of 9
Observation of
B
meson decays to
!K

and improved measurements for
!
and
!f
0
B. Aubert,
1
Y. Karyotakis,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
X. Prudent,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
L. Lopez,
3a,3b
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
M. Battaglia,
5
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
K. Tackmann,
5
T. Tanabe,
5
C. M. Hawkes,
6
N. Soni,
6
A. T. Watson,
6
H. Koch,
7
T. Schroeder,
7
D. J. Asgeirsson,
8
B. G. Fulsom,
8
C. Hearty,
8
T. S. Mattison,
8
J. A. McKenna,
8
M. Barrett,
9
A. Khan,
9
A. Randle-Conde,
9
V. E. Blinov,
10
A. D. Bukin,
10,
*
A. R. Buzykaev,
10
V. P. Druzhinin,
10
V. B. Golubev,
10
A. P. Onuchin,
10
S. I. Serednyakov,
10
Yu. I. Skovpen,
10
E. P. Solodov,
10
K. Yu. Todyshev,
10
M. Bondioli,
11
S. Curry,
11
I. Eschrich,
11
D. Kirkby,
11
A. J. Lankford,
11
P. Lund,
11
M. Mandelkern,
11
E. C. Martin,
11
D. P. Stoker,
11
S. Abachi,
12
C. Buchanan,
12
H. Atmacan,
13
J. W. Gary,
13
F. Liu,
13
O. Long,
13
G. M. Vitug,
13
Z. Yasin,
13
L. Zhang,
13
V. Sharma,
14
C. Campagnari,
15
T. M. Hong,
15
D. Kovalskyi,
15
M. A. Mazur,
15
J. D. Richman,
15
T. W. Beck,
16
A. M. Eisner,
16
C. A. Heusch,
16
J. Kroseberg,
16
W. S. Lockman,
16
A. J. Martinez,
16
T. Schalk,
16
B. A. Schumm,
16
A. Seiden,
16
L. O. Winstrom,
16
C. H. Cheng,
17
D. A. Doll,
17
B. Echenard,
17
F. Fang,
17
D. G. Hitlin,
17
I. Narsky,
17
T. Piatenko,
17
F. C. Porter,
17
R. Andreassen,
18
G. Mancinelli,
18
B. T. Meadows,
18
K. Mishra,
18
M. D. Sokoloff,
18
P. C. Bloom,
19
W. T. Ford,
19
A. Gaz,
19
J. D. Gilman,
19
J. F. Hirschauer,
19
M. Nagel,
19
U. Nauenberg,
19
J. G. Smith,
19
D. M. Rodriguez,
19
E. W. Thomas,
19
E. W. Tomassini,
19
S. R. Wagner,
19
R. Ayad,
20,
A. Soffer,
20,
W. H. Toki,
20
R. J. Wilson,
20
E. Feltresi,
21
A. Hauke,
21
H. Jasper,
21
M. Karbach,
21
J. Merkel,
21
A. Petzold,
21
B. Spaan,
21
K. Wacker,
21
M. J. Kobel,
22
R. Nogowski,
22
K. R. Schubert,
22
R. Schwierz,
22
A. Volk,
22
D. Bernard,
23
G. R. Bonneaud,
23
E. Latour,
23
M. Verderi,
23
P. J. Clark,
24
S. Playfer,
24
J. E. Watson,
24
M. Andreotti,
25a,25b
D. Bettoni,
25a
C. Bozzi,
25a
R. Calabrese,
25a,25b
A. Cecchi,
25a,25b
G. Cibinetto,
25a,25b
P. Franchini,
25a,25b
E. Luppi,
25a,25b
M. Negrini,
25a,25b
A. Petrella,
25a,25b
L. Piemontese,
25a
V. Santoro,
25a,25b
R. Baldini-Ferroli,
26
A. Calcaterra,
26
R. de Sangro,
26
G. Finocchiaro,
26
S. Pacetti,
26
P. Patteri,
26
I. M. Peruzzi,
26,
x
M. Piccolo,
26
M. Rama,
26
A. Zallo,
26
R. Contri,
27a,27b
E. Guido,
27a
M. Lo Vetere,
27a,27b
M. R. Monge,
27a,27b
S. Passaggio,
27a
C. Patrignani,
27a,27b
E. Robutti,
27a
S. Tosi,
27a,27b
K. S. Chaisanguanthum,
28
M. Morii,
28
A. Adametz,
29
J. Marks,
29
S. Schenk,
29
U. Uwer,
29
F. U. Bernlochner,
30
V. Klose,
30
H. M. Lacker,
30
D. J. Bard,
31
P. D. Dauncey,
31
M. Tibbetts,
31
P. K. Behera,
32
X. Chai,
32
M. J. Charles,
32
U. Mallik,
32
J. Cochran,
33
H. B. Crawley,
33
L. Dong,
33
W. T. Meyer,
33
S. Prell,
33
E. I. Rosenberg,
33
A. E. Rubin,
33
Y. Y. Gao,
34
A. V. Gritsan,
34
Z. J. Guo,
34
N. Arnaud,
35
J. Be
́
quilleux,
35
A. D’Orazio,
35
M. Davier,
35
J. Firmino da Costa,
35
G. Grosdidier,
35
F. Le Diberder,
35
V. Lepeltier,
35
A. M. Lutz,
35
S. Pruvot,
35
P. Roudeau,
35
M. H. Schune,
35
J. Serrano,
35
V. Sordini,
35,
k
A. Stocchi,
35
G. Wormser,
35
D. J. Lange,
36
D. M. Wright,
36
I. Bingham,
36
J. P. Burke,
37
C. A. Chavez,
37
J. R. Fry,
37
E. Gabathuler,
37
R. Gamet,
37
D. E. Hutchcroft,
37
D. J. Payne,
37
C. Touramanis,
37
A. J. Bevan,
38
C. K. Clarke,
38
F. Di Lodovico,
38
R. Sacco,
38
M. Sigamani,
38
G. Cowan,
39
S. Paramesvaran,
39
A. C. Wren,
39
D. N. Brown,
40
C. L. Davis,
40
A. G. Denig,
41
M. Fritsch,
41
W. Gradl,
41
A. Hafner,
41
K. E. Alwyn,
42
D. Bailey,
42
R. J. Barlow,
42
G. Jackson,
42
G. D. Lafferty,
42
T. J. West,
42
J. I. Yi,
42
J. Anderson,
43
C. Chen,
43
A. Jawahery,
43
D. A. Roberts,
43
G. Simi,
43
J. M. Tuggle,
43
C. Dallapiccola,
44
E. Salvati,
44
S. Saremi,
44
R. Cowan,
45
D. Dujmic,
45
P. H. Fisher,
45
S. W. Henderson,
45
G. Sciolla,
45
M. Spitznagel,
45
R. K. Yamamoto,
45
M. Zhao,
45
P. M. Patel,
46
S. H. Robertson,
46
M. Schram,
46
A. Lazzaro,
47a,47b
V. Lombardo,
47a
F. Palombo,
47a,47b
S. Stracka,
47a
J. M. Bauer,
48
L. Cremaldi,
48
R. Godang,
48,
{
R. Kroeger,
48
D. J. Summers,
48
H. W. Zhao,
48
M. Simard,
49
P. Taras,
49
H. Nicholson,
50
G. De Nardo,
51a,51b
L. Lista,
51a
D. Monorchio,
51a,51b
G. Onorato,
51a,51b
C. Sciacca,
51a,51b
G. Raven,
52
H. L. Snoek,
52
C. P. Jessop,
53
K. J. Knoepfel,
53
J. M. LoSecco,
53
W. F. Wang,
53
L. A. Corwin,
54
K. Honscheid,
54
H. Kagan,
54
R. Kass,
54
J. P. Morris,
54
A. M. Rahimi,
54
J. J. Regensburger,
54
S. J. Sekula,
54
Q. K. Wong,
54
N. L. Blount,
55
J. Brau,
55
R. Frey,
55
O. Igonkina,
55
J. A. Kolb,
55
M. Lu,
55
R. Rahmat,
55
N. B. Sinev,
55
D. Strom,
55
J. Strube,
55
E. Torrence,
55
G. Castelli,
a56a,56b
N. Gagliardi,
a56a,56b
M. Margoni,
a56a,56b
M. Morandin,
a56a
M. Posocco,
a56a
M. Rotondo,
a56a
F. Simonetto,
a56a,56b
R. Stroili,
a56a,56b
C. Voci,
a56a,56b
P. del Amo Sanchez,
57
E. Ben-Haim,
57
H. Briand,
57
J. Chauveau,
57
O. Hamon,
57
Ph. Leruste,
57
J. Ocariz,
57
A. Perez,
57
J. Prendki,
57
S. Sitt,
57
L. Gladney,
58
M. Biasini,
59a,59b
E. Manoni,
59a,59b
C. Angelini,
60a,60b
G. Batignani,
60a,60b
S. Bettarini,
60a,60b
G. Calderini,
60a,60b,
**
M. Carpinelli,
60a,60b,
††
A. Cervelli,
60a,60b
F. Forti,
60a,60b
M. A. Giorgi,
60a,60b
A. Lusiani,
60a,60c
G. Marchiori,
60a,60b
M. Morganti,
60a,60b
N. Neri,
60a,60b
E. Paoloni,
60a,60b
G. Rizzo,
60a,60b
J. J. Walsh,
60a
D. Lopes Pegna,
61
C. Lu,
61
J. Olsen,
61
A. J. S. Smith,
61
A. V. Telnov,
61
F. Anulli,
62a
E. Baracchini,
62a,62b
G. Cavoto,
62a
R. Faccini,
62a,62b
F. Ferrarotto,
62a
F. Ferroni,
62a,62b
M. Gaspero,
62a,62b
P. D. Jackson,
62a
L. Li Gioi,
62a
M. A. Mazzoni,
62a
S. Morganti,
62a
G. Piredda,
62a
F. Renga,
62a,62b
C. Voena,
62a
M. Ebert,
63
T. Hartmann,
63
H. Schro
̈
der,
63
R. Waldi,
63
T. Adye,
64
B. Franek,
64
E. O. Olaiya,
64
F. F. Wilson,
64
S. Emery,
65
L. Esteve,
65
G. Hamel de Monchenault,
65
W. Kozanecki,
65
G. Vasseur,
65
Ch. Ye
`
che,
65
M. Zito,
65
X. R. Chen,
66
H. Liu,
66
W. Park,
66
M. V. Purohit,
66
R. M. White,
66
PHYSICAL REVIEW D
79,
052005 (2009)
1550-7998
=
2009
=
79(5)
=
052005(9)
052005-1
Ó
2009 The American Physical Society
J. R. Wilson,
66
M. T. Allen,
67
D. Aston,
67
R. Bartoldus,
67
J. F. Benitez,
67
R. Cenci,
67
J. P. Coleman,
67
M. R. Convery,
67
J. C. Dingfelder,
67
J. Dorfan,
67
G. P. Dubois-Felsmann,
67
W. Dunwoodie,
67
R. C. Field,
67
A. M. Gabareen,
67
M. T. Graham,
67
P. Grenier,
67
C. Hast,
67
W. R. Innes,
67
J. Kaminski,
67
M. H. Kelsey,
67
H. Kim,
67
P. Kim,
67
M. L. Kocian,
67
D. W. G. S. Leith,
67
S. Li,
67
B. Lindquist,
67
S. Luitz,
67
V. Luth,
67
H. L. Lynch,
67
D. B. MacFarlane,
67
H. Marsiske,
67
R. Messner,
67,
*
D. R. Muller,
67
H. Neal,
67
S. Nelson,
67
C. P. O’Grady,
67
I. Ofte,
67
M. Perl,
67
B. N. Ratcliff,
67
A. Roodman,
67
A. A. Salnikov,
67
R. H. Schindler,
67
J. Schwiening,
67
A. Snyder,
67
D. Su,
67
M. K. Sullivan,
67
K. Suzuki,
67
S. K. Swain,
67
J. M. Thompson,
67
J. Va’vra,
67
A. P. Wagner,
67
M. Weaver,
67
C. A. West,
67
W. J. Wisniewski,
67
M. Wittgen,
67
D. H. Wright,
67
H. W. Wulsin,
67
A. K. Yarritu,
67
K. Yi,
67
C. C. Young,
67
V. Ziegler,
67
P. R. Burchat,
68
A. J. Edwards,
68
T. S. Miyashita,
68
S. Ahmed,
69
M. S. Alam,
69
J. A. Ernst,
69
B. Pan,
69
M. A. Saeed,
69
S. B. Zain,
69
S. M. Spanier,
70
B. J. Wogsland,
70
R. Eckmann,
71
J. L. Ritchie,
71
A. M. Ruland,
71
C. J. Schilling,
71
R. F. Schwitters,
71
B. W. Drummond,
72
J. M. Izen,
72
X. C. Lou,
72
F. Bianchi,
73a,73b
D. Gamba,
73a,73b
M. Pelliccioni,
73a,73b
M. Bomben,
74a,74b
L. Bosisio,
74a,74b
C. Cartaro,
74a,74b
G. Della Ricca,
74a,74b
L. Lanceri,
74a,74b
L. Vitale,
74a,74b
V. Azzolini,
75
N. Lopez-March,
75
F. Martinez-Vidal,
75
D. A. Milanes,
75
A. Oyanguren,
75
J. Albert,
76
Sw. Banerjee,
76
B. Bhuyan,
76
H. H. F. Choi,
76
K. Hamano,
76
G. J. King,
76
R. Kowalewski,
76
M. J. Lewczuk,
76
I. M. Nugent,
76
J. M. Roney,
76
R. J. Sobie,
76
T. J. Gershon,
77
P. F. Harrison,
77
J. Ilic,
77
T. E. Latham,
77
G. B. Mohanty,
77
E. M. T. Puccio,
77
H. R. Band,
78
X. Chen,
78
S. Dasu,
78
K. T. Flood,
78
Y. Pan,
78
R. Prepost,
78
C. O. Vuosalo,
78
and S. L. Wu
78
(
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie, CNRS/IN2P3,
F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartmento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
University of Birmingham, Birmingham, B15 2TT, United Kingdom
7
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
8
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11
University of California at Irvine, Irvine, California 92697, USA
12
University of California at Los Angeles, Los Angeles, California 90024, USA
13
University of California at Riverside, Riverside, California 92521, USA
14
University of California at San Diego, La Jolla, California 92093, USA
15
University of California at Santa Barbara, Santa Barbara, California 93106, USA
16
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
17
California Institute of Technology, Pasadena, California 91125, USA
18
University of Cincinnati, Cincinnati, Ohio 45221, USA
19
University of Colorado, Boulder, Colorado 80309, USA
20
Colorado State University, Fort Collins, Colorado 80523, USA
21
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
22
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
23
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
24
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
25a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy
25b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
26
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
27a
INFN Sezione di Genova, I-16146 Genova, Italy
27b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
28
Harvard University, Cambridge, Massachusetts 02138, USA
29
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
30
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
31
Imperial College London, London, SW7 2AZ, United Kingdom
32
University of Iowa, Iowa City, Iowa 52242, USA
33
Iowa State University, Ames, Iowa 50011-3160, USA
34
Johns Hopkins University, Baltimore, Maryland 21218, USA
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
052005 (2009)
052005-2
35
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11, Centre Scientifique d’Orsay,
B.P. 34, F-91898 Orsay Cedex, France
36
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37
University of Liverpool, Liverpool L69 7ZE, United Kingdom
38
Queen Mary, University of London, London, E1 4NS, United Kingdom
39
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
40
University of Louisville, Louisville, Kentucky 40292, USA
41
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
42
University of Manchester, Manchester M13 9PL, United Kingdom
43
University of Maryland, College Park, Maryland 20742, USA
44
University of Massachusetts, Amherst, Massachusetts 01003, USA
45
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
47a
INFN Sezione di Milano, I-20133 Milano, Italy
47b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
48
University of Mississippi, University, Mississippi 38677, USA
49
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
50
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51a
INFN Sezione di Napoli, I-80126 Napoli, Italy
51b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
52
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53
University of Notre Dame, Notre Dame, Indiana 46556, USA
54
Ohio State University, Columbus, Ohio 43210, USA
55
University of Oregon, Eugene, Oregon 97403, USA
a56a
INFN Sezione di Padova, I-35131 Padova, Italy
56b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
57
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
58
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59a
INFN Sezione di Perugia, I-06100 Perugia, Italy
59b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
60a
INFN Sezione di Pisa, I-56127 Pisa, Italy
60b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
60c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
61
Princeton University, Princeton, New Jersey 08544, USA
62a
INFN Sezione di Roma, I-00185 Roma, Italy
62b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
63
Universita
̈
t Rostock, D-18051 Rostock, Germany
64
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
65
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
66
University of South Carolina, Columbia, South Carolina 29208, USA
67
SLAC National Accelerator Laboratory, Stanford, California 94309, USA
68
Stanford University, Stanford, California 94305-4060, USA
69
State University of New York, Albany, New York 12222, USA
70
University of Tennessee, Knoxville, Tennessee 37996, USA
71
University of Texas at Austin, Austin, Texas 78712, USA
72
University of Texas at Dallas, Richardson, Texas 75083, USA
73a
INFN Sezione di Torino, I-10125 Torino, Italy
73b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
††
Also at Universita
`
di Sassari, Sassari, Italy.
**
Also at Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6, Universite
́
Denis Diderot-Paris7, F-75252 Paris, France.
{
Present address: University of South AL, Mobile, AL 36688, USA.
k
Also at Universita
`
di Roma La Sapienza, I-00185 Roma, Italy.
x
Also at Universita
`
di Perugia, Dipartimento di Fisica, Perugia, Italy.
Present address: Tel Aviv University, Tel Aviv, 69978, Israel.
Present address: Temple University, Philadelphia, PA 19122, USA.
*
Deceased.
OBSERVATION OF
B
MESON DECAYS TO
...
PHYSICAL REVIEW D
79,
052005 (2009)
052005-3
74a
INFN Sezione di Trieste, I-34127 Trieste, Italy
74b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
75
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
77
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
78
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 26 January 2009; published 20 March 2009)
We present measurements of
B
meson decays to the final states
!K

,
!
, and
!f
0
, where
K

indicates
a spin 0, 1, or 2 strange meson. The data sample corresponds to
465

10
6
B

B
pairs collected with the
BABAR
detector at the PEP-II
e
þ
e

collider at SLAC.
B
meson decays involving vector-scalar, vector-
vector, and vector-tensor final states are analyzed; the latter two shed new light on the polarization of these
final states. We measure the branching fractions for nine of these decays; five are observed for the first
time. For most decays we also measure the charge asymmetry and, where relevant, the longitudinal
polarization
f
L
.
DOI:
10.1103/PhysRevD.79.052005
PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er
Studies of vector-vector (
VV
) final states in
B
decays
resulted in the surprising observation that the longitudinal
polarization fraction
f
L
in
B
!
K

decays is

0
:
5
, not

1
[
1
]. The latter value is expected from simple helicity
arguments and has been confirmed in the tree-dominated
[
2
]
B
!

decays [
3
] and
B
þ
!
!
þ
decays [
4
]. It
appears that the
f
L

1
expectation is correct for tree-
dominated decays but is not generally true for decays
where
b
!
s
loop (penguin) amplitudes are dominant.
There have been numerous attempts to understand the
polarization puzzle (small
f
L
) within the standard model
(SM) [
5
], and many papers have suggested non-SM ex-
planations [
6
]. The SM picture improved recently with the
calculation of
f
L
for most charmless
VV
decays [
2
] with
inclusion of nonfactorizable effects and penguin annihila-
tion amplitudes. Improved understanding of these effects
can come from branching fraction and
f
L
measurements in
decays such as
B
!
!K

, which is related to
B
!
K

via
SU(3) symmetry [
7
]. Among these decays, there is evi-
dence for only
B
0
!
!K

0
[
4
,
8
]. Information on these and
related charmless
B
decays can be used to provide con-
straints on the Cabibbo-Kobayashi-Maskawa angles

,

,
and

[
9
].
Further information on the polarization puzzle can come
from measurements that include the tensor meson
K

2
ð
1430
Þ
. A measurement of the vector-tensor (
VT
) decay
B
!
K

2
ð
1430
Þ
[
10
] finds a value of
f
L
inconsistent with
0.5 (but consistent with 1), so a measurement of the related
decay
B
!
!K

2
ð
1430
Þ
would be interesting. The only
theoretical predictions for these modes are from general-
ized factorization calculations [
11
]; the branching fraction
predictions for the
B
!
!K

2
ð
1430
Þ
decays are
1

2
Þ
10

6
, but there are no predictions for
f
L
. There
have been a variety of measurements for similar
B
decays
that include the scalar meson
K

0
ð
1430
Þ
[
10
,
12
]. For the
scalar-vector (
SV
) decays
B
!
!K

0
ð
1430
Þ
, there are re-
cent QCD factorization calculations [
13
] that predict
branching fractions of about
10

6
.
We report measurements of
B
decays to the final states
!K

,
!
, and
!f
0
ð
980
Þ
, where
K

includes the spin 0, 1,
and 2 states,
K

0
ð
1430
Þ
,
K

ð
892
Þ
, and
K

2
ð
1430
Þ
, respec-
tively. While a complete angular analysis of the
VV
and
VT
decays would determine helicity amplitudes
fully, because of the small signal samples we measure
only
f
L
. Given our uniform azimuthal acceptance, we
obtain, after integration, the angular distributions
d
2

=
ð
d
cos

1
d
cos

2
Þ
:
f
T
sin
2

1
sin
2

2
þ
4
f
L
cos
2

1
cos
2

2
;
(1)
f
T
sin
2

1
sin
2

2
cos
2

2
þ
f
L
3
cos
2

1
ð
3cos
2

2

1
Þ
2
(2)
for the
VV
and
VT
[
14
] decays, respectively, where
f
T
¼
1

f
L
and

1
and

2
are the helicity angles in the
V
or
T
rest frame with respect to the boost axis from the
B
rest
frame. For decays with significant signals, we also measure
the direct
CP
-violating, time-integrated charge asymmetry
A
ch




þ
Þ
=
ð


þ

þ
Þ
, where the superscript on
the

corresponds to the charge of the
B

meson or the
charge of the kaon for
B
0
decays.
The results presented here are obtained from data col-
lected with the
BABAR
detector [
15
] at the PEP-II
asymmetric-energy
e
þ
e

collider located at SLAC. An
integrated luminosity of
424 fb

1
, corresponding to
465

10
6
B

B
pairs, was recorded at the

ð
4
S
Þ
resonance, with
e
þ
e

center-of-mass (CM) energy
ffiffiffi
s
p
¼
10
:
58 GeV
.
Charged particles from the
e
þ
e

interactions are de-
tected, and their momenta measured, by five layers of
double-sided silicon microstrip detectors surrounded by a
40-layer drift chamber, both operating in the 1.5-T mag-
netic field of a superconducting solenoid. We identify
photons and electrons using a CsI(Tl) electromagnetic
calorimeter (EMC). Further charged particle identification
(PID) is provided by the average energy loss (
dE=dx
)in
the tracking devices and by an internally reflecting ring-
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
052005 (2009)
052005-4
imaging Cherenkov detector (DIRC) covering the central
region.
We reconstruct
B
-daughter candidates through their
decays

0
!

þ


,
f
0
ð
980
Þ!

þ


,

þ
!

þ

0
,
K

0
!
K
þ


,
K
!
K
þ

0
ð
K
K
þ

0
Þ
,
K
!
K
0
S

þ
ð
K
K
0
S

þ
Þ
,
!
!

þ



0
,

0
!

, and
K
0
S
!

þ


. Charge-conjugate decay modes are implied unless
specifically stated. Table
I
lists the requirements on the
invariant masses of these final states. For the

,
K

, and
!
selections, these mass requirements include sidebands, as
the mass values are treated as observables in the
maximum-likelihood fit described below. For
K
0
S
candi-
dates we further require the three-dimensional flight dis-
tance from the primary vertex to be greater than 3 times its
uncertainty. Daughters of

,
K

, and
!
candidates are
rejected if their DIRC,
dE=dx
, and EMC PID signatures
are highly consistent with protons or electrons; kaons must
have a kaon signature while the pions must not.
Table
I
also gives the restrictions on the
K

and

helicity angle

imposed to avoid regions of large combi-
natorial background from low-momentum particles. To
calculate

we take the angle relative to a specified axis:
for
!
, the normal to the decay plane; for

, the positively
charged daughter momentum; and for
K

, the daughter
kaon momentum.
A
B
-meson candidate is characterized kinematically
by
the
energy-substituted
mass
m
ES

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
1
2
s
þ
p
0

p
B
Þ
2
=E

2
0

p
2
B
q
and the energy difference

E

E

B

1
2
ffiffiffi
s
p
, where
ð
E
0
;
p
0
Þ
and
ð
E
B
;
p
B
Þ
are four-
momenta of the
e
þ
e

CM and the
B
candidate, respec-
tively,
s
is the square of the CM energy, and the asterisk
denotes the
e
þ
e

CM frame. Signal events peak at zero for

E
, and at the
B
mass [
16
] for
m
ES
, with a resolution for

E
ð
m
ES
Þ
of 30–45 MeV (3.0 MeV). We require
j

E
j
0
:
2 GeV
and
5
:
25

m
ES
<
5
:
29 GeV
.
The angle

T
between the thrust axis of the
B
candidate
in the
e
þ
e

CM frame and that of the charged tracks and
neutral clusters in the rest of the event is used to reject the
dominant continuum
e
þ
e

!
q

q
(
q
¼
u; d; s; c
) back-
ground events. The distribution of
j
cos

T
j
is sharply
peaked near 1.0 for combinations drawn from jetlike
q

q
pairs, and is nearly uniform for the almost isotropic
B
-meson decays. We reduce the sample sizes to 30 000–
65 000 events by requiring
j
cos

T
j
<
0
:
7
for the
!=f
0
modes and
j
cos

T
j
<
0
:
8
for the
!K

modes. Further
discrimination from continuum is obtained with a Fisher
discriminant
F
that combines four variables: the polar
angles, with respect to the beam axis in the
e
þ
e

CM
frame, of the
B
candidate momentum and of the
B
thrust
axis; and the zeroth and second angular moments
L
0
;
2
of
the energy flow, excluding the
B
candidate, about the
B
thrust axis. The mean of
F
is adjusted so that it is inde-
pendent of the
B
-flavor tagging category [
17
]. The mo-
ments are defined by
L
j
¼
P
i
p
i
j
cos

i
j
j
, where

i
is
the angle with respect to the
B
thrust axis of track or neutral
cluster
i
and
p
i
is its momentum. The average number of
B
candidates found per selected event in data is in the range
1.1–1.3, depending on the final state. We choose the can-
didate with the highest value of the probability for the
B
vertex fit.
We obtain yields and values of
f
L
and
A
ch
from ex-
tended unbinned maximum-likelihood (ML) fits with input
observables

E
,
m
ES
,
F
, and, for the scalar, vector or
tensor meson, the invariant mass and
H
¼
cos

.For
each event
i
and hypothesis
j
(signal,
q

q
background,
B

B
background), we define the probability density function
(PDF) with resulting likelihood
L
:
P
i
j
¼
P
j
ð
m
ES
i
Þ
P
j
ð

E
i
Þ
P
j
ð
F
i
Þ
P
j
ð
m
i
1
;m
i
2
;
H
i
1
;
H
i
2
Þ
;
(3)
L
¼
e
P
j
Y
j
Þ
N
!
Y
N
i
¼
1
X
j
Y
j
P
i
j
;
(4)
where
Y
j
is the yield of events of hypothesis
j
,
N
is the
number of events in the sample, and the subscript 1 (2)
represents
3

(
K
or

). There are as many as three
signal categories and the PDFs for each are split into two
components: correctly reconstructed events and those
where candidate particles are exchanged with a particle
from the rest of the event. The latter component is called
self cross feed (SXF) and its fractions are fixed to the
values found in Monte Carlo (MC) simulations, (15–
35)%. We find correlations among the observables to be
small for
q

q
background.
From MC simulation [
18
] we form a sample of the most
relevant charmless
B

B
backgrounds (20–35 modes for
each signal final state). We include a fixed yield (70–
200 events, derived from MC simulations with known or
estimated branching fractions) for these in the fit described
below. For
B
þ
!
!
þ
we also introduce a component for
nonresonant
!
þ

0
background; for the other decays
nonresonant backgrounds are smaller and are included in
the charmless
B

B
sample. The magnitude of the nonreso-
nant component is fixed in each fit as determined from fits
TABLE I. Selection requirements on the invariant masses and
helicity angles of
B
-daughter resonances. The helicity angle is
unrestricted unless indicated otherwise.
State
Inv. mass (MeV)
Helicity angle
K

0
K
þ


,
K
K
0
S

þ
750
<m
K
<
1550

0
:
85
<
cos
<
1
:
0
K
K
þ

0
750
<m
K
<
1550

0
:
80
<
cos
<
1
:
0

0
=f
0
470
<m

<
1070

0
:
80
<
cos
<
0
:
80

þ
470
<m

<
1070

0
:
70
<
cos
<
0
:
80
!
735
<m

<
825

0
120
<m

<
150
K
0
S
488
<m

<
508
OBSERVATION OF
B
MESON DECAYS TO
...
PHYSICAL REVIEW D
79,
052005 (2009)
052005-5
to regions of higher

or
K
mass. For the
!
modes,
we also include a sample of
b
!
c
backgrounds; for the
other modes, this component is not used since it is not
clearly distinguishable from
q

q
background.
Signal is also simulated with MC calculations; for the
ð
K
Þ

0
line shape, we use a LASS model [
19
,
20
] which
consists of the
K

0
ð
1430
Þ
resonance together with an
effective-range nonresonant component. For the
f
0
ð
980
Þ
,
we use a Breit-Wigner shape with parameters taken from
Ref. [
21
].
The PDF for resonances in the signal takes the form
P
1
;
sig
ð
m
i
1
Þ
P
2
;
sig
ð
m
i
2
Þ
Q
ð
H
i
1
;
H
i
2
Þ
, with
Q
given by Eq. (
1
)
or (
2
), modified to account for detector acceptance. For
q

q
background we use for each resonance independently
P
q

q
ð
m
i
k
;
H
i
k
Þ¼
P
q

q
ð
m
i
k
Þ
P
q

q
ð
H
i
k
Þ
, where
P
q

q
ð
m
i
k
Þ
is a
sum of true resonance and combinatorial mass terms. The
PDFs for
B

B
background have a similar form.
For the signal,
B

B
background, and nonresonant back-
ground components we determine the PDF parameters
from simulation. We study large data control samples of
B
þ
!

D
0

þ
and
B
þ
!

D
0

þ
decays with

D
0
!
K
þ



0
to check the simulated resolutions in

E
and
m
ES
, and adjust the PDF parameters to account for small
differences. For the continuum background we use
ð
m
ES
;

E
Þ
sideband data to obtain initial values of the
parameters, and leave them free to vary in the ML fit.
The parameters that are allowed to vary in the fit include
the signal and
q

q
background yields,
f
L
(for all
VV
and
VT
modes except
B
0
!
!
0
), continuum background PDF
parameters, and, for
!
, the
b
!
c
background yield.
Since there is not a significant yield for
B
0
!
!
0
,we
fix
f
L
to a value that is consistent with
a priori
expectations
[
2
] (see Table
II
). For all modes except
B
0
!
!
0
the
signal and background charge asymmetries are free pa-
rameters in the fit.
To describe the PDFs, we use simple functions such as
the sum of two Gaussian distributions for many signal
components and the peaking parts of backgrounds, low-
order polynomials to describe most background shapes,
an asymmetric Gaussian for
F
, and the function
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x
2
p
exp
½

ð
1

x
2
Þ
(with
x

m
ES
=E

B
) for the
m
ES
background distributions. These are illustrated for
B
þ
!
!
þ
with projection plots of each fit variable in
Figs.
1
,
2(d)
, and
3(d)
. The parameters that determine the
main features of the background PDF shapes are allowed to
vary in the fit.
We evaluate biases from our neglect of correlations
among discriminating variables by fitting ensembles of
simulated experiments. Each such experiment has the
same number of events as the data for both background
and signal;
q

q
background events are generated from their
PDFs while signal and
B

B
background events are taken
from fully simulated MC samples. Since events from the
B

B
background samples are included in the ensembles, the
bias includes the effect of these backgrounds.
We compute the branching fraction
B
for each decay by
subtracting the yield bias
Y
0
from the measured yield, and
dividing the result by the efficiency and the number of
produced
B

B
pairs. We assume that the branching fractions
of the

ð
4
S
Þ
to
B
þ
B

and
B
0

B
0
are each equal to 50%. In
Table
II
we show for each decay mode the measured
B
,
f
L
,
and
A
ch
together with the quantities entering into these
TABLE II. Signal yield
Y
and its statistical uncertainty, bias
Y
0
, detection efficiency
, daughter branching fraction product
Q
B
i
,
significance
S
(with systematic uncertainties included), measured branching fraction
B
with statistical and systematic errors, 90% C.L.
upper limit (U.L.), measured or assumed
f
L
, and
A
ch
. In the case of
!f
0
, the quoted branching fraction is a product with
B
ð
f
0
!

Þ
, which is not well known.
ð
K
Þ

0
refers to the
S
-wave
K
system.
Mode
Y
(events)
Y
0
(events)
(%)
Q
B
i
(%)
S
(
)
B
(
10

6
)
B
U.L.
(
10

6
)
f
L
A
ch
!K

0
101

25 8

4
15.2 59.5 4.1
2
:
2

0
:
6

0
:
2

0
:
72

0
:
14

0
:
02 0
:
45

0
:
25

0
:
02
!K
2.5
2
:
4

1
:
0

0
:
2
7.4
0
:
41

0
:
18

0
:
05 0
:
29

0
:
35

0
:
02
!K
K
þ

0
72

24 3

2
10.4 29.7 3.7
4
:
8

1
:
70
:
37

0
:
18
0
:
22

0
:
33
!K
K
0
S

þ
8

16
0

1
13.6 20.6 0.5
0
:
6

1
:
2
0.5 fixed

!
ð
K
Þ

0
0
540

47 49

25
9.7 59.5
9.8
18
:
4

1
:
8

1
:
7

0
:
07

0
:
09

0
:
02
!
ð
K
Þ
0
9.2
27
:
5

3
:
0

2
:
6

0
:
10

0
:
09

0
:
02
!
ð
K
þ

0
Þ
0
191

36 18

9
6.4 29.7
5.9
19
:
6

4
:
1

0
:
38

0
:
19
!
ð
K
0
S

þ
Þ
0
357

39 34

17
9.1 20.6 10.6
37
:
1

4
:
5

0
:
01

0
:
10
!K

2
ð
1430
Þ
0
185

32 19

10
11.9 29.7 5.0
10
:
1

2
:
0

1
:
1

0
:
45

0
:
12

0
:
02

0
:
37

0
:
17

0
:
02
!K

2
ð
1430
Þ
þ
6.1
21
:
5

3
:
6

2
:
4

0
:
56

0
:
10

0
:
04 0
:
14

0
:
15

0
:
02
!K

2
ð
1430
Þ
þ
K
þ

0
182

30 6

3
8.2 14.9
7.2
31
:
0

5
:
20
:
52

0
:
10
0
:
17

0
:
16
!K

2
ð
1430
Þ
þ
K
0
S

þ
64

25 10

5
10.1 10.3 2.4
11
:
2

4
:
90
:
76

0
:
26

0
:
04

0
:
35
!
0
30
þ
21

18

3

2
9.5 89.2 1.9
0
:
8

0
:
5

0
:
2
1.6
0.8 fixed

!f
0
37
þ
14

12
1

1
14.4 59.5 4.5
1
:
0

0
:
3

0
:
1
1.5

!
þ
411

43 27

14
5.8 89.2
9.8
15
:
9

1
:
6

1
:
4

0
:
90

0
:
05

0
:
03

0
:
20

0
:
09

0
:
02
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
052005 (2009)
052005-6
computations. For decays with
K
we combine the results
from the two
K

decay channels, by adding their values of

2ln
L
. For the significance
S
we use the difference
between the value of

2ln
L
for zero signal and the value
at its minimum; the corresponding probability is inter-
preted with the number of degrees of freedom equal to
two for modes with a measured
f
L
and one for the others.
For modes without a significant signal, we quote a 90%
confidence level (C.L.) upper limit, taken to be the branch-
ing fraction below which lies 90% of the total of the
likelihood integral in the region of positive branching
fraction. In all of these calculations
L
ð
B
Þ
is a convolution
of the function obtained from the fitter with a Gaussian
function representing the correlated and uncorrelated sys-
tematic errors detailed below.
We show in Fig.
2
the data and PDFs projected onto
m
ES
.
Figure
3
shows similar projections for the
K
and

masses. Figure
4
gives projections onto
H
for the
!K

modes.
The systematic uncertainties on the branching fractions
arising from lack of knowledge of the signal PDF parame-
ters are estimated by varying these parameters within un-
certainties obtained from the consistency of fits to MC and
data control samples. The uncertainty in the yield bias
correction is taken to be the quadratic sum of two terms:
half the bias correction and the statistical uncertainty on
the bias itself. We estimate the uncertainty from the mod-
E (GeV)
-0.2
-0.1
0.0
0.1
0.2
Events / 40 MeV
0
50
100
E (GeV)
-0.2
-0.1
0.0
0.1
0.2
Events / 40 MeV
0
50
100
F
-3
-2
-1
0
1
2
Events / 0.25
0
50
100
-3
-2
-1
0
1
2
Events / 0.25
0
50
100
(GeV)
π
3
m
0.74
0.76
0.78
0.80
0.82
Events / 10 MeV
0
50
100
(GeV)
π
3
m
0.74
0.76
0.78
0.80
0.82
Events / 10 MeV
0
50
100
ω
H
0.0
0.2
0.4
0.6
0.8
1.0
Events / 0.1
0
20
40
ω
H
0.0
0.2
0.4
0.6
0.8
1.0
Events / 0.1
20
40
π
π
H
-0.5
0.0
0.5
Events / 0.1
0
20
40
π
π
H
-0.5
0.0
0.5
Events / 0.1
0
20
40
(a)
(b)
(c)
(d)
(e)
FIG. 1 (color online). Projections for
B
þ
!
!
þ
: (a)

E
,
(b)
F
, (c)
m
3

, (d)
H
!
, and (e)
H

. Points with errors
represent data and solid curves represent the full fit functions.
Also shown are signal (blue dashed line),
b
!
c
background
(magenta dotted-dashed line), and total background (black long-
dashed-dotted line). Charmless background and nonresonant
background are too small to be seen. To suppress background,
the plots are made with requirements on
ln
L
that have an
efficiency for signal of (40–60)% depending on the plot.
π
K
H
-0.5
0.0
0.5
1.0
Events / 0.2
0
200
400
600
π
K
H
-0.5
0.0
0.5
1.0
Events / 0.2
0
200
400
600
π
K
H
-0.5
0.0
0.5
1.0
π
K
H
-0.5
0.0
0.5
1.0
(a)
(b)
FIG. 4 (color online).
B
-candidate
K
helicity projections for
(a)
!K

0
and (b)
!K
. The efficiency range and key for the
curves are the same as for Figs.
2(a)
and
2(b)
.
0
200
400
600
0
200
400
600
0
200
400
600
0
200
400
600
(GeV)
ES
m
5.25
5.26
5.27
5.28
5.29
0
50
100
150
200
(GeV)
ES
m
5.25
5.26
5.27
5.28
5.29
0
50
100
150
200
(GeV)
ES
m
5.25
5.26
5.27
5.28
5.29
0
50
100
(GeV)
ES
m
5.25
5.26
5.27
5.28
5.29
0
50
100
(a)
(b)
(c)
(d)
Events / 2.5 MeV
Events / 2.5 MeV
FIG. 2 (color online).
B
-candidate
m
ES
projections for
(a)
!K

0
, (b)
!K
, (c)
!
0
=!f
0
, and (d)
!
þ
. The solid
curve is the fit function, the black long-dashed-dotted curve is
the total background, and the blue dashed curve is the total signal
contribution. For (a),(b) we also show the signal components:
K

ð
892
Þ
(red dashed line),
ð
K
Þ

0
(green dotted line), and
K

2
ð
1430
Þ
(magenta dotted-dashed line). We show for (c),(d)
the
b
!
c
background (magenta dotted-dashed line), and for
(c) the
B
0
!
!
0
(red dashed line) and
B
0
!
!f
0
(green dotted
line) components. The plots are made with a requirement on
ln
L
that has an efficiency of (40–60)% depending on the plot.
0
50
100
150
200
0
50
100
150
200
0
5
10
15
0
5
10
15
(GeV)
π
K
m
0.8
1.0
1.2
1.4
0
50
100
150
200
(GeV)
π
K
m
0.8
1.0
1.2
1.4
0
50
100
150
200
(GeV)
π
π
m
0.6
0.8
1.0
0
20
40
(GeV)
π
π
m
0.6
0.8
1.0
0
20
40
(a)
(b)
(c)
(d)
Events / 50 MeV
Events / 30 MeV
FIG. 3 (color online).
B
-candidate
K
mass projections for
(a)
!K

0
and (c)
!K
, and

mass projections for
(b)
!
0
=!f
0
and (d)
!
þ
. The efficiency range and description
of the curves are the same as for Fig.
2
.
OBSERVATION OF
B
MESON DECAYS TO
...
PHYSICAL REVIEW D
79,
052005 (2009)
052005-7
eling of the nonresonant and
B

B
backgrounds by varying
the background yields by their estimated uncertainties
(from Ref. [
16
] and studies of our data). We vary the
SXF fraction by its uncertainty; we find this to be 10%
of its value, determined from studies of the control
samples. For the
K

0
ð
1430
Þ
modes, we vary the LASS
parameters within their measured uncertainties [
19
]. For
B
0
!
!
0
where
f
L
is fixed, the uncertainty due to the
assumed value of
f
L
is evaluated as the change in branch-
ing fraction when
f
L
is varied by
þ
0
:
2

0
:
3
. These additive
systematic errors are dominant for all modes and are
typically similar in size except for the error due to
B

B
background, which is usually smaller than the others.
Uncertainties in reconstruction efficiency, found from
studies of data control samples, are
0
:
4%
=
track,
3
:
0%
=
0
,
and
1
:
4%
=K
0
S
decay. We estimate the uncertainty in the
number of
B
mesons to be 1.1%. Published data [
16
]
provide the uncertainties in the
B
-daughter branching frac-
tions (
&
2%
). The uncertainty in the efficiency of the
cos

T
requirement is (1.0–1.5)%. Since we do not account
for interference among the
K

components, we assign
systematic uncertainties based on separate calculations
where we vary the phases between the three components
over their full range.
The systematic uncertainty on
f
L
includes the effects of
fit bias, PDF-parameter variation, and
B

B
and nonresonant
backgrounds, all estimated with the same method as used
for the yield uncertainties described above. From large
inclusive kaon and
B
-decay samples, we estimate the
A
ch
bias to be negligible for pions and

0
:
01
for kaons,
due primarily to material interactions. Thus we correct the
measured
A
ch
for the
K

modes by
þ
0
:
01
. The systematic
uncertainty for
A
ch
is estimated to be 0.02 due mainly to
the uncertainty in this bias correction. This estimate is
supported by the fact that the corrected background
A
ch
is smaller than 0.015.
In summary, we have searched for nine charmless had-
ronic
B
-meson decays as shown in Table
II
, and have
observed most of them (for the first time in all cases except
B
þ
!
!
þ
). We calculate the branching fractions for
!K

0
ð
1430
Þ
using the composition of
ð
K
Þ

0
from
Ref. [
20
]. We find
B
ð
B
0
!
!K

0
ð
1430
Þ
0
Þ¼ð
16
:
0

1
:
6

1
:
5

2
:
6
Þ
10

6
and
B
ð
B
þ
!
!K

0
ð
1430
Þ
þ
Þ¼ð
24
:
0

2
:
6

2
:
2

3
:
8
Þ
10

6
, where the third errors arise from
uncertainties in the branching fraction
K

0
ð
1430
Þ!
K
[
16
] and the resonant fraction of
ð
K
Þ

0
. For most decays
we measure
A
ch
and find it to be consistent with zero. For
VV
and
VT
decays we also measure
f
L
.For
B
þ
!
!
þ
,
f
L
is near 1.0, as it is for
B
!

[
3
]. For the
VT B
!
!K

2
ð
1430
Þ
decays
f
L
is about
4
from 1.0 for both charge
states; it is similar to the value of

0
:
5
found in
B
!
K

decays. Branching fraction results are in agreement with
theoretical estimates [
2
] except for the
SV
and
VT
decays
where the estimates are more uncertain [
11
,
13
].
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MEC (Spain), and STFC
(United Kingdom). Individuals have received support from
the Marie Curie EIF (European Union) and the A. P. Sloan
Foundation.
[1] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
91
, 171802 (2003); K. F. Chen
et al.
(Belle Collaboration),
Phys. Rev. Lett.
91
, 201801 (2003).
[2] M. Beneke, J. Rohrer, and D. Yang, Nucl. Phys.
B774
,64
(2007); H.-Y. Cheng and K.-C. Yang, Phys. Rev. D
78
,
094001 (2008); Y. Li and C.-D. Lu
̈
, Phys. Rev. D
73
,
014024 (2006).
[3] A. Somov
et al.
(Belle Collaboration), Phys. Rev. Lett.
96
,
171801 (2006); B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. D
76
, 052007 (2007); J. Zhang
et al.
(Belle
Collaboration), Phys. Rev. Lett.
91
, 221801 (2003); B.
Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
97
,
261801 (2006).
[4] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. D
74
,
051102 (2006).
[5] C. W. Bauer
et al.
, Phys. Rev. D
70
, 054015 (2004); P.
Colangelo, F. De Fazio, and T. N. Pham, Phys. Lett. B
597
,
291 (2004); A. L. Kagan, Phys. Lett. B
601
, 151 (2004);
M. Ladisa
et al.
, Phys. Rev. D
70
, 114025 (2004); H. Y.
Cheng, C. K. Chua, and A. Soni, Phys. Rev. D
71
, 014030
(2005); H.-n. Li and S. Mishima, Phys. Rev. D
71
, 054025
(2005); H.-n. Li, Phys. Lett. B
622
, 63 (2005).
[6] A. K. Giri and R. Mohanta, Phys. Rev. D
69
, 014008
(2004); E. Alvarez
et al.
, Phys. Rev. D
70
, 115014
(2004); P. K. Das and K. C. Yang, Phys. Rev. D
71
,
094002 (2005); C.-H. Chen and C.-Q. Geng, Phys. Rev.
D
71
, 115004 (2005); Y.-D. Yang, R. M. Wang, and G. R.
Lu, Phys. Rev. D
72
, 015009 (2005); A. K. Giri and R.
Mohanta, Eur. Phys. J. C
44
, 249 (2005); S. Baek
et al.
,
Phys. Rev. D
72
, 094008 (2005); W. Zou and Z. Xiao,
Phys. Rev. D
72
, 094026 (2005); Q. Chang, X.-Q. Li, and
Y. D. Yang, J. High Energy Phys. 06 (2007) 038.
[7] S. Oh, Phys. Rev. D
60
, 034006 (1999).
[8] P. Goldenzweig
et al.
(Belle Collaboration), Phys. Rev.
B. AUBERT
et al.
PHYSICAL REVIEW D
79,
052005 (2009)
052005-8
Lett.
101
, 231801 (2008).
[9] D. Atwood and A. Soni, Phys. Rev. D
59
, 013007 (1998);
65
, 073018 (2002); H.-W. Huang
et al.
, Phys. Rev. D
73
,
014011 (2006).
[10] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
98
, 051801 (2007).
[11] C. S. Kim, J.-P. Lee, and S. Oh, Phys. Rev. D
67
, 014002
(2003).
[12] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
89
, 201802 (2002).
[13] H.-Y. Cheng, C.-K. Chua, and K.-C. Yang, Phys. Rev. D
77
, 014034 (2008).
[14] A. Datta
et al.
, Phys. Rev. D
77
, 114025 (2008).
[15] B. Aubert
et al.
(
BABAR
Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002).
[16] C. Amsler
et al.
(Particle Data Group), Phys. Lett. B
667
,1
(2008).
[17] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
99
, 171803 (2007).
[18] The
BABAR
detector Monte Carlo simulation is based on
GEANT4
: S. Agostinelli
et al.
, Nucl. Instrum. Methods
Phys. Res., Sect. A
506
, 250 (2003).
[19] D. Aston
et al.
(LASS Collaboration), Nucl. Phys.
B296
,
493 (1988).
[20] B. Aubert
et al.
, Phys. Rev. D
72
, 072003 (2005);
74
,
099903(E) (2006).
[21] E. M. Aitala
et al.
(E791 Collaboration), Phys. Rev. Lett.
86
, 765 (2001).
OBSERVATION OF
B
MESON DECAYS TO
...
PHYSICAL REVIEW D
79,
052005 (2009)
052005-9