξ·x , (12)

where i2 = −1 and ξ · x = ξ0x0 + ξ1x1. The corresponding solution will be a single wave with the same frequency
vector ξ but a yet unknown amplitude v̂(ξ) ∈ C2:

v(x) = v̂(ξ)eiξ·x . (13)

Note that the components of τ(x) and v(x) can have different phases given that the amplitudes τ̂ and v̂(ξ) are complex
valued. Introducing the expressions (12) and (13) into (11), while ignoring the iteration counter s, yields the amplitude
of the solution,

−µ0(ξ · ξ)v̂(ξ) + iξ · τ̂(ξ) = 0 ⇒ v̂(ξ) =
1
µ0

iξ · τ̂(ξ)
ξ · ξ

. (14)

Therefore, the solution of the RVE problem is a wave given by

v(x) =
1
µ0

iξ · τ̂(ξ)
ξ · ξ

eiξ·x . (15)

Differentiating the solution vector yields according to (2) the strain

γ(x) = −
1
µ0
ξ
ξ · τ̂(ξ)
ξ · ξ

eiξ·x = Γ̂(ξ) · τ̂(ξ)eiξ·x , (16)
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where Γ(σ) ∈ R2.

2.3. Fourier discretisation

We approximate on the bounded RVE domain □ = (0, L)2 ⊂ R2 periodic functions with band-limited interpola-
tion, also referred to as Whittaker-Shannon interpolation [43]. The band-limited interpolation of the solution field is
defined as

v(x) ≈ vh(x) =
1
N

N−1∑
k0=0

N−1∑
k1=0

v̂k0k1 eiξk0k1 ·x =
1
N

N−1∑
k0=0

N−1∑
k1=0

v̂keiξk·x , (17)

with the multi-index k = (k0, k1) and the frequency vector ξk = (ξ0,k0 ξ1,k1 )T; hence ξk · x = ξ0,k0 x0 + ξ1,k1 x1 . As
will be explained shortly, the multi-index k can be identified as grid point labels of the RVE domain discretisation.
The components of the frequency vector for a specific k are given by

ξ0,k0 =
2πr(k0)

L
, ξ1,k1 =

2πr(k1)
L

. (18)

Here and elsewhere in the paper N ≥ 2 is an even integer. N is an integer because v(x) is required to be periodic. The
function r(l) is introduced to relabel the frequency components as

r(k0) =

k0 0 ≤ k0 < N/2
k0 − N N/2 ≤ k0 < N ;

(19)

see also [43, Ch. 3] and [9, Ch. 2].
To determine the amplitudes v̂k0k1 from the function values v(x), we introduce a discretisation consisting of N × N

cells of size h × h, i.e. h = L/N, and the grid point coordinates

xk ≡ xk0k1 =
L
N

(
k0

k1

)
= h

(
k0

k1

)
, k0 = 0, . . . , N − 1 , k1 = 0, . . . , N − 1 . (20)

We denote the function values at the grid points with vk = v(xk). According to (17), the function values at the grid
points are given by

vh
k0k1 =

1
N

N−1∑
j0=0

N−1∑
j1=0

v̂ j0 j1 ei
(
ξ0, j0 k0h+ξ1, j1 k1h

)
=

1
N

N−1∑
j0=0

N−1∑
j1=0

v̂ j0 j1 ei 2π
N (r( j0)k0+r( j1)k1) . (21)

It is easy to show that this equation represents the inverse DFT of v̂k0k1 , i.e.,

vh
k0k1 =

1
N

N−1∑
j0=0

N−1∑
j1=0

v̂ j0 j1 ei 2π
N ( j0·k0+ j1·k1) . (22)

The inverse of this mapping, i.e. the DFT of vh
jk, takes the form

v̂ j0 j1 −
1
N

N−1∑
k0=0

N−1∑
k1=0

vh
k0k1 e−i 2π

N ( j0·k0+ j1·k1) . (23)

As will be detailed in Section 4.5, the DFT and its inverse can be very efficiently computed on a quantum computer
using the QFT algorithm.

Clearly, all periodic fields appearing in the RVE problem (11) can be approximated using band-limited inter-
polation. The band-limited approximation of a periodic field consists of a linear combination, or superposition, of
waves with N2 different frequencies. The RVE solution for each wave component is the same as the single-wave
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Algorithm 1 Fourier-based iterative solution of the RVE problem on □ = (0, L)2 ⊂ R2.
Initialization:
γ(s=0)

k ≡ γ(s=0)
k0k1 = γ̄

σ(s=0)
k ≡ σ(s=0)

k0k1 = µ(xk)γ(0)
k ∀ xk ≡ xk0k1 ∈ □

Iteration: γ(s)
k and σ(s)

k at every grid point k = (k0, k1) are xk known
(a) τ(s)

k = σ
(s)
k − µ

0γ(s)
k =

(
µ(xk) − µ0

)
γ(s)

k

(b) τ̂(s)
j = DFT(τ(s)

k )
(c) Convergence test

(d) γ̂(s+1)
j =

−Γ̂ j · τ̂
(s)
j if j0 , N/2 and j1 , N/2

√
Nγ̄ if j0 = j1 = N/2

(e) γ(s+1)
k = DFT−1

(
γ̂(s+1)

j

)
(f) σ(s+1)

k = µ(xk)γ(s+1)
k

(g) s← s + 1

solution (24) derived in the previous section. The entire solution is obtained as the superpositon of the solutions of
the N2 frequencies, i.e.,

vh(x) =
1
µ0

N−1∑
k0=0

N−1∑
k1=0

iξk · τ̂k

ξk · ξk
eiξk·x . (24)

Finally, the sketched solution approach can be used for solving the homogenisation boundary value problem prob-
lem (11) with a non-homogenous shear modulus as detailed in Algorithm 1.

3. Essentials of quantum computing

In this Section we provide a summary of the foundations of the quantum information processing covering aspects
of quantum mechanics and computing. For a more comprehensive review we refer to textbooks [1, 25, 35, 46] and
tutorial paper [2].

3.1. Notation and definitions

We use in this paper both the Dirac notation from quantum mechanics, also known as bra-ket notation, and the
matrix notation familiar from linear algebra. As can be glanced from Table 1 the two notations widely mirror each
other.

3.2. Quantum systems

In quantum computing data is encoded via the state of a quantum system consisting of one or more qubits, i.e.
quantum particles, with two different distinct states. In physical terms, the two states of a qubit can be realised, e.g.,
as the polarisation of a photon or two energy levels of an electron. In contrast, the two states of a classical particle,
like a coin, are its head and tail states.

3.2.1. One-qubit systems
The state |q⟩ ∈ C2 of a single qubit is expressed as the superposition, or linear combination, of two states abstractly

labelled as {|0⟩ , |1⟩} in Dirac notation or {e0 = (1 0)T, e1 = (0 1)T} in matrix notation, i.e.,

|q⟩ = q0 |0⟩ + q1 |1⟩ = q0

(
1
0

)
+ q1

(
0
1

)
=

(
q0
q1

)
, (25)
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Matrix notation Dirac notation Examples / Notes

Scalar z ∈ C z ∈ C

Complex conjugate of z z∗ ∈ C z∗ ∈ C (1 + i)∗ = (1 − i)

Modulus of z |z| ∈ R |z| ∈ R |z| =
√

z∗z =
√

zz∗

Vector (or, a ket) q ∈ CN |q⟩ ∈ CN Components: q j

j = {0, 1, N − 1}

Dual vector (or, the bra) of q q† ∈ CN ⟨q| ∈ CN q† = (qT)∗

Inner product between q and r q · r ⟨q|r⟩ q · r = q†r

Kronecker product q ⊗ r ∈ CN×N |q⟩ ⊗ |r⟩ ∈ CN×N |q⟩ ⊗ |r⟩ ≡ |q⟩ |r⟩ ≡ |qr⟩

Matrix A ∈ CN×N A ∈ CN×N Components: A jk

j, k = {0, 1, N − 1}

Hermitian conjugate of A A† ∈ CN×N A† ∈ CN×N A† = (AT)∗ = (A∗)T

Inner product between q and Ar q†Ar ⟨q|A|r⟩ ⟨q|A|r⟩∗ = ⟨r|A|q⟩

Standard basis vector

(or, the computational basis)
e0, e1, . . . , eN−1 |0⟩ , |1⟩ , . . . , |N − 1⟩

e0 = (1 0 . . . 0)T

e1 = (0 1 . . . 0)T

Table 1: Summary of the definitions and notation used in this paper.

where q0, q1 ∈ C are two coefficients called amplitudes. For comparison, the same state |p⟩ expressed in matrix
notation reads

q = q0e0 + q1e1 = q0

(
1
0

)
+ q1

(
0
1

)
=

(
q0
q1

)
. (26)

The kets |0⟩ and |1⟩, or e0 and e1, are two basis vectors which are referred to as the computational basis.
The state vector |q⟩ expressed in a different orthonormal basis (spanning the same Hilbert space C2) will have

different coefficients. Assuming that the measuring device can measure the two states {|0⟩ , |1⟩}, the qubit will be
found either in state |0⟩ or |1⟩ when observed. In quantum mechanics terminology, the state |q⟩ will collapse either
into state |0⟩ or |1⟩. According to the postulates of quantum mechanics, specifically the Born rule, the probability to
observe |0⟩ is

p(|0⟩) = | ⟨q|0⟩ |2 = |q∗0 ⟨0|0⟩ + q∗1 ⟨1|0⟩ |
2 = |q∗0|

2 = |q0|
2 . (27)

Note that ⟨q| = q∗0 ⟨0| + q∗1 ⟨1| according to Table 1. Similarly, the probability to observe |1⟩ is p(|1⟩) = |q1|
2. The

two probabilities must satisfy |q1|
2 + |q2|

2 = 1. Once the qubit has been observed, i.e. the state has collapsed, it will
maintain its observed state and repeated measurements will yield the same result.

As will be detailed in Section 3.4, we note that the two states |0⟩ and |1⟩ are a property of the measuring
device rather than the quantum system. For instance, a measuring device that can measure only the orthogonal
states {|r⟩ , |r⊥⟩} will find the qubit in one these two states. The respective probabilities are determined by replac-
ing |0⟩ with |r⟩ or |r⊥⟩ in (27). Hence, the representation of the intrinsic qubit state |q⟩ in a specific basis is a matter of
choice by the observer.

3.2.2. Multi-qubit systems
To begin with, we consider a two-qubit system (n = 2) with the state vector |q⟩ ∈ C2n. The elements of the

respective 2n dimensional basis are given by the Kronecker product of the basis states {|0⟩ , |1⟩} for each of the qubits,
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i.e.,

{|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |1⟩} . (28)

These four basis states are often abbreviated as

|0⟩⊗ |0⟩ ≡ |0⟩ |0⟩ ≡ |00⟩ , |0⟩⊗ |1⟩ ≡ |0⟩ |1⟩ ≡ |01⟩ , |1⟩⊗ |0⟩ ≡ |1⟩ |0⟩ ≡ |10⟩ , |1⟩⊗ |1⟩ ≡ |1⟩ |1⟩ ≡ |11⟩ . (29)

Converting the four binary numbers 00, 01, 10 and 11 to the decimals 0, 1, 2 and 3, respectively, yields an alternative
labelling for the states

|0⟩ ≡ |0⟩ ⊗ |0⟩ , |1⟩ ≡ |0⟩ ⊗ |1⟩ , |2⟩ ≡ |1⟩ ⊗ |0⟩ , |3⟩ ≡ |1⟩ ⊗ |1⟩ . (30)

We obtain after evaluating the Kronecker products

|0⟩ =


1
(
1
0

)
0
(
1
0

)
 =


1
0
0
0

 , |1⟩ =


1
(
0
1

)
0
(
0
1

)
 =


0
1
0
0

 , |2⟩ =


0
(
1
0

)
1
(
1
0

)
 =


0
0
1
0

 , |3⟩ =


1
(
0
1

)
0
(
0
1

)
 =


0
0
0
1

 . (31)

Using these basis vectors, the state |q⟩ ∈ C4 of a two-qubit system is given by

|q⟩ =
3∑

k=0

qk |k⟩ =


q0
q1
q2
q3

 , (32)

with the coefficients qk ∈ C. The coefficients qk must be normalised as the probability to observe the qubit in state |k⟩
is given by p(|k⟩) = |qk |

2.
It bears emphasis that the Kronecker product of two one-qubit states is different from the two-qubit state (32). The

Kronecker product of two one-qubit states |r⟩ and |s⟩ yields the state

|r⟩ ⊗ |s⟩ = (r0 |0⟩ + r1 |1⟩) ⊗ (s0 |0⟩ + s1 |1⟩) =


r0s0
r0s1
r1s0
r1s1

 . (33)

The Kronecker product of two one-qubit states cannot express every valid quantum state such as the state

|q⟩ =
1
√

2
|0⟩ ⊗ |0⟩ +

1
√

2
|1⟩ ⊗ |1⟩ =


1/
√

2
0
0

1/
√

2

 , (34)

which requires r0s0 = r1s1 = 1/
√

2, but at the same time r0s1 = 0 and r1s0 = 0. The states that cannot be repre-
sented as the Kronecker product of one-qubit states are referred to as entangled states. The non-entangled states are
the separable states or product states.

Similar to the two-qubit case the state of n qubits is given by

|q⟩ =
2n−1∑
k=0

qk |k⟩ =


q0
q1
...

q2n−1

 , (35)
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where qk ∈ C. The index k is frequently expressed as a binary

k = k02n−1 + k12n−2 + . . . + kn−221 + kn−120 ≡ k0k1 . . . kn−1kn , (36)

so that (35) can be written as

|q⟩ =
2n−1∑
k=0

qk |k⟩ =
1∑

k0=0

1∑
k1=0

. . .

1∑
kn−2=0

1∑
kn−1=0

qk0k1...kn−2kn−1 |k0k1 . . . kn−2kn−1⟩ . (37)

Moreover, similar to two qubit states each of the states |k⟩ are obtained as the Kronecker products of single qubit
states which becomes evident when writing

|k0k1 . . . kn−2kn−1⟩ ≡ |k0⟩ |k1⟩ . . . |kn−2⟩ |kn−1⟩ ≡ |k0⟩ ⊗ |k1⟩ ⊗ . . . ⊗ |kn−2⟩ ⊗ |kn−1⟩ . (38)

The inevitability of entangled states is even more apparent in case of n > 2. Each separate qubit has two coeffi-
cients so that a separable state with n qubits can have only up to 2n distinct coefficients, in contrast an entangled state
can have up to 2n distinct coefficients. Without going into details, we note that the entanglement property of quantum
systems is in addition to their superposition property fundamentally different from classical systems such as a system
with n binary coins with the states head and tail [24].

3.3. Quantum gates and circuits

At the most abstract level, a quantum computer maps a state |q⟩ to a new state U |q⟩ for a given unitary matrix U.
The coefficients of the state |q⟩ are the input and the coefficients of U |q⟩ are the output. The unitarity require-
ment, U† = U−1, is dictated by quantum mechanics and ensures that the mapped state remains normalised. In the
circuit model of quantum computing, the unitary matrix U is composed of a sequence of smaller elementary unitary
matrices acting only one or a few qubits at a time. This approach is possible because the product of unitary matrices is
also unitary. The elementary unitary matrices correspond in the quantum circuit to gates so that we refer to elementary
matrices interchangeably as gates. This section provides a summary of the mostly widely used gates and discusses
how they are combined to quantum circuits implementing the unitary transformation U.

3.3.1. One-qubit gates
The three most common one-qubit gates are the Pauli gates

X =
(
0 1
1 0

)
, Y =

(
0 i
−i 0

)
, Z =

(
1 0
0 −1

)
, (39)

and the unitary gate

I =
1
√

2

(
1 0
0 1

)
. (40)

Proposition 1. Any unitary matrix U ∈ C2×2, or one-qubit gate, can be expressed as the linear combination of the
four unitary matrices, or gates, {I, X, Y, Z}.

The Pauli gates are Hermitian and involutory (self inverse). As an example, the X gate applied twice to a one-qubit
state yields, owing to the involutory property,

X
(
q0
q1

)
=

(
q1
q0

)
; X

(
q1
q0

)
=

(
q0
q1

)
. (41)

When exponentiated the Pauli matrices yield the three rotation gates

RX(θ) = e−iθX/2 = , RY (θ) = e−iθY/2 , RZ(θ) = e−iθZ/2 , (42)
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which evaluate to

RX(θ) =
(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)
, RY (θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
, RZ(θ) =

(
e−iθ/2 0

0 eiθ/2

)
. (43)

Proposition 2. The exponential eiθA of a Hermitian matrix A = A† is a unitary matrix and is equal to

eiθA = I cos(θ) + iA sin(θ) . (44)

Other widely used one-qubit gates include the Hadamard and the phase gates,

H =
1
√

2

(
1 1
1 −1

)
, P(θ) =

(
1 0
0 eiθ

)
, (45)

respectively.

3.3.2. Multi-qubit gates
We first consider gates defined as the Kronecker products of one-qubit gates. To this end, note that the Kronecker

product of two or more unitary matrices is a unitary as well. By way of example, consider the two-qubit gate

X ⊗ Y =
(
0 1
1 0

)
⊗

(
0 i
−i 0

)
=


0
(

0 i
−i 0

)
1
(

0 i
−i 0

)
1
(

0 i
−i 0

)
0
(

0 i
−i 0

)
 =


0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

 . (46)

If this gate is applied to a non-entangled product state |r⟩ ⊗ |s⟩ it is equivalent to applying first X to |r⟩ and Y to |s⟩ and
then taking their Kronecker product, i.e.,

(X ⊗ Y)(|r⟩ ⊗ |s⟩) = (X |r⟩) ⊗ (Y |s⟩) . (47)

Hence, starting with a product multi-qubit state applying only single qubit gates the state will remain a non-entangled
product state.

To achieve entanglement a controlled-not or CNOT is required. The CNOT gate is defined as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (48)

In studying the action of the CNOT gate, or any other gate for that matter, on a state

|q⟩ =
3∑

k=0

qk |k⟩ =
1∑

k0=0

1∑
k1=0

qk0k1 |k0k1⟩ , (49)

it is sufficient to focus on its action on a single basis elements |k⟩ = |k0k1⟩. This is possible because of the linearity of
quantum transformations. According (48), the CNOT gate maps the four basis elements as follows

CNOT : |0⟩ ⊗ |0⟩ 7→ |0⟩ ⊗ |0⟩ ; |0⟩ ⊗ |1⟩ 7→ |0⟩ ⊗ |1⟩ ; |1⟩ ⊗ |0⟩ 7→ |1⟩ ⊗ |1⟩ ; |1⟩ ⊗ |1⟩ 7→ |1⟩ ⊗ |0⟩ . (50)

Here, the left qubit k0 is the control and the right qubit k1 is the target. Only when the control qubit k1 is in state |1⟩
the target qubit k0 is flipped else its state is maintained.
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|k0⟩ = |0⟩ I

|k1⟩ = |0⟩ X
(a)

|k0⟩ = |0⟩

|k1⟩ = |1⟩ X
(b)

Figure 1: A basic quantum circuit with two qubits k0 and k1. As indicated in (b) the identity gate I is usually omitted in circuit diagrams so that
circuits (a) and (b) are equivalent. The states of both qubits are initialised with |k0⟩ = |0⟩ and |k1⟩ = |0⟩ so that |q⟩ = |k0⟩ ⊗ |k1⟩ = |0⟩ ⊗ |0⟩ which is
abbreviated as |q⟩ = |00⟩. The output of the circuit is (I ⊗ X)(|0⟩ ⊗ |0⟩) = I |0⟩ ⊗ X |0⟩ = |0⟩ ⊗ |1⟩.

k0 : •

k1 :
(a)

|k0⟩ = |0⟩ H •

|k1⟩ = |1⟩
(b)

Figure 2: Quantum circuits with two qubits k0 and k1. The circuit (a) depicts the CNOT gate where k0 is the control and k1 the target wires. The
respective unitary matrix is given in (48). The state of the target k1 is only flipped only when the state of the control is k0 = 1 else it is maintained.
The output of the circuit (b) is the entangled state 1√

2
(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩) = 1√

2
(|00⟩ + |11⟩) = 1√

2
(|0⟩ + |3⟩).

In passing, we note that CNOT is referred as a controlled Pauli X gate given that

CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ X =
(
1 0
0 0

)
⊗

(
1 0
0 1

)
+

(
0 0
0 1

)
⊗

(
0 1
1 0

)
. (51)

It goes without saying that CNOT is like any other quantum gate a unitary. To obtain the controlled two-qubit versions
of other single-qubit gates it is sufficient to replace X above with the respective single qubit gate.

3.3.3. Quantum circuits
As stated earlier, quantum computation can be summarised as the mapping of a multi qubit state |q⟩ ∈ C2n into

the state U |q⟩ ∈ C2n for the purpose of doing some desired computation. The construction of the unitary matrix
U ∈ C2n×2n out of one-qubit and multi-qubit gates is commonly visualised using circuit diagrams [18]. We should
bear in that

Proposition 3. The product U1U2 of two unitary matrices U1 and U2 is again a unitary.

Proposition 4. The Kronecker product U1 ⊗ U2 of two unitary matrices U1 and U2 is again a unitary.

In the circuit diagrams depicted in Figures 1 and 2 each line is referred to as a wire and represents a qubit. The circuit
is read from left to the right and shows the sequence of applied single and two-qubit gates. There is no joining or
splitting of wires which would violate the unitarity requirement for U. As illustrated in Figure 1 the identity gates
are usually omitted in the diagrams. In comparing and interpreting circuit diagrams note that there are two different
common qubit labelings, see Section 3.2.2.

In the basic circuit depicted in Figure 1 the computation starts with two qubits k0 and k1 both in the state |0⟩. The
corresponding state vector is

|q⟩ = |k0⟩ ⊗ |k1⟩ = |0⟩ ⊗ |0⟩ = |0⟩ ⊗ |0⟩ =


1
0
0
0

 (52)
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Next, we apply to the qubit k1 the Pauli X gate and to the qubit k0 the identity gate I. The resulting state is given by

|q⟩ = (I ⊗ X)(|k0⟩ ⊗ |k1⟩) = I |0⟩ ⊗ X |0⟩ =
(
1
0

)
⊗

(
0 1
1 0

) (
1
0

)
=


0
1
0
0

 . (53)

Notice that U = I ⊗ X is the unitary for entire circuit.
The entangled state given in equation (34) can be obtained with the circuit depicted in Figure 2b. The sequence of

the mappings is applied as follows:

(H ⊗ I) : |0⟩ ⊗ |0⟩ 7→
1
√

2
(|0⟩ + |1⟩) ⊗ |0⟩ ,

CNOT :
1
√

2
(|0⟩ + |1⟩) ⊗ |0⟩ 7→

1
√

2
(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩) .

(54)

For the CNOT the left qubit (k1) is the control qubit and the right (k0) is the target qubit. The target qubit state is
flipped when the control qubit is in state |1⟩. This can be also more formally explained obtain the definition (51) of
the CNOT and noting the orthonormality of the states |0⟩ and |1⟩.

3.4. Measurement

As mentioned before, in quantum systems the outcome of a measurement is random and measurement has an irre-
versible effect on the state of a system. When a quantum system with the state vector |q⟩ ∈ C2n−1

, i.e. |q⟩ =
∑2n−1

k=0 qk |k⟩,
is measured we will find it in one of its 2n−1 possible states. According to the Born rule, the probability of observing
the system in the specific state |k∗⟩ is p(|k∗⟩) = |qk∗ |

2 . The measurement process collapses the quantum state so
that after measurement the state vector becomes |q⟩ = |k∗⟩. Consequently, we can infer the absolute values of the
coefficients {|q0|

2, |q1|
2, . . . , |q2n−1 |2} only by considering the statistics of several quantum computations with the same

circuit.
Clearly, a state vector |q⟩ can be expressed in different basis so that the possible outcomes of a measurement

depend on the specific basis imposed by the measurement apparatus. This realisation leads to the notion of projective
measurement.

Proposition 5. A complete set of orthogonal projectors P j has the properties
∑

j P j = I and P jPk = δ jk and can be,
for instance, obtained from an orthonormal basis {|r0⟩ , . . . , |r2n−1⟩} according to the definition

P j = |r j⟩ ⟨r j| . (55)

In projective measurement the probability of observing the system in state j is given by

p( j) = ∥P j |q⟩ ∥ = ⟨q|P j|q⟩ . (56)

Note that the probabilities for all 2n−1 states add up to one as desired. Furthermore, during the measurement the
system collapses to the state

P j |q⟩
∥P j| |q⟩ ∥

=
P j |q⟩√

p( j)
. (57)

Projective measurement can be used to derive the rules for partial measurement. For instance, in a two qubit
system the two projectors

P0 = I ⊗ |0⟩ ⟨0| , P1 = I ⊗ |1⟩ ⟨1| , (58)

form a complete set. They measure the probability of finding the right qubit in the state |0⟩ or |1⟩, respectively. Hence,
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applying P1 to a quantum state |q⟩ = 1
√

2
(|1⟩ |0⟩ + |1⟩ |1⟩) yields the probability

p(0) = ⟨q|P0|q⟩ =
1
2
, (59)

and the state colapses to

P0 |q⟩√
p(0)

=
√

2P0 |q⟩ = |1⟩ |0⟩ . (60)

3.5. Quantum algorithm complexity
The complexity of a quantum algorithm can be measured by three major ways: the number of universal quantum

gates, the depth of the quantum circuit, and the number of queries of an oracle (black box) model. In this work, we aim
to make all of our quantum algorithms explicit with no refence to oracle black box. We define the complexity of our
quantum algorithm by the number of quantum gates present in our quantum circuit. For all cases studied in this work,
we shall transpile our quantum circuits with a universal set of quantum gates made of the two-qubit Controlled-Not
(or CNOT ) gate, and the one-qubit rotation gate (or U3 gate). We further assume the ideal scenario where we ignore
the error of fundamental quantum gates, and subsequently the cost for error correction.

4. Quantum computing algorithms

In this Section we provide a summary of quantum algorithms and circuits needed in our quantum computational
scheme. We also make comments on the computational complexity of these quantum algorithms.

4.1. Multi-controlled operation
One fundamental operation in scientific computing involves conditional commands for making decisions. In

classical computing, the ”if-then” structure is commonly used to handle such conditions. In the realm of quantum
computing, the equivalent of this conditional structure can be realized through multi-controlled operations.

As previously discussed in Section 3.3.2, the controlled-Not (CNOT) gate serves as a prototype circuit for such
operations. As elaborated in that section, it is possible to create a general controlled unitary circuit, denoted as the
controlled-U (CU) gate, by replacing the (NOT) gate with an arbitrary single-qubit rotation gate (U). Mathematically,
the CU gate is represented as:

CU = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ U. (61)

It is evident that the CU gate is an operator that maps the state |c⟩|t⟩ to |c⟩U |t⟩. In simpler terms, this operation can be
described as follows: ”If the control qubit is |c = 1⟩, then apply the operator |U⟩ to the target qubit |t⟩.”

Generalizing the concept of the CU gate leads to the multi-controlled rotation gate, which performs the mapping:

|c0c1...cn⟩|t⟩ 7→ |c0c1...cn⟩U |t⟩, (62)

where the rotation U is applied only if all the control qubits are set to |c0c1...cn⟩ = |11...1⟩. In our work, we adopt the
”V-chain” approach proposed by Nelson and Chuang[1] for multi-controlled operations.

To illustrate, we provide an example quantum circuit with 3 control qubits in Figure 3, employing the V-chain
architecture shown in Figure 3 (b). In the computational basis |c0c1c2⟩, the first Toffoli gate (i.e., the controlled
CNOT gate) transforms the state of the first ancilla qubit into |a0 = c0 · c1⟩, and the second Toffoli gate updates
the state of the second ancilla qubit to |a1 = c0 · c1 · c2⟩. A controlled-U gate is subsequently applied if |a1⟩ = 1,
indicating that this operation occurs only when all control qubits are in the state |1⟩. The circuit is then un-computed
by re-applying the Toffoli gates to ensure reversibility.

Complexity A general Multi-controlled operation with n control qubits requires n − 1 ancilla qubits and 2n − 2
Toffoli gates. We note that Toffoli gates can be realized by the universal gate set defined in 3.5, with 10 U gate and
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|c0⟩ : •

|c1⟩ : •

|c2⟩ : •

|t⟩ : U

(a)

|c0⟩ : • •

|c1⟩ : • •

|c2⟩ : • •

|a0⟩ : • •

|a1⟩ : •

|t⟩ : U

(b)

Figure 3: Quantum Circuit for Multi-Controlled Operations: (a) A multi-controlled rotation circuit featuring 3 control qubits |c0c1c2⟩ and one
target qubit |t⟩. (b) An implementation of the circuit from (a) utilizing the V-chain circuit as described in [1], augmented with 2 ancilla qubits
|a0a1⟩. We note that the operators represented by (a) and (b) are equivalent.

6 CNOT gate. We conclude that for a system with computational basis N = 2n, the Multi-controlled operation has a
computational complexity of O (Poly (n) hence is logrithmatic in N.

4.2. Encoding of polynomials

The encoding of functions on a quantum computer is relevant for most applications involving differential equa-
tions. We focus in the following on the encoding of polynomials given that any function on a closed and bounded
domain can be approximated by polynomials. Specifically, we consider the approach proposed in [41, 45] to encode
a real-valued univariate polynomial f (k) ∈ R of the form

f (k) =
p∑

m=0

αmkm , (63)

where k ∈ {0, 1, 2, . . . , 2n−1} is the domain, n the number of qubits, p the polynomial degree and αm ∈ R the prescribed
coefficients. As proposed in [41, 45], f (k) can be encoded by constructing a unitary UP ∈ C2n+1×2n+1

which is applied to
the augmented input state |k⟩ |0⟩ ≡ |k⟩⊗ |0⟩. The augmented state consists of the tensor product of the argument |k⟩ and
an ancillary qubit |0⟩. As will become clear, such ancillary, or helper, qubits are widely used in quantum algorithms
to embed the problem in a higher dimensional space. Later, the sought solution is determined by projecting the output
state to a lower dimensional space. The unitary UP is applied to the augmented input state yielding the output state

UP : |k⟩ |0⟩ 7→ |k⟩ (cos(ϵ f (k)) |0⟩ + sin(ϵ f (k)) |1⟩) = cos(ϵ f (k)) |k⟩ |0⟩ + sin(ϵ f (k)) |k⟩ |1⟩ . (64)

It is easy to see that UP makes use of the rotation gate RY (2ϵ f (k)) in (43) and concerns only the ancillary qubit
originally in state |0⟩. Intuitively, UP applies a rotation by ϵ f (k) in the plane spanned by the first (right-most) qubit.
The parameter ϵ ∈ R is a small scaling factor, which is chosen such that ϵ f (k) ≪ 1 so that the linearisation of the sine
term in (65) yields the approximation

cos(ϵ f (k)) |k⟩ |0⟩ + sin(ϵ f (k)) |k⟩ |1⟩ ≈
√

1 − (ϵ f (k))2 |k⟩ |0⟩ + ϵ f (k) |k⟩ |1⟩ . (65)

That is, for sufficiently small ϵ, the amplitude is equal to the sought function value ϵ f (k) when the ancillary qubit is
in state |1⟩. In contrast, when the ancillary qubit is in state |0⟩ the amplitude is of no interest and can be discarded.
As mentioned the rotation gate RY (2ϵ f (k)) is applied only to the ancillary qubit originally in state |0⟩. Because f (k)
is additively composed of p scaled monomials, the gate RY (2ϵ f (k)) can be multiplicatively composed of the p rota-
tions RY (2ϵamkm). Furthermore, the order of the rotations RY (2ϵαmkm) is irrelevant because all the rotations pertain to
the same ancillary qubit.

The implementation of the discussed algorithm as a quantum circuit can be best understood with an illustrative
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example. To this end, we consider, without loss of generality, the encoding of the quadratic polynomial

f (k) = α2k2 + α1k + α0 . (66)

The number of qubits n for representing k depends usually on the application. We choose here n = 3 so that k has the
binary representation

k = k0k1k2 = k022 + k121 + k220 . (67)

Before proceeding further, we note that k2
0 = k0, k2

1 = k1 and k2
2 = k2, given that each bit has either the value 0 or 1.

The binary form introduced in the quadratic polynomial (66) yields

f (k) = 4(α1 + 4α2)k0 + 2(α1 + 2α2)k1 + (α1 + α2)k2 + 8α2k0k2 + 4α2k1k2 + 16α2k0k1 + α0 . (68)

To begin the encoding process, we start with a 4-qubit system |k0k1k2⟩|0⟩. Recalling the definition of the RY gate,
for arbitrary θ ∈ R, we have:

RY (2θ)|0⟩ = e−iθY |0⟩ = cos(θ)|0⟩ + sin(θ)|1⟩. (69)

Let θ = f (k) (omitting the constant ϵ for simplicity), and our goal is to implement the operator e−i f (k)Y . Notably, the
summation operator in the polynomial fk is converted to the multiplication operator in the exponential form, as shown
in Eqn 70.

e−i f (k)Y =e−i4(α1+4α2)k20e−i2(α1+2α2)k1Ye−i2(α1+α2)k2Ye−i8α2k0k2Ye−i4α2k1k2Ye−i16α2k0k1Ye−iα0Y

=RY (8(α1 + 4α2)k0)RY (4(α1 + 2a2)k1)RY (2(α1 + α2)k2)·
RY (16α2k0k2)RY (8α2k1k2)RY (32α2k0k1)RY (2α0)

(70)

We can thus implement the desired operator using multi-controlled RY gates, as detailed in Section 4.1. For example,
we shall apply RY (16α2) to the last qubit if and only if |k2⟩ = 1, which can be achieved with a controlled RY gate with
rotation angle θ = 8(α1 + 4α2). We therefore achieve the encoding of the full polynomial by successively apply the
multi-controled RY gates as depicted in Fig. 4

The above described technique can be easily generalised to multivariate polynomials. For instance, consider the
bivariate polynomial

f (k, l) =
p∑

m=0

q∑
j=0

am jkml j , (71)

where p and q are the polynomial degrees of the arguments k and l, respectively, and am j ∈ R are the coefficients.
The argument pair take the values k, l ∈ {0, 1, 2, . . . , 2n−1}, so that there are in total n2 qubits. The augmented unitary
operator UP ∈ C2n2+1×2n2+1

implements the mapping

UP : |k⟩ |l⟩ |0⟩ 7→ cos(c f (k, l)) |k⟩ |l⟩ |0⟩ + sin(c f (k, l)) |k⟩ |l⟩ |1⟩ . (72)

To determine such a unitary UP, we first express the arguments k and l of the polynomial as binaries k = kn−1 . . . k1
and l = ln−1 . . . l1l0. Substituting them into (71) and the application of the multinomial expansion theorem yields

f (k, l) =
p∑

m=0

q∑
j=0

αm j(2nkn + ... + 21k1 + 20k0)m(2nln + .... + 21l1 + 20l0) j

=

p∑
m=0

q∑
j=0

∑
b1+b2+...bn=m

∑
c1+c2+...cn= j

αm j
m!

b1!b2!...bn!
j!

c1!c2!...cn!
Πn−1

s=0Π
n−1
t=0 kbs

s lct
t .

(73)

The respective quantum circuit consists of multi-controlled RY gates conditioned on the n2 qubits with the rotation
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|k0⟩ : • • •

|k1⟩ : • • •

|k2⟩ : • • •

|0⟩ : RY (8(α1 + 4α2)) RY (4(α1 + 2α2)) RY (2(α1 + α2)) RY (16α2) RY (8α2) RY (32α2) RY (2α0)

Figure 4: Quantum circuit for implementing the mapping |k⟩ |0⟩ 7→ cos( f (k)) |k⟩ |0⟩ + sin( f (k)) |k⟩ |1⟩. Here, k = k0k1k2 is represented with n = 3
qubits and the ancillary qubit is initially in state |0⟩. For instance, providing the circuit with the input |k⟩ = |1⟩ |1⟩ |0⟩, i.e., k = 22 + 21 = 6, it will
yield the output cos( f (6)) |1⟩ |1⟩ |0⟩ |0⟩ + sin( f (6)) |1⟩ |1⟩ |0⟩ |1⟩.

angles equal to αm j
m!

b1!b2!...bn!
j!

c1!c2!...cn! .
Complexity Finally, for a polynomial function of degree p and domain size N = 2n, the circuits can be evaluated

in O (Poly (pn)) time, hence is logarithmic in N. A proof of this can be found in Appendix C

4.3. State preparation via function encoding
On a quantum computer, a classical vector |q⟩ ∈ CN with an L2-norm ∥ |q⟩ ∥ = 1 can be encoded into the amplitudes

of n = log2 N qubits. This means, for instance, that n = 3 qubits are sufficient to encode a classical vector with N = 8
components. Considering that each of the n = 3 qubits has only two states, the encoding of a vector with N = 8
components requires entanglement. The encoding of a classical vector into a quantum state is referred to as state
preparation.

There are a number of approaches and algorithms for efficient state preparation [3, 30, 38]. In all algorithms a
quantum state |q⟩ is prepared by applying a suitably constructed unitary US to the zero-state, i.e.,

US : |0⟩⊗n = |0 . . . 0︸︷︷︸
n

⟩ 7→ |q⟩ =
2n∑

k=0

qk |k⟩ , (74)

so that the amplitudes qk are equal to the components of the classical vector we seek to encode. It is possible to
use the polynomial encoding approach introduced in the previous section to devise a technique for constructing an
approximate unitary. To this end, we first determine a polynomial f (k) ≈ qk, for all k = 1, 2, · · · , N, approximating
the components of a classical vector |q⟩ ∈ RN . We determine the polynomial f (k) on a classical computer using
standard polynomial approximation techniques, specially Chebyshev interpolation. After a f (k) is determined, we
can use the method described in the previous section to construct a unitary UP and to evaluate it for different k on a
quantum computer, cf. (64). We can make use of quantum superposition to evaluate f (k) for all possible values of k
simultaneously. To this end, we first generate a uniform quantum state composed of all basis vectors before applying
the unitary UP. As illustrated in Figure 5 for n = 3 a uniform quantum state is obtained by applying Hadamard gates.
More specifically, the three Hadamard gates in Figure 5 accomplish the following transformation

(H ⊗ H ⊗ H ⊗ I) : |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ 7→
1

2
√

2
(|0⟩ + |1⟩) ⊗ (|0⟩ + |1⟩) ⊗ (|0⟩ + |1⟩) ⊗ |0⟩

=
1

2
√

2

2∑
k0=0

2∑
k1=0

2∑
k2=0

|k0⟩ |k1⟩ |k2⟩ |0⟩ =
1

2
√

2

7∑
k=0

|k⟩ |0⟩ .
(75)

According to (64) and (65), the application of the unitary UP (c f (k)) to this state yields

UP (c f (k)) :
1

2
√

2

7∑
k=0

|k⟩ |0⟩ 7→
1

2
√

2

7∑
k=0

(cos(c f (k)) |k⟩ |0⟩ + sin(c f (k)) |k⟩ |1⟩)

≈
1

2
√

2

7∑
k=0

(√
1 − (c f (k))2 |k⟩ |0⟩ + c f (k) |k⟩ |1⟩

)
.

(76)

An alternative state preparation approach for real-valued vectors |q⟩ ∈ RN is introduced in Appendix B.
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|k0⟩ :

UP( f (k))
|k1⟩ :

|k2⟩ :

|0⟩ :
(a)

|k0⟩ = |0⟩ : H

UP( f (k))
|k1⟩ = |0⟩ : H

|k2⟩ = |0⟩ : H

|0⟩ :
(b)

Figure 5: Quantum state preparation via function encoding. The four-qubit gate in (a) represents the unitary UP( f (k)) for encoding f (k) and is
composed as the circuit depicted in Figure 4. Prepending the circuit with three Hadamard gates as shown in (b) yields a uniform superposition
state, which becomes after multiplication by UP( f (k)) an entangled state.

4.4. Encoding of arbitrary functions

The accurate approximation of arbitrary functions by polynomials is an extensively studied topic in numerical
analysis, so a wide range of efficient algorithms and implementations are available [8]. An arbitrary function r(k) ∈
R can be encoded on a quantum computer by first determining its piecewise polynomial approximation and then
encoding the obtained polynomials. We perform the piecewise polynomial approximation on a classical computer
using the Python Numpy library. Subsequently, we encode the obtained polynomials using the approach introduced
in Section 4.2.

In piecewise approximation the polynomial degree p in the intervals and the number of the subintervals nω are
both fixed and chosen empirically. The polynomials of degree p are determined so that they interpolate the given
function r(k) at p + 1 collocation points. As known, choosing the Chebyshev nodes as the collocation points yields
a particularly efficient approximation with small interpolation errors. Furthermore, at the Chebyshev nodes of the
first kind the Chebyshev polynomials satisfy a certain orthogonality relationship so that the interpolation can be
performed without inverting a (Vandermonde) matrix. After determining the polynomial in the Chebyshev basis
it is straightforward to convert it into a monomial basis as required for encoding. Furthermore, if nω > 1, it is
necessary to determine in which interval the argument k of r(k) lies in order to evaluate the polynomial approximant
corresponding to the interval. The interval number is determined by comparing the position of k with respect to the
interval boundaries.

We consider an example to discuss the sketched approach in more detail. In homogenisation the inverse square
of the relabelling function r(k) introduced in (19) is required, which is as depicted in Figure 6a discontinuous at the
centre of the interval [0, 7]. Note that the r(k) corresponds to a physical domain is discretised with N = 8 grid cells
and the respective nodal vectors have N = 8 components so that they require n = log2 8 = 3 qubits to represent
on a quantum computer. The square inverse 1/(r(k))2 is plotted in Figure 6b and is C0 continuous is at the centre
of the interval. We approximate the square inverse with two polynomials f 0(k) and f 0(k) of degree p = 3 over the
intervals ω1 = [1, 3) and ω2 = [3, 7], i.e. nω = 2. The accuracy of the approximation can be improved by increasing
the polynomial degree p and the number ob subintervals nh.

The quantum circuit for evaluating the obtained piecewise polynomial approximation is shown in Figure 7. The
top three qubits |k0⟩, |k1⟩ and |k2⟩ represent the state vector and the remaining four qubits are ancillary qubits. After
execution, the function value is r(k) is equal to the amplitude of the second component of the ancillary qubit |a3⟩. The
two gates UP0 and UP1 represent the circuits for evaluating the two polynomials f 0(k) and f 1(k), and are constructed as
described in Section 4.2. Note that UP0 and UP1 are conditioned on the ancilla |a0⟩ and are executed only when |a1⟩ ≡

|1⟩. The two gates UC0 and UC1 determine whether k is in interval ω1 or ω2 and set |a1⟩ accordingly to state k1. This
is achieved by integer comparison of k and the interval boundaries. The inverse gates U†C0

and U†C1
reset, or unset,

the |a1⟩ to its original state. Their inverses are obtained by simply executing the subcircuits backwards and taking
the inverses of each of the gates in the subcircuits given that quantum computing is reversible. See also [22] for the
implementation of gates UC0 and UC1 , and [44] for the overall circuit for encoding arbitrary functions. The sketched
circuit is available in the qiskit PiecewiseChebyshev class.

ComplexityWe observe that the operators UC0 and UC1 can be effectively implemented using quantum bit string
comparator algorithms, as elaborated in Oliveira et al. (2007) [33]. This reference demonstrates that a subtraction-
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Figure 6: Mappings of the N = 8 components of the state vector. In (a) the mapping of the components to wave numbers r(k) according to (19)
is plotted. In (b) the function 1/r(k)2 needed for computing the second derivatives and its approximation are illustrated. The dots (•) denote
the exact values which are approximated with two qubic polynomials in the two intervals [1, 3) and [3, 7]. The polynomials are obtained by
interpolating 1/r(k)2 at the four Chebyshev points of the first kind. The four Chebyshev points in the two intervals are not shown. The crosses (×)
denote the values obtained from the quantum circuit in Figure 7.

|k0⟩ = |0⟩ :

UC0

UP0

U†C0
UC1

UP1

U†C1

|k1⟩ = |0⟩ :
|k2⟩ = |0⟩ :
|a0⟩ = |0⟩ :
|a1⟩ = |0⟩ : • •

|a2⟩ = |0⟩ :
|a3⟩ = |0⟩ :

Figure 7: Quantum circuit for implementing the mapping |k⟩ |0⟩⊗4 7→ cos(r(k)) |k⟩ |0⟩ |0⟩⊗3 + sin(r(k)) |k⟩ |1⟩ |0⟩⊗3. This circuit is constructed using
the qiskit PiecewiseChebyshev class and encodes the function r(k) plotted in Figure 6b. The function r(k) is defined over two intervals. The
two unitaries UC0 and UC1 set the the ancillary qubit |a1⟩ to state |1⟩ when the evaluation point |k⟩ lies in the their respective intervals. The
corresponding unitaries U†C0

and U†C1
set the ancillary qubit |a1⟩ back to state |0⟩. The polynomials for the two intervals are evaluated with the

controlled unitaries UP0 and UP1 conditioned on the ancillary qubit |a1⟩. After the circuit is executed the function value sin(r(k)) |k⟩ is encoded in
the top three qubits when the ancillary qubit |a0⟩ is found in state |1⟩. The other three ancillary qubits a1, a2 and a3 are only used temporarily by
the circuit during execution and are of no relevance.

based algorithm facilitates the construction of these operators, with the complexity scaling according to O(Poly(n)).
Furthermore, as presented in Section 4.2, we can implement the operators UP0 and UP1 using a polynomial encoding
algorithm. The controlled versions of UP0 and UP1 are realized through the V-chain algorithm, detailed in Section 4.1.
Notably, both of these algorithms fall within the complexity class of O(Poly(n)). Based on this analysis, we conclude
that the overall algorithm maintains a complexity of O(Poly(n)).

4.5. Quantum Fourier Transform

We introduced the classical Discrete Fourier Transform (DFT) of a vector v ∈ CN in Section 2.3. In preparation
for the derivation of the equivalent Quantum Fourier Transform we denote DFT more compactly as

v = FN v̂ (77)
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where FN ∈ CN×N is the Fourier matrix

FN =
1
√

N


...

. . . ω
jk
N . . .
...

 , (78)

and ωN is the N-th root of unity

ωN = e
2πi
N . (79)

It is straightforward to show that the Fourier matrix FN is unitary, i.e. F−1
N = F†N . Consequently, DFT can be readily

implemented on a quantum computer. Note that in contrast to mathematical literature in quantum computing, the roles
of v̂ and v in (77) are usually switched. This is inconsequential as long as consistency is maintained.

In a quantum system with n qubits the two vectors v̂ ∈ CN and v ∈ CN are two state vectors with N = 2n. To
emphasise the switch from DFT to QFT, we rewrite (77) in bra-ket notation as

|̂q⟩ = FN |q⟩ ⇒

N∑
j=0

q̂ j | j⟩ = FN

N∑
k=0

qk |k⟩ . (80)

As always, in order to implement QFT on a quantum computer the unitary matrix FN must be decomposed into
elementary gates acting on one or two qubits at a time. In coming up with such a decomposition, it is, as usual,
convenient to consider only the mapping of individual basis vectors, i.e.,

FN |k⟩ =
1
√

N

N−1∑
j=0

ω
k j
N | j⟩ =

1
√

N

N−1∑
j=0

e
2πi
N k j | j⟩ . (81)

Subsequently, the obtained decomposition and quantum circuit can be applied to the entire state vector |q⟩ with no
further changes.

We choose, without loss of generality, n = 3 to illustrate the decomposition of FN into elementary one and two
qubit gates. We make use of the binary representation of indices

k = k0k1k2 = k022 + k121 + k220, j = j0 j1 j2 = j022 + j121 + j220 , (82)

cf. (36), and introduce the binary fraction notation

k
2n=3 = 0.k0k1k2 =

k0

21 +
k1

22 +
k2

23 . (83)

Furthermore, noting that |k⟩ = |k0⟩ |k1⟩ |k2⟩ and | j⟩ = | j0⟩ | j1⟩ | j2⟩, equation (81) can be rewritten as

FN |k0⟩ |k1⟩ |k2⟩ =
1
√

23

1∑
j0=0

1∑
j1=0

1∑
j2=0

(
e2πi(0.k0k1k2) j022

| j0⟩
) (

e2πi(0.k0k1k2) j121
| j1⟩

) (
e2πi(0.k0k1k2) j220

| j2⟩
)
,

=
1
√

23

(
|0⟩ + e2πi(0.k0k1k2)22

|1⟩
) (
|0⟩ + e2πi(0.k0k1k2)21

|1⟩
) (
|0⟩ + e2πi(0.k0k1k2)20

|1⟩
)
.

(84)

The exponentials can be further simplified because e2iπm = cos(2πm) + i sin(2iπm) ≡ 1 ∀m ∈ Z+, i.e.,

e2πi(0.k0k1k2) j022
= e2πi(0.k2) j0 , e2πi(0.k0k1k2) j121

= e2πi(0.k1k2) j1 , e2πi(0.k0k1k2) j020
= e2πi(0.k0k1k2) j2 , (85)
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k0 : H P(π/2) P(π/4) ×
1
√

2
(|0⟩ + e2πi(0.k2) |1⟩)

k1 : • H P(π/2) 1
√

2
(|0⟩ + e2πi(0.k1k2) |1⟩)

k2 : • • H ×
1
√

2
(|0⟩ + e2πi(0.k0k1k2) |1⟩)

Figure 8: Quantum Fourier Transform. One Hadamard gate H and a variable number of phase gates P(·) are applied to each qubit. For
instance, providing the circuit with the intput |k⟩ = |1⟩ |1⟩ |0⟩ so that 0.k2 = 0, 0.k1k2 = 1/2 and 0.k0k1k2 = 3/4, cf. (83) , it will
yield the output state 1/(2

√
2)(|0⟩ + |1⟩)(|0⟩ − |1⟩)(|0⟩ − i |1⟩). After evaluating the Kronecker products the result expressed in matrix form

reads (1,−i,−1,+i, 1,−i,−1, i).

Finally, a basis vector |k⟩ is mapped using QFT as

FN |k0⟩ |k1⟩ |k2⟩ =
1
√

23

(
|0⟩ + e2πi(0.k2) |1⟩

) (
|0⟩ + e2πi(0.k1k2) |1⟩

) (
|0⟩ + e2πi(0.k0k1k2) |1⟩

)
. (86)

Each of the three (round) brackets correspond to a single qubit. We obtain each of the bracketed expressions by
successively mapping a basis |k⟩ = |k0⟩ |k1⟩ |k2⟩ using the Hadamard and phase gates, H and P(θ), introduced in (45).
For instance focusing on the qubit |k0⟩, the application of the Hadamard gate yields

H : |k0⟩ 7→
1
√

2

(
|0⟩ + (−1)k0 |1⟩

)
=

1
√

2

(
|0⟩ + e

2πi
2 k0 |1⟩

)
=

1
√

2

(
|0⟩ + e2πi(0.k0) |1⟩

)
. (87)

Subsequent application of the controlled phase gate P(π/2) with |k1⟩ as the control qubit gives

1
√

2

(
|0⟩ + e

π
2 ik1 e2πi(0.k0) |1⟩

)
=

1
√

2

(
|0⟩ + e2πi(0.k0k1) |1⟩

)
. (88)

Note that k1 ∈ {0, 1} and P(π/2) is only applied when k1 = 1. One last application of the controlled phase gate P(π/4)
yields the expression within the last bracket in (86), i.e.,

1
√

2

(
|0⟩ + e

π
4 ik2 e2πi(0.k0k1) |1⟩

)
=

1
√

2

(
|0⟩ + e2πi(0.k0k1k2) |1⟩

)
. (89)

The expressions within the second and first bracket can be obtained in a similar way. The final circuit diagram is
depicted in Figure 8. Although the output of the circuit is correct the values are reversed in comparison to standard
DFT so that it is necessary to apply a swap gate to the qubits |k2⟩ and |k0⟩.

At last, it is simple to obtain from the introduced circuit for the inverse Fourier matrix FN to obtain a circuit for
the inverse Fourier matrix F−1

N . The quantum circuit must be run in reverse and the each gate replaced with its inverse,
i.e. its conjugate transpose given that all gates are unitary.

Complexity It is well known from [1] that the QFT circuit requires n Hardarmard gate and n(n+1)
2 controled Phase

gate. Therefore the over all complexity of the QFT circuit is O(n2).

4.6. Base swap

We introduce the base swap circuit for the implementation of the boundary condition in Alg. 1 (c). Given an
entangled state

∑N−1
j=0 y j| j⟩ and we wish to swap the two basis |m⟩, |l⟩ where m, l ∈ {0, 1, ...,N − 1}. We add an ancilla

qubits to this system and consider the agumented system
∑N−1

j=0 y j| j⟩|0⟩. We flag the desired states |m⟩ and |l⟩ using the
multi-controlled C-NOT gate (c.f., Fig. 9). We end up with states

N−1∑
j=0, j,m, j,l

y j| j⟩|0⟩ + ym|m⟩|1⟩ + yl|l⟩|1⟩ (90)
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q0 : X • X • • X • X
q1 : • • • •

q2 : •

Figure 9: An example base-swap circuit used for imposing the boundary conditions. This circuits swap the amplitudes corresponding to basis
|0⟩|1⟩ and |1⟩|1⟩.

We then conduct a controlled-swap of the qubits in |m⟩ and |l⟩, conditioned on the ancilla qubits taking the value |1⟩.
Afterwards, we uncompute the multi-controled C-NOT gate and shall end up with our desired state.

N−1∑
j=0, j,m, j,l

y j| j⟩|0⟩ + ym|l⟩|0⟩ + yl|m⟩|0⟩ (91)

An example circuit that swap the basis |0⟩|1⟩ and |1⟩|1⟩ is shown in Fig. 9.
Complexity Key to the implementation of the general base-swap circuit is the multi-controlled C-NOT gate. The

efficient implementation of a general multi-controlled unitary operator is a research topic of current interest in the
quantum computation community. In this work, we took the ”V-chain” approach proposed by Nelson and Chuang [1].
Given N = 2n computational basis embedid with n qubits, the V-chain algorithm is known to require an additional
n − 1 ancilla qubits, with a total of 2n − 1 CNOT gate. We therefore conclude that one can realize the general base
swap algorithm with 4n− 7 CNOT gate and at most 4n NOT gate. This is clearly a Poly log(N) scaling as the number
of universal quantum gate in our circuit grows only logrithmatically with respect to the number of degree of freedom
N.

5. Quantum computational homogenisation

We proceed to the implementation of the periodic homogenisation approach introduced in Section 2 on a quantum
computer with the help of the quantum algorithms described in Section 4. As detailed in Section 2.3, we approximate
all periodic fields using band-limited Fourier interpolation. Consequently, we solve linear differential equations by
solving a set of decoupled algebraic equations in the Fourier space. The transformations between the physical and
Fourier spaces are accomplished with QFT. To ease the discussion of the proposed approach, we first consider the
solution of periodic Poisson problems in 1D and 2D and, subsequently, the homogenisation problem on an RVE.

All the proposed quantum algorithms are implemented using the Python-based Qiskit SDK [13] and executed on
a noiseless simulator. We verify the correctness of the implementations by comparing the quantum solution encoded
in the output state vector with analytical and classical numerical solutions.

5.1. Periodic Poisson problems

5.1.1. One-dimensional case
We seek the solution of the one-dimensional periodic Poisson problem

−
d2v(x)

dx2 = f (x) , (92)

The solution v(x) and the source f (x) have the periodicity L = 1, i.e. v(x) = v(x + L) and f (x) = f (x + L). For solving
this problem, it is sufficient to consider the domain Ω = (0, L) ∈ R, which is discretised with a uniform grid of N cells
of size h. A grid point with the index k ∈ {0, 1, . . . , N −1} has the coordinate xk = kh and the source value fk = f (xk).
The source values at the N grid points are collected in the ket

| f ⟩ =
N−1∑
k=0

fk |k⟩ . (93)
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|k0⟩ = |0⟩ :

UI(| f ⟩) FN
UP

(
L2

(2πr(k))2

) F†N|k1⟩ = |0⟩ :

|k2⟩ = |0⟩ :

|0⟩ :

Figure 10: Quantum circuit for solving the one-dimensional periodic Poisson problem discretised with a uniform grid of N = 8 cells. Spatial and
Fourier coefficients at the N = 8 grid points are encoded as the amplitudes of a quantum state of the n = 3 qubits |k0⟩ |k1⟩ |k2⟩. The left most gate UI

encodes the source | f ⟩ as a quantum state. The second gate applies QFT to determine |̂ f ⟩. In the Fourier space the Poisson problem is solved by
scaling the Fourier components of |̂ f ⟩ with the the third gate UP. The last gate applies the inverse QFT to obtain the solution |v⟩. The unnamed last
qubit is an ancillary needed internally by UP as discussed in Section ??.

The QFT of this source is defined as

|̂ f ⟩ = FN | f ⟩ , (94)

or more explicitly,

N−1∑
j=0

f̂ j | j⟩ = FN

N−1∑
k=0

fk |k⟩ ; (95)

see Section 4.5. Following the derivation in Sections 2.2 and 2.3, it is easy to see that the solution of the periodic
Poisson problem in the Fourier space is given by

v̂ j =

(
L

2πr( j)

)2

f̂ j , (96)

where the relabelling function r( j) is defined as in (19). The inverse DFT of the Fourier coefficients {v̂ j}
N−1
j=0 is the

solution at the grid points, i.e.,

|v⟩ = F†N |̂v⟩ = F†N

N−1∑
j=0

v̂ j | j⟩ . (97)

Furthermore, according the band-limited interpolation equation (17) the approximate solution field is given by

vh(x) =
1
N

N−1∑
l=0

v̂lei 2πr(l)
L x . (98)

The proposed quantum circuit for solving the one-dimensional Poisson problem is depicted in Figure 10 for N = 8
grid cells. The circuit has been implemented using the Qiskit SDK. It has one ancillary qubit and three qubits |k⟩ ≡
|k0k1k2⟩ for representing the source | f ⟩ and solution |v⟩. All qubits are initialised in the state |0⟩. The first unitary UI

prepares a quantum state representing the components of the source | f ⟩. UI can be chosen as the state preparation
technique introduced in Section 4.3 or one of the many other known approaches. The unitaries FN and F†N apply the
QFT and its inverse. Finally the unitary UP divides the Fourier coefficients by L2/(2πr(l))2 .

More succinctly, the sequence of the mappings implemented by the circuit with n = 3 qubits can be summarised
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as follows:

UI (| f ⟩) ⊗ I : |0⟩⊗3 |0⟩ 7→
7∑

k=0

fk |k⟩ |0⟩ , (99a)

FN ⊗ I :
7∑

k=0

fk |k⟩ |0⟩ 7→
7∑

j=0

f̂ j | j⟩ |0⟩ , (99b)

UP

(
L2

(2πr( j))2

)
:

7∑
j=0

f̂ j | j⟩ |0⟩ 7→ Junk +
7∑

j=0

(
L

2πr( j)

)2

f̂ j | j⟩ |1⟩ , (99c)

F†N ⊗ I : Junk +
7∑

j=0

(
L

2πr( j)

)2

f̂ j | j⟩ |1⟩ 7→ Junk +
7∑

k=0

(
L

2πr(k)

)2

fk |l⟩ |1⟩ . (99d)

In this derivation, all the irrelevant terms for the final solution are denoted as Junk.
Next, we study the convergence properties and the computational complexity of solving a Poisson problem with

the source

f (x) = exp
− (x − c0)2

c2
1

 + c2 , (100)

where the three parameters are chosen as c0 = 0.3, c1 = 0.1, c2 = −0.1772. This function is depicted in Figure 11(a)
and is approximated as periodic. The respective analytical solution is given by

v(x) =
c1
√
π

2

(
(x − c0) erf

(
x − c0

c1

)
+

c1
√
π

exp
− (x − c0)2

c2
1

) + c2x2

2
+ c3x + c4 . (101)

The periodic boundary conditions u(0) = u(1) = 0 yield for the two integration constants c3 = 0.053 and c4 = −0.0266.
The

In Figure 11(b) the analytic solution v(x) and the approximate solution vh(x) obtained with quantum computing are
compared, indicating an excellent agreement between the two. The convergence of the L2-norm error for an increasing
number of grid cells is shown in Figure 11(c). The error is defined as

η = ∥ |v⟩ − |vex⟩ ∥ , (102)

where |vex⟩ =
∑N−1

k=0 v(xk) |k⟩ is the exact solution at the grid points. The relative error has a convergence order of 1/2
which is mainly governed by the piecewise polynomial approximation in the unitary UP(L2/(2πr(l))2).

Computational Complexity Finally, we assess the computational complexity of the proposed algorithm by ex-
pressing the quantum circuit using only the single-qubit rotation gate U3 and the two-qubit controlled gate CNOT .
This two gates are universal in the sense that any arbitrary multi-qubit unitary can be composed using these two gates.
In quantum computing the process of expressing a given circuit in terms of a different gate set is referred to as tran-
spiling and can be automatically performed in Qiskit. The total number of U3 and CNOT gates in dependence of the
number of grid cells N is plotted in Figure 11(c), showing a logarithmic scaling for both the U3 and CNOT gates.
This confirms that the proposed algorithm’s computational complexity is O (Poly(log(N))).

5.1.2. Two-dimensional case
We introduce next the discretisation of a two-dimensional periodic Poisson problem

−
∂2v(x)
∂x2

0

−
∂2v(x)
∂x2

1

= f (x) . (103)

The solution and source fields v(x) and f (x) have the periodicity L = 1 and must satisfy v(x) = v(x + e0L) = v(x + e1L)
and f (x) = f (x + e0L) = f (x + e1L), where e0 = (1 0)T and e1 = (0 1)T are the standard basis vectors.
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Figure 11: One-dimensional periodic Poisson problem. (a) Source function f (x). (b) Comparison of the quantum solution on a grid with 64 cells
and the exact (analytical solution). (c) Convergence of the relative L2-norm. (d) Scaling of the total number of U3 and CNOT gates.

25



We discretise the domain □ = (0, L)2 ⊂ R2 by uniformly partitioning with N×N cells of size h×h. Consequently,
a grid point with the multi-index k = (k0, k1), where k0, k1 ∈ {0, 1, . . . , N − 1}, has the coordinates

xk =
(
x0,k x1,k

)T
=

(
x0,k0k1 x1,k0k1

)T
, (104)

and the source value fk = f (xk). We collect the source values in the ket

| f ⟩ =
N−1∑
k=0

fk |k⟩ =
N−1∑

k0=0,k1=0

fk0k1 |k0k1⟩ . (105)

As in standard DFT, the two-dimensional QFT is the Kronecker product of two one-dimensional QFT’s F0,N and F1,N .
Hence, we can compactly write

|̂ f ⟩ = (F0,N ⊗ F1,N) | f ⟩ ; (106)

or in more in detail,

N−1∑
j0=0, j1=0

f̂ j0 j1 | j
0 j1⟩ = (F0,N ⊗ F1,N)

N−1∑
k0=0,k1=0

fk0k1 |k0k1⟩ . (107)

Here, F0,N and F1,N denote the QFT with respect to the first and second indices of the multi-index. Building on
the periodic one-dimensional Poisson problem introduced before, the solution of the two-dimensional problem in the
Fourier space is given by

v̂ j0 j1 =

( L
2πr( j0)

)2

+

(
L

2πr( j1)

)2 f̂ j0 j1 ; (108)

where r( j0) and r( j1) are defined as in (19). Finally, the inverse DFT of the computed Fourier coefficients yields the
solution at the grid points, i.e.,

|v⟩ = (F†0,N ⊗ F†0,N)|̂v⟩ = (F†0,N ⊗ F†0,N)
N−1∑

j0=0 j1=0

v̂ j0 j1 | j
0 j1⟩ . (109)

The quantum circuit for solving the two-dimensional Poisson problem can be designed by closely following the
one-dimensional construction introduced in the previous section. As an example, in Figure 12 the circuit for a grid
with 4 × 4 cells is shown. In mapping the source | f ⟩ and other kets to qubits we make use of the following expansion
of the multi-indices

|k⟩ = |k0⟩ |k1⟩ = |k0
0k0

1⟩ |k
1
0k1

1⟩ ≡ |k
0
0⟩ |k

0
1⟩ |k

1
0⟩ |k

1
1⟩ . (110)

After the second equality sign we express the two integers k0, k1 ∈ {0, 1, 2, 3} as binaries. In Figure 12 the unitary UI

for state preparation and the unitaries F0,N and F1,N and their inverses for the QFT are equivalent to the unitaries
in the circuit for the one-dimensional problem in Figure 10. The main difference concerns the unitary UP which
encodes a bivariate polynomial for implementing (108). Importantly, owing to the quantum parallelism, the QFT’s
with respect to the two multi-indices can be applied simultaneously as evident from the quantum circuit. The efficiency
implications of this parallelism to high-dimensional problems are evident.

As a concrete example, we consider on a grid of size N × N = 64 × 64 the solution of a Poisson problem with the
source

f (x0, x1) =
M∑

l=0

c0,l sin(c1,lπx0 + c2,l) sin(c3,lπx1 + c4,l) , (111)
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|k0
0⟩ = |0⟩ :

UI(| f ⟩)

F0,N

UP

(
L2

4π2

(
1

r(k0) +
1

r(k1)

)2
) F†0,N

|k0
1⟩ = |0⟩ :

|k1
0⟩ = |0⟩ :

F1,N F†1,N
|k1

1⟩ = |0⟩ :

|0⟩⊗5 :

Figure 12: Quantum circuit for solving the two-dimensional periodic Poisson problem discretised with a uniform grid of N × N = 4 × 4 cells.
Spatial and Fourier coefficients at the N2 = 16 grid points are encoded as the amplitudes of a quantum state of the n = 4 qubits |k0

0⟩ |k
0
1⟩ |k

1
0⟩ |k

1
1⟩.

The left most gate UI encodes the source | f ⟩ as a quantum state. The second layer of gates F0,N and F1,N apply simultaneously the QFT with
respect to the multi-indices k0 and k1. In the Fourier space the Poisson problem is solved by scaling the Fourier components of |̂ f ⟩ with the gate UP.
The last two gates apply the inverse QFT to obtain the solution |v⟩. The unnamed last five qubits are ancillaries needed by UP, see Section 4.

where c0,l, c2,l, c4,l ∈ R and c1,l, c3,l ∈ Z are five random parameters. The real parameters are sampled from a uniform
probability measure DR(−1, 1) and the integer parameters from a uniform probability measure DZ(−20, 20). An
example f (x0, x1) with M = 3 is shown in Fig 13(a). The approximate solution |v⟩ is depicted in Figure 13(b), and
the corresponding relative absolute error distribution is shown in 13 (c). The true solution is obtained by solving
the same problem using a classical solver on a fine grid of size 1024 × 1024. We observe the high accuracy of the
proposed quantum algorithm with the largest relative error around 1%. Finally, we assess our algorithm’s complexity
by counting total number of the U3 and CNOT gates for an increasing number of grid cells N2, see Figure 13(d). We
again observe a O(poly log(N2)) scaling as evident from the plot.

5.2. Solution of the unit cell problem

We consider the solution of the periodic homogenisation problem on a quantum computer. The RVE is a one-
dimensional domain □ = (0, L = 1) ⊂ R with piecewise constant shear modulus µ(x) as depicted in Figure 16(a).
This problem represents the homogenisation of an elastic composite rod with a periodic Young’s modulus µ(x). As
discussed in Section 2, homogenisation aims to determine the stress field σ(x) for a prescribed scalar applied strain γ.
We achieve this by solving a sequence of Poisson problems as outlined in Algorithm 1. In the following, we first
introduce our quantum circuit for computing one iteration step and subsequently explain how to execute several steps.

5.2.1. Incremental problem
We closely follow Algorithm 1 in devising a quantum circuit for solving the incremental homogenisation problem.

Assuming that the RVE is discretised with N = 2n cells, the quantum state vector |q⟩ ∈ CN+3 for implementing our
circuit has the following structure

|q⟩ = |0⟩⊗n︸︷︷︸
field

|a0 = 0⟩ |a1 = 0⟩︸              ︷︷              ︸
controls

|b = 0⟩︸ ︷︷ ︸
AS

|0⟩⊗n︸︷︷︸
ancillas

, (112)

where the first n qubits encode field vectors, like the shear modulus |µ⟩ ∈ RN or strain |γ⟩ ∈ RN , the qubits |a0⟩ and |a1⟩

control the application of unitaries and the qubit |b⟩ is used to encode applied strain γ ∈ R. The last n qubits serve as
helpers throughout the circuit.

In the initialisation step of Algorithm 1, we encode the prescribed applied strain γ and the predictor strain |γ⟩(s=0) ∈

RN as amplitudes of the state vector |q⟩(s=0). The applied strain γ is encoded as the amplitude of |b⟩. This is easily
accomplished by applying the rotation RY (θ) with θ = 2 arcsin(

√
Nγ̄) to qubit |b⟩ so that the quantum state becomes

|q⟩(0)
1 =

√
Nγ̄ |0⟩⊗n︸︷︷︸

field

|0⟩ |0⟩︸︷︷︸
controls

|1⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

+

√
1 − (

√
Nγ̄)2 |0⟩⊗n︸︷︷︸

field

|0⟩ |0⟩︸︷︷︸
controls

|0⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

. (113)
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Figure 13: Two-dimensional periodic Poisson problem. (a) Source function f (x) (b) Comparison of the quantum solution on a grid with N × N =
8 × 8 cells and a solution (analytical solution) (c) Convergence of the relative L2-norm of the quantum solution. (d) Scaling of the total number
of U3 and CNOT gates.
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|k0⟩ :

UP

(
µ(xk)−µ0
√

1−(
√

Nγ̄)2

)
FN

UP

(
1
µ0

)
US

F†N|k1⟩ :

|k2⟩ :

a0 = |0⟩ :

a1 = |0⟩ :

b = |0⟩ : UI(γ̄) • •

|0⟩⊗3 :

Figure 14: Quantum circuit for solving the incremental homogenisation problem discretised with a uniform grid of N = 23 cells. The left most
gate UI encodes the prescribed average strain γ̄ as one of the two amplitudes of the |b⟩ qubit. The two gates UP approximately implement the
functions in their arguments. The incremental problem is solved by scaling the Fourier coefficients using the right UP gate. The gate US is to
impose in the Fourier space the average prescribed strain.

The predictor strain |γ⟩(0) can be encoded by applying a standard unitary UI(|γ⟩(0)) for state preparation conditioned
on |b = 0⟩. The resulting new state reads

|q⟩(0)
2 =

√
Nγ̄ |0⟩⊗n︸︷︷︸

field

|0⟩ |0⟩︸︷︷︸
controls

|1⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

+

√
1 − (

√
Nγ̄)2

2n−1∑
k=0

γ(s)
k |k⟩︸      ︷︷      ︸

field

|0⟩ |0⟩︸︷︷︸
controls

|0⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

(114)

We are now ready to introduce the quantum circuit for solving the incremental problem in iteration step s. It is
instructive to read the following discussion in light of Algorithm 1 and circuit diagram in Figure 14. We implement
step (a) of the algorithm using the unitary mapping

UP

 µ(xk) − µ0√
1 − (

√
Nγ̄)2

 : |k⟩ |0⟩ 7→

√
1 −

(µ(x j) − µ0)2

1 − (
√

Nγ̄)2
|k⟩ |0⟩ +

(µ(x j) − µ0)√
1 − (

√
Nγ̄)2

|k⟩ |1⟩ . (115)

The unitary UP encodes the function in its argument by first approximating the function as a polynomial using Cheby-
shev interpolation. The unitary UP is applied to the field qubits of |q⟩(0)

2 when the AS qubit is in state |b = 0⟩. The
resulting state reads

|q⟩(s)
3 =

√
Nγ̄ |0⟩⊗n︸︷︷︸

field

|0⟩ |0⟩︸︷︷︸
controls

|1⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

+

2n−1∑
k=0

τ(s)
k |k⟩︸      ︷︷      ︸

field

|1⟩ |0⟩︸︷︷︸
controls

|0⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

+JUNK . (116)

Here, JUNK denotes the terms not further needed. The subsequent application of QFT by applying the unitary FN to
the field qubits gives Fourier space representation of the polarisation stress |τ⟩(s), i.e.,

|q⟩(s)
4 =

√
Nγ̄ |0⟩⊗n︸︷︷︸

field

|0⟩ |0⟩︸︷︷︸
controls

|1⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

+

2n−1∑
k=0

τ̂(s)
k |k⟩︸      ︷︷      ︸

field

|1⟩ |0⟩︸︷︷︸
controls

|0⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

+JUNK . (117)

We can now compute the strain γ̂(s+1). Note that for a one-dimensional problem the strain in the Fourier space is given
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by

|γ̂⟩ = −
1
µ0 |τ̂⟩ ; (118)

cf. (24). This operation is implemented using one more time the unitary mapping

UP

(
−

1
µ0

)
: |k⟩ |0⟩ 7→

√
1 −

1
(µ0)2 |k⟩ |0⟩ −

1
µ0 |k⟩ |1⟩ . (119)

Although we used the same symbol UP above and in (115) the two unitaries approximate different functions and their
implementation details will be different. The unitary UP is applied to the field qubits when the first controls qubit is
in state |a0 = 1⟩, yielding the state

|q⟩(s)
5 =

√
Nγ̄ |0⟩⊗n︸︷︷︸

field

|0⟩ |0⟩︸︷︷︸
controls

|1⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

−

2n−1∑
k=0

τ̂(s)
k

µ0 |k⟩︸       ︷︷       ︸
field

|1⟩ |1⟩︸︷︷︸
controls

|0⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

+JUNK . (120)

To impose the average strain γ we use the unitary US to swap as follows two of the amplitudes

US :
√

Nγ̄ |0⟩⊗n |0⟩ |0⟩ |1⟩ |0⟩⊗n −
τ̂(s)

0

µ0 |k = 0⟩ |1⟩ |0⟩ |0⟩ |0⟩⊗n + . . .

7→ −
τ̂(s)

0

µ0 |0⟩
⊗n |0⟩ |0⟩ |1⟩ |0⟩⊗n + γ̄ |k = 0⟩ |1⟩ |0⟩ |0⟩ |0⟩⊗n + . . . . (121)

After the amplitude swap the quantum state becomes

|q⟩(s)
6 = −

τ̂(s)
0

µ0 |0⟩
⊗n︸︷︷︸

field

|0⟩ |0⟩︸︷︷︸
controls

|1⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

+ γ |k⟩︸︷︷︸
field

|1⟩ |1⟩︸︷︷︸
controls

|0⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

−

2n−1∑
k=1

τ̂(s)
k

µ0 |k⟩︸       ︷︷       ︸
field

|1⟩ |1⟩︸︷︷︸
controls

|0⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

+JUNK . (122)

Finally, we compute the inverse QFT by applying F†N to the field qubits giving the desired state

|q⟩(s)
7 =

2n−1∑
k=0

γ(s+1)
k |k⟩︸         ︷︷         ︸

field

|1⟩ |1⟩︸︷︷︸
controls

|0⟩︸︷︷︸
AS

|0⟩⊗n︸︷︷︸
ancillas

+JUNK . (123)

The solution |γ⟩(s+1) and its components can be obtained by measuring as outlined in Section 3.4.

5.2.2. Fixed-point iteration
We proceed with an explanation on how we achieved the fixed-point iteration for algorithm 1. A schematic of the

over-all circuit is shown in Fig. 15. Let S ∈ Z+ denote the total number of iteration, we seek to store the solution in
an expended system below,

ψS = |0⟩︸︷︷︸
n state qubits

|as=0
c0 as=0

c1 ⟩|a
s=1
c0 as=1

c1 ⟩, ..., |a
s=2
c0 as=2

c1 ⟩︸                                     ︷︷                                     ︸
2S control qubits

|b⟩|0⟩︸︷︷︸
log(S )+1 BC qubits

|0⟩︸︷︷︸
n ancilla qubits

. (124)

The key idea is that we shall implement the incremental circuit (c.f. Fig. ??) conditioned/controlled on the 2S control
qubits, so that we store the solution of each iteration in different basis denoted by the as

c qubits.
We start with replacing the Initialize BC circuits in the incremental circuit (c.f. Fig.14), with a general initialization
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x0 :

Initialize γ0

1

Increment circuit 1st iteration

1

Increment circuit 2nd iteration

3

x1 : 2 2 4

x2 : 3 3 5

as=0
c0

: 4 1

as=0
c1 : 5 2

as=1
c0 : 6

as=1
c1 : 7

b0 :
Initialize BC

0 6 8

b1 : 1 0 0 0

a0 : 7 9

a11 : 8 10

a2 : 9 11

Figure 15: Schematic of the Fixed-point circuit for the QRVE algorithm with two iterations and 8 degree of freedom.

circuit where we employ a polynomial encoding algorithm to prepare the |b0⟩ nodes. Specifically, we construct a
polynomial rotation circuit and prepare the initial state

ψS
0 =

√
1 − S γ̄2|0⟩|ac = 0⟩|b = 0⟩|0⟩|0⟩ +

S−1∑
s=0

γ̄|0⟩|ac⟩|b = s⟩|1⟩⟩|0⟩ (125)

.
We now initialize γ0. This initialization can be arbitrary but we choose to set γ0(x) = 1

√
N
,∀x ∈ Ω throughout this

study. We now repeatedly implement the incremental circuit. After the first iteration the system’s states becomes:

ψS
0 =

N−1∑
j=0

γs=0
j | j⟩|a

s=0
c0 as=0

c1 = 11⟩|as>0
c = 0⟩|b = 0⟩|0⟩|0⟩ +

S−1∑
s=1

γ̄|0⟩|ac⟩|b = s⟩|1⟩⟩|0⟩ + ... (126)

We now implement the second incremental circuit, and make it conditioned on the ac qubits from the first iteration
(i.e., |as=0

c0 as=0
c1 = 11⟩)

The system’s state then becomes

ψS
1 =

N−1∑
j=0

γs=0
j | j⟩|a

s=0
c0 as=0

c1 = 11⟩|as>0
c = 0⟩|b = 0⟩|0⟩|0⟩ +

S−1∑
s=2

γ̄|0⟩|ac = 0⟩|b = s⟩|1⟩⟩|0⟩ + ... (127)

After S iteration, the final sysmem’s state becomes

ψS
S =

N−1∑
j=0

γs=S−1
j | j⟩|as=1

c0 as=1
c1 = 11⟩...|as=S−1

c0 as=S−1
c1 = 11⟩|b = 0⟩|0⟩|0⟩ + ... (128)

The solution is then built in the state in the basis with all control quibits |ac = 1⟩.
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Figure 16: Result for the two dimension Poisson’s equation. (a) source function f (x, y) (b) Comprsion of QFT solution of 64 degree of freedom
and truth (obtained with 2D FFT numerical solver on a classical computer) (c) Relative L2 error versus the decretization of the domain Ω. (d)
Number of universal quantum gates versus degree of freedom for incremental circuit shown in Fig. 14.

The QRVE result conducted using the abovementioned circuits is shown in Fig. 16 (b). We observe that the
accuracy of the QRVE solution can be greatly improved by increasing number of iterations. This is further studied in
Fig. 16 (c), with an exponential decrease in relative L2 error observed with increasing number of iteration. Finally, we
estimate the computational complexity of our algorithm by counting the number of universal gates in the incremental
circuit, as shwon in Fig. 16 (d). The curve show that the scaling is logrithmatic meaning one only need Poly (log) (N)
universal gates for the QRVE algorithm, hence proving the efficacy of our algorithm and circuit design.

6. Conclusions

We have presented a framework that enables exponential speed up in the computation homogenisation. In this
framework, we encode the physical variables in the unit cell to the amplitudes of an entangled quantum system. The
solution is then find by evoling this quantum system with a combination of unitary operators including the Quantum
Fourier Transform and Polynomial Encoding. The effectiveness of the framework was validated through its application
to one and two-dimensional Poisson’s equations and the RVE problem for composite beams. In each instance, our
framework exhibited exponential acceleration compared to traditional methods, a testament to the power of quantum
computing in handling problems with a high degree of freedom.

The efficiency of our approach was particularly highlighted by the reduced requirement of only Poly log(N) univer-
sal quantum gates within our quantum computational circuits. This efficiency is not just a theoretical improvement but
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a practical step forward in computational mechanics, offering new possibilities for addressing previously intractable
problems.

Looking to the future, this work opens up numerous research avenues. Among these are the extension of the
quantum algorithm to two and three dimensions, as well as the development of algorithms for nonlinear materials and
large deformations. This research not only paves the way for new computational strategies but also sets a precedent
for the integration of quantum computing into broader scientific and engineering applications.

In conclusion, our quantum computational framework stands as a pioneering contribution to computational me-
chanics, offering a new paradigm that leverages the untapped potential of quantum computing. This work is a signif-
icant step towards addressing complex multi-scale problems, heralding a new era of computational capabilities and
advancing our understanding and application of quantum mechanics in practical and theoretical scenarios.
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Appendix A. Kronecker Product

The Kronecker product satisfies the following properties.

1. (A ⊗C)(B ⊗ D) = AB ⊗CD
2. (A ⊗C)(|u⟩ ⊗ |w⟩) = A |u⟩ ⊗C |w⟩
3. (|u⟩ + |v⟩) ⊗ |w⟩ = |u⟩ |w⟩ ⊗ |v⟩ ⊗ |w⟩
4. |u⟩ ⊗ (|w⟩ + |x⟩) = |u⟩ ⊗ |w⟩ + |u⟩ ⊗ |x⟩
5. a |u⟩ ⊗ b |w⟩ = ab |u⟩ ⊗ |w⟩
6. (A ⊗ B)† = A† ⊗ B†

Appendix B. State preparation

In this section we provide an alternative state preparation approach as motivated by [3] and is closer to algorithms
available in quantum libraries, like Qiskit. This approach is in contrast to the one introduced in Section 4.3 exact.
To illustrate the basic idea, we consider the encoding of a classical vector |q⟩ ∈ RN=8 using the amplitudes of n = 3
qubits. The quantum state is prepared using the unitary mapping

|q⟩ = US |000⟩ . (B.1)

For determining the unknown components of the matrix USR8×8 it is convenient to consider first the inverse mapping

|000⟩ = U†S |q⟩ . (B.2)

After determining U†S it is trivial to determine its conjugate transpose US . The components of U†S can be determined by
applying either successive Givens rotations or Householder reflections well known from linear algebra, see e.g. [42].
In the following, we briefly sketch how the components of U†S can be obtained using Givens rotations. For the sake of
clarity, the mapping (B.2) expressed in matrix notation reads

1
0
0
0
0
0
0
0


=



· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·





q0
q1
q2
q3
q4
q5
q6
q7


, (B.3)

where the yet unknown components are represented by a ”·”. Each Givens rotation represents a rotation in the plane
spanned by two coordinate axis. In the first step, the rotation axis are chosen such that

c s 0 0 0 0 0 0
−s c 0 0 0 0 0 0

0 0 · · 0 0 0 0
0 0 · · 0 0 0 0
0 0 0 0 · · 0 0
0 0 0 0 · · 0 0
0 0 0 0 0 0 · ·

0 0 0 0 0 0 · ·





q0
q1
q2
q3
q4
q5
q6
q7


=



r
0
·

0
·

0
·

0


. (B.4)

Some of the non-zero components have been omitted for clarity. Notice that on the right-hand side that every other
component is zero. The non-zero components of U†s in the upper left 2 × 2 block are given by

r =
√

q2
0 + q2

1 , c = cos β =
q0

r
, s = sin β =

q1

r
. (B.5)
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k0 : RY (−2β) RY (·) RY (·) RY (·)

k1 : • • RY (−2β̃) RY (·)

k2 : • • • RY (·)

Figure B.17: Quantum circuit implementing the unitary U†S for mapping an arbitrary (real) state |q⟩ = (q0 q1 q2 q3 q4 q5 q6 q7)T to a
state |000⟩ = (1 0 0 0 0 0 0 0)T. The two dashed helper lines correspond to the three distinct steps in constructing U†S mentioned in the main
text. Furthermore, each RY is applied only to two selected components of the state vector. For instance, the most left RY gate is applied to the
components q0 and q1, the second most left RY gate two the components q2 and q3, etc. The inverse circuit US for state preparation maps the
state |000⟩ to |q⟩. The circuit for US is obtained by taking the conjugate transpose R†Y of each gate RY and applying the gates from right to the left.

The components of the other three 2 × 2 blocks are determined similarly. In the second step, the Givens rotations
applied are chosen such that

c̃ 0 s̃ 0 0 0 0 0
0 0 0 0 0 0 0 0
−s̃ 0 c̃ 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 · 0 · 0
0 0 0 0 0 0 0 0
0 0 0 0 · 0 · 0
0 0 0 0 0 0 0 0





r
0
·

0
·

0
·

0


=



r̃
0
0
0
·

0
0
0


. (B.6)

Notice that the right-hand side has now only two non-zero components. In the third and last step, the fifth component
of the right-hand side can be set zero by applying one more Givens rotation yielding a vector with a 1 on its first
component, i.e. |000⟩.

Hence, the obtained unitary matrix U† is multiplicatively composed of three unitary matrices and each matrix
contains one or more of Givens rotations. Specifically, the fist matrix (B.3) contains three, the second matrix (B.6) two
and the third matrix one Givens rotations. On a quantum computer each Givens rotation is realised using the RY (43).
In order to apply each rotation to selected components of a vector we use the controlled versions of the RY gates.
That is the RY gate is only applied when the control gate is in state |1⟩. The circuit implementation of the introduced
unitary U† is depicted in Figure B.17. The circuit diagram for the inverse mapping U† is obtained by taking the
conjugate transpose of each RY and applying the gates from right to the left.

Appendix C. Complexity of the polynomial encoding algorithm

We provide an estimate of the computational complexity of the polynomial encoding circuit. Note in 71, the
number of terms in (2n−1kn−1 + ... + 21k1 + 20k0)m for a fixed m equals to

(
n+m−1

n−1

)
. The total number of terms with

varying m ∈ {0, 1, ..., p} can be computed as(
n − 1
n − 1

)
+

(
n

n − 1

)
+

(
n + 1
n − 1

)
+ ... +

(
n + p − 1

n − 1

)
. (C.1)

Recall, for any r ∈ {0, ..., n}(
n
r

)
+

(
n

r + 1

)
=

(
n + 1
r + 1

)
. (C.2)
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We conclude that the sum in C.1 equals to(
n − 1
n − 1

)
+

(
n

n − 1

)
+

(
n + 1
n − 1

)
+ ... +

(
n + m − 1

n − 1

)
(C.3)

=

(
n
n

)
+

(
n

n − 1

)
+

(
n + 1
n − 1

)
+ ... +

(
n + p − 1

n − 1

)
(C.4)

=

(
n + 1

n

)
+

(
n + 1
n − 1

)
+ ... +

(
n + p − 1

n − 1

)
(C.5)

=

(
n + p

n

)
(C.6)

Therefore, for one-dimensional and two dimensional polynomial encoding we conclude that we need a total of
(

n+p
n

)
and

(
n+p

n

)(
n+q

n

)
multi-controlled RY gate, respectively. Overall, we conclude that the polynomial encoding can be

implemented withO (Poly (pn)) in single variate polynomials of order andO (Poly (pqn2)) for bi-variate polynomials.
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