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Abstract 

We propose a probabilistic approach to conformance 
testing of protocols containing unobservable transi- 
tions. We  say that an implementation conforms t o  its 
specification i f  their observable behavior i s  probabilis- 
tically the same, when both are subject to the same 
random environment simur!ated b y  the tester. Under 
the randomized inputs, faults in un.observable tran- 
sitions may manifest themselves an certaan statistzcs 
measurable from the implementation, and hence can 
be detected b y  comparing these measurements against 
the desirable statistics computed from the specification. 
The sensitivity of the non-conformance criterion to 
the uncertainty in our knowledge of desirable statis- 
tics i s  also studied. The conventional testing of proto- 
cols without unobservable transitaons uses mismatch in 
outputs to detect faults. Here, we rely, in addition, on 
mismatch an the dynamics of the protocol under input 
randomization. 

1 Introduction 

To ensure interoperability of, say, a switch and its 
peripherals, vendors of the peripherals typically imple- 
ment a communication protocol according to  a specifi- 
cation given by the switch vendor. These implementa- 
tions are tested by the switch vendor for conformance 
to  the specification before they are deployed. A con- 
formance test applies a sequence of inputs to an imple- 
mentation and concludes that it is conformant if the 
observed outputs are as specified. As to be seen, we 
assume the switch vendor has access to a conformant 
implementation, whose probabilistic behavior can be 
measured and used in testing other implementations. 

To design an revealing and efficient test sequence, 
the specification is usually modeled as a deterministic 
finitestate (Mealy) machine (FSM) F’, e.g., [l ,  2,  3 ,4];  
see also [5, 61. An implernentation is a ‘black box’ 
whose behavior is modeled as another FSM M’. The 

implementation is said to  be conformant if M’ and F’ 
are equivalent FSMs. Under suitable assumptions, a 
test input sequence t can be designed such that F’ 
and M’ are equivalent if and only if both produce the 
same output sequence on t .  The  design depends crit- 
ically on the assumptions that  both F’ and M’ are 
deterministic and that all transitions are observable. 

In this paper, we explore conformance testing when 
the specification is modeled by a FSM F’ that  con- 
tains unobservable inputs, called T inputs, in addition 
to  external inputs. An implementation is modeled as 
another FSM M’ that  shares the same set of inputs 
and outputs as F’. A tester can select external inputs 
to  apply to the implementation, but it cannot directly 
control (force or forbid) nor observe 7 inputs. If the 
tester selects an external input when the implemen- 
tation can either rnake that input transition or make 
other T transitions, the choice may be random; see 
$2.  The nondeterminism introduced by the unobserv- 
able transitions makes the testing strategy based on 
deterministic FSM not directly applicable. We pro- 
pose a probabilistic approach to conformance testing 
of such protocols. Unobservable transitions arise when 
the protocol’s behavior depends on features not explic- 
itly modeled, such as da ta  variables. For instance, an 
external input may represent receipt of a message by 
the protocol device. It triggers some computations in- 
volving internal variables as well as variables in the 
message. Depending on the result of the computa- 
tions, the device enters a different state. If it is nec- 
essary to abstract out the details of the computation 
and the variables, result of the computation can be 
modeled by T transitions. Unobservable transitions 
also arise naturally when a protocol is specified and 
implemented as a collection of communicating FSMs 
(CFSMs). For instance, the specification F’ may be 
obtained as the composite machine of individual CF- 
SMs, in which T transitions are inter-CFSM communi- 
cations. For conformance testing of CFSMs that does 
not compute the composite machine, see [7]. 

We make two critical assumptions. We assume that 
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some states are observable in t,he iniplement8at,ion and 
that,  when randomized external inputs are applied to 
the specification F’, its observable probabilistic behav- 
ior (made precise in $2) is known. The  first condition 
is common in digital-circuit designs for testability that 
is yet to  find its way t o  protocol design. The second 
assumption is justified if the conformance-test center 
has access t o  a correct implementation, whose observ- 
able probabilistic behavior can then be measured and 
used in testing other implementations. 

Under these assumptions, our method attempts t o  
detect faults in unobservable as well as observable 
transitions. Intuitively, we require that  the implemen- 
tation and the specification “look alike” (made precise 
by x- and P-conformant in $3)  when both are subject 
to  the same random environment, simulated by the 
tester. We assume that when randomized external in- 
puts are applied to  the specification F’ ,  the probabilis- 
tic behavior of F’ is known. The basic idea is tha.t, 
when the same randomization is applied to the im- 
plementation M’, its observable behavior depends not 
only on the induced probability law governing how the 
external inputs in I are chosen, but also on the struc- 
ture of M’. Faulty unobservable transitions in Ad’ may 
manifest themselves in certain statistics measurable 
from the ‘black box’. Hence, we may check its con- 
formance by comparing these measurements against 
the desirable statistics computed from the specifica- 
tion. In comparison, the previous strategy based on 
deterministic FSM uses mismatch i n  outputs to detect 
faults. Here, we rely, in addition, on mismatch i n  the 
dynamics of the protocol under input randomization, 
such as the frequency an observable d a t e  is visited or 
a transition is traversed. 

In $2, we explain through an example our  model, 
assumptions and approach. In §3,  we formally de- 
fine two notions of conformance ~ r-conformance and 
P-conformance - and propose probabilistic tests for 
them. Faultss in unobservable t,ransitions are detect,ed 
by comparing the statistics of the observed behavior 
against the desirable statistics. Our a.pproach hence 
depends critically on the assumption that we know 
the statistical behavior of F’, against which the mea- 
sured behavior of M’ is compared. In  54, we investi- 
gate the sensitivity of the non-conforn~ance criterion 
for *-conformance to  uncertainty in such knowledge 
and derive a non-conformance criterion that is robust 
against this uncertainty. A test for x-conformance is 
simpler than one for P-conformance, but is also less 
informative. In $5, we show how we may estimate a 
finer structure of the implementation using the mea- 
surements from a test for x-conformance. We conclude 

in $6 with remarks on the limitations of this work. All 
proofs are omitted and can be found in [8]. 

Several previous papers on protocol testing or ver- 
ification adopt a probabilistic approach [9, 10, 11, 71. 
Unlike these researchers, who use randomization pri- 
marily to  circumvent the state-explosion problem, we 
use it to tackle the unobservability problem. As will 
become clear, our emphasis is on detecting faults in 
unobservable transitions by exploiting the protocol’s 
dynamic behavior 

2 Protocol model 

A FSM is a 4-tauple A = ( S ,  I ,  0 , 6 ) ,  where S is a 
finite set of states, I is a finite set of input labels, 0 
is a finite set of oiitput labels, and 6 : S x I -+ 2sx0 
is a transition funct,ion. 6(s, a )  = (s’, nil) E S x 0 
if A produces IIO output in transition from state s to 
state s’ on input a .  By a transition label, we mean 
t,he input/output pair associated with the transition. 

For o u r  purpost:s, a protocol specification is a FSM 
F’ = ( S p ,  I U { T } ,  0 , 6 p )  that  contains unobservable 
inputs labelled by T I .  We call inputs in I external 
inputs. We assume the specification is deterministic 
on I ,  i.e. 6 p ( s ,  a )  is a singleton for all state s if a # T ,  

though 6 p ( s ,  T )  ciin be more than a singleton. We re- 
quire the specification to be completely specified on 
I in the following sense. F’ can either accept all ex- 
ternal inputs in I (and possibly unobservable inputs 
as well) or no external input in  I ,  i.e. for all state 
s, either 6 p  (s, a )  is defined for all a E I (and possi- 
bly for T as well), or it is defined only for T .  We will 
assume for simplicity that F‘ produces no output on 
unobservable inputs, i.e. for all s for which S ~ ( S , T )  
is defined, 6 p ( s ,  7 )  = (s’, nil) for some s’. An imple- 
mentation M’ = (Shf t ,  I U { T } ,  0 , 6 ~ ~ )  shares the same 
set of transition labels as the specification F’. We sim- 
ilarly assume that M’ is deterministic and completely 
specified on I ,  anti t,hat it produces no output on un- 
observable inputs. Finally, we assume both F’ and M’ 
are strongly connr:cted. 

Following [TI, we assume that a stale is observ- 
able i f .  i n  that sta.te, the implementation can ac- 
cept external inputs from the tester. Under this as- 
sumption, we construct from F’ another FSM F = 
( S F ,  Iu { T } ,  0 , 6 ~ )  called the observable specification. 
SF is the set of observable states in F’. There is a 
transition in F from state s to  state s’ 1) if F’ can 
accept a n  input a in s, produce an output b,  and fol- 
low a sequence of T transitions to  reach s’, or 2) if 
F’ can follow from s a sequence of T transitions to  
reach s’. In  the fclrmer case, the transition is labelled 
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in F by a/6 i.e. ~ F ( s , u )  := (s’ ,b) ,  where b is possibly 
nil. In the latter case, the transition is labelled by T ,  

i.e. S F ( S , T )  = ( s ‘ , d ) .  :Derive in the same way the 
observable implementation M = ( S M ,  IU { T } ,  0 , s ~ ) .  

As an example, consider the specification and its 
implementation in Figurle 1 where I = ( 0 , l )  and 
0 = { a , b , c , d } .  Ignore for the moment the brack- 
eted probability associated with a transition. Note 
that the outgoing transition from state 2 on input 1 is 
not shown, with the interpretation that the tester will 
not select that  input. Similarly for input 0 in state 1. 
The implementation has two faults (dash transitions): 
an extra T transition from state 3 to  state 0 ,  and the 
incorrect destination state for the T transition out of 
state 2. For this example, states 0 ,  1, 2 are observ- 

F“ 

Figure 1: The  specification and its implementation 

able, and others are not. The observable counterparts 
of the specification and the implementation are shown 
in Figure 2. l  

Figure 2: F = kl but F ( t )  # M ( t )  

We say that  the implementation AY‘ has an ezier- 
nal fault if the observa6le implementation M contains 

‘A transition labelled by U + U ‘  between a state pair is an 
abbreviation for two transitions labelled by U and c’ between 
the same state pair. 

a transition that has an incorrect output label or an 
incorrect destination state,  or both. Note that this in- 
cludes the case in which M has an T transition whose 
destination state is incorrect. Faulty unobservable 
transitions may sometimes manifest themselves as ex- 
ternal faults that  can be detected by simply noting 
the output and (observable) destination state of each 
transition in the observable implementation M .  Other 
times, however, they manifest themselves only in the 
dynamic properties of the observable implementation. 
For our example, despite faults in T transitions, the 
observable implementation M is identical to the ob- 
servable specification F (Figure 2). This kind of faults 
can be detected using our  knowledge of probabilistic 
behavior of the protocol under input randomization, 
as explained next.’ 

We assume that the tester can generate external 
inputs, when the implementation is in an observable 
state, in such a way that all transitions in the specifi- 
cation F‘ are traversed with fixed and known proba- 
bilities. For o u r  example, i n  state 0, F‘ traverses the 
transitions O/a and l / b  with respective probabilities 
pa and pb ,  satisfying p a  + pb = 1; in state 1, F’ tra- 
verses the transition 1/c with probability 1; in state 2, 
F‘ traverses the t.ransitions Old and 7 with probabili- 
ties p d  and 23, satisfying p d  + 23 = 1, etc. (Transition 
probabilities except 1 are shown in parentheses in fig- 
lire 1.) Let F‘(t) be the state of F‘ after t transitions, 
counting T transitions. Then the state process F’(t) 
is a Markov chain. It describes the desirable behavior 
when the implementation M’ is under test. Suppose, 
however, that  the two T transitions out of state 3 in 
M’ are selected with fixed but unknown probabilities 
24 and 25, and that other transition probabilities are 
as for F’. Then (.he state process M’(1) of M’ is also 
a Markov chain. 

The Markov process F’(t)  induces a state process 
F ( 1 )  for the observable specification F .  F ( t )  is the 
value of F’( t )  when F’(1) visits the set SF of observ- 
able states for the t-th time. F ( t )  is also a Markov 
chain whose transition matrix PF can be easily com- 
puted from the transition matrix P p  of F’(t). Sim- 
ilarly, M’( t )  induces a Markov chain M ( t )  for the 
observable implementation M ,  which is the value of 
M ’ ( t )  when A Y ’ ( t )  visit,s tlhe observable states for the 

2To assess how common this kind of faults are, we performed 
a simple experiment on an adaptationof full duplex alternating 
bit. protocol originally specified as CFSMs. We randomly intro- 
duced faults in T transitions between unobservable states. We 
found that in 79% of the (130) randomly generated faulty im- 
plementations, the faults manifest themselves as external faults, 
and in the remaining 21%, the faults only manifest themselves 
in the observable probabilistic behavior. 
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t-th time. The  key to  our approach is to  observe that ,  
even though M and F are identical, their dynamic be- 
havior can be quite different. Specifically, their state 
process M(t) and F ( t )  may have different transition 
probabilities. 

The  transition probabilities for F ( t )  and M ( t )  in 
our example are shown in parentheses i n  Figure 2. 
For concreteness, suppose the tester generates random 
inputs in such a way that p a  = pb = p d  = 0.5, p ,  = 
1 and 2, = 0.5, i = 1 , .  . . , 5 .  Then the transition 
matrices of F ( t )  and M ( t )  are 

and the unique stationary distributions are (see (1) 
below) 

Moreover, the fraction of time M ( t )  visits state i ,  
i = 0 , 1 , 2 ,  converges to T M ( ~ )  # X F ( ~ )  as the test 
length increases (see $3) .  Were M’ equivalent to F‘, 
i t  would converge to T F ( ~ ) .  Hence we can measure 
?TM and detect the faults for this example by counting 
the frequency each observable state is visited i n  the 
implementation. 

In practice, the transition probabilities of the speci- 
fication F’ under input randomization may be difficult 
to  obtain. If the conformance-test, center has access to 
a correct implementation, it can measure its transition 
probabilities among observable states under the same 
randomization strategy and use these measurements 
as PF to test other implementations. 

3 Probabilistic conformance testing 

As in $2, a protocol specification is a FShl F‘ = 
( S p ,  I U { T } ,  0 , 6 p ) .  An implementation is another 
FSM M’ = ( S M ~ ,  I U { T } >  0, b h , ~ ) .  In addition to  the 
general setup described in $2, we make the following 
assumptions: 

A l :  States of M’ in which it can accept inputs are 
observable, and M’ starts i n  a known observable 
state. 

A2: Randomized external inputs can be generated i n  
such a way that  F’ and Ad’ behave as Markov 
chains. Moreover, the transition probabilities i n  
F’ among the observable states are known. 

As in $2, F and .M denote the observable specifica- 
tion and the observable implementation, respectively, 
and the Markov chains F ( t )  and M ( t )  are their state 
processes. The test we propose below will take the 
observable implementation M through all its states. 
If M and F do not have the same number of states, 
extra or missing observable states will be discovered 
at  the conclusion of a test. We are concerned with the 
interesting case when M and F indeed have the same 
number of states. Hence, for ease of exposition, we 
restrict ourselves Ito the situation when the following 
nonessential assumption is satisfied: 

A3: h4’ and F‘ h,ave the same number of observable 
states. 

Finally, we make the following technical assumption, 
which will be satisfied if M and F each contain a self- 
loop 

A4: The Markov chains M ( t )  and F(1)  are aperiodic 
[12, pp.651. 

Let. S = { 1 , .  . . n} be the state space of F and M .  
Suppose a test suiite satisfying Assumption A2 is ap- 
plied to F’ and M’.  Under the assumptions, F ( t )  
and M ( t )  are two independent discrete-time Markov 
chains on S with known and unknown transition ma- 
trices PF and p ~ ,  respectively. 

P r o p o s i t i o n  1 I‘nder Assumptions A l -Ad ,  the ob- 
seruable process F ( 1 )  ( M ( 1 ) )  admits a unique statzon- 
ary distributzon. 7rp > 0 ( X M  > O).3 Moreover, F(2) 
(A[( t ) )  is asyiriptotacally stationary and ergodic. 

Proposition 1 provides the basis for our probabilis- 
t.ic approach. It implies that  we can measure ?TM or 
P,bf from the ‘black box’ and compare them against 
the desirable value T F  or PF. 

We can now formally define our notion of confor- 
mance. Roughly, it says that  implementation M’ con- 
forms to  specification F‘ if their observable behavior is 
probabilistically the same. Note that  in the tests pro- 
posed below, every transition in M will be traversed, 
and therefore an external fault will be detected with 
probability one, 2; the test length increases. 

Defini t ion 1 Suppose M’ has no external faults. Un- 
der Assumptions .41-A4, M‘ is said to  be 

1. ~-conformai:it ( t o  F‘) i f  the observable processes 
M(l)  and F ( t )  have the same unzque stationary 
distribuiion, i . e . ,  X M  = X F .  

3We use the convention that a probability distribution is 
always a TOW vector. The notation z‘ > 0 means that every 
component zt  o f  the vector s is strictly positive; similarly for 
x 2 0. 
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2. P-conformant ( to  F ' )  if the observable processes 
M ( t )  and F ( t )  have the same transition matrix, 
i . e . ,  PM = PF (elementwise). 

By Proposition 1, PM = PF * T M  = T F .  Hence, 
P-conformance is stronger than r-conformance: the 
set of implementations that are P-conformant is a 
subset of implementations that are r-conformant to 
a specification. 

3.1 Test for n-conformance 

The  test procedure is: 

1. Design test generatio'n so that Assumption A2 is 
satisfied. Compute T F  using PF and (1) below. 

3.2 Testing for P-conformance 

The test procedure for P-conformance is similar to  
that in $3.1, except that  the tester also counts the 
frequency each transition is traversed: 

1. Design test generation so that  Assumption A2 is 
satisfied. 

2.  Apply the probabilistic test to M ' .  Count the 
frequency each observable state is visited, and the 
frequency the transition between each observable 
state pair is traversed. 

3. Terminate the test when either an external fault 
is detected, or  (5-6) below are satisfied, whichever 
comes first. 

2. Apply the probabilistic test to M ' ,  and count the 4 .  Conclusion: A.2' is P-conformant if no external 
frequency each observable state is visited. fault is detected and (4) below holds. 

3. Terminate the test when either an external fault 
is detected, or (3) below is satisfied, whichever 
comes first. 

4. Conclusion: M' is 7r-conformant if no external 

Suppose M' has no external faults. Let x ( t )  be as 
defined i n  53.1. For each state pair ( i , j )  E S2, let 
P ( i , j ) ( t )  be the fraction of time M transits from i to  
j by t ,  as measured in Step 2 of the test procedure. 
Since M ( t )  is ergodic by Proposition 1, 

fault is detected and (2) below holds. 
P( i ,  j ) ( t )  P~(i,j) = lim ~ 

1 T ( i > ( t )  
Suppose M' has no e.nterna1 faults. Recall from 

Proposition 1 that  both i M ( t )  and F ( t )  admit unique 
stationary distributions  ti^ and T F ,  respectively. T F  

can be comDuted from 
IIelrce A4' is P-conformant if and only if 

Since M ( t )  is ergodic, regardless of the initial state,  
the fraction of time M ( t )  visits state i converges to 
r ~ ( i )  as t - 00. The ergodicity of Ad(t) provides the 
basis for our probabilistic testing. 

Let the row vector r ( t )  denot,e the fraction of h i i e  
each state in M is visited by t ,  as measured in Step 2 of 
the test procedure. By Proposition 1 ,  limt ~ ( 1 )  = TAf, 

and hence M' is x-conformant if and only if 

( 2 )  

for all ( i l j )  E s', where P ( t )  and * ( t )  are "red 
during t'he test. In  practice, we may choose testing 
P rame te r s  ( 1  > 0, € 2  > 0, and 6 > 0. We terminate 
the testing wlieii 

(5) l l T ( i )  - 4 1  - 1)11 < €1 

IP(i,j)(l) - l ' ( i , j ) ( t  - 1)1 < €2 ,  ( i , j )  E S2(6) 

and declare a fault if 

[.____ P(ilj)(t) - p F ( i , j ) l  > 6 T ( t )  --+ ?TF 

.(t) In practice, we may choose two testing parameters c > 
0 and 6 > 0. We terininate the test when for some ( i , j )  E 9. 

I l4 t )  - 4 t  - 1111 < .5 ( 3 )  

and declare a fault if 4 Seiisitivity 

Our conformance test detects faults by comparing 
t.he measured stationary distribution TM against the 
desirable T F  computed from PF according to ( l ) ,  and 
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declare non-conformance if they differ, i.e. if 1 1 ~ ~  - 
T F I I  > 0. In this section, we investigate the effect of 
uncertainty in PF on detecting non-conformance. 

Specifically, suppose that ,  due to modeling error 
(or measurement error if measurements of some other 
correct implementation is used as PF), the actual tran- 
sition matrix of F ( t )  is 

PF(E) = PF + E 
for some error matrix E ,  instead of the nominal P F .  
We seek a tolerance 6 > 0 such that 

guarantees the true non-conformance condition 

l l r M  - rF(E) l l  > 0 (8) 

where AF(E) is the stationary distribution of the ac- 
tual matrix P F ( E ) .  We will assume throughout that  
E is “small enough” so that Assumptions Al-A4 are 
in force. 

By the Perron-Frobenius theorem [13], we can 
write, possibly after rearranging the columns and 
rows, 

where v is an ( n  - 1)-dimensional row vector, U an 
(n - 1) x ( n  - 1) nonsingular matrix, a a scalar, and b 
an ( n  - 1)-dimensional colutnn vector. Here, 71 is the 
number of observable states. Similarly, write 

The next proposition provides a tolerance 6 for noti- 
conformance that does not require solving for K F ( E ) .  
We use the 11 norm l lyl l = Clyll for vectors, 
and the induced norm for matrices, i.e. IlAll = 
maxj xi IA(i , j ) l  for matrix A .  

Proposition 2 Suppose IlE‘ll < 1/11U-’11. Then (7) 
implies true non- conformance (8) provided 

2 4 U )  IlE’ll l l e ’ l l  
1 - 4 ~ ~ l l ~ ’ l l / l l ~ l l  ( Tim + 34 

where .(U) = IlUll llU-’ll 

The tolerance 6 bounds the error i n  using llrnr - 
K F ~ ]  in place of l l ~ n f  - r ~ ( E ) l l  to detect, non- 
conformance. It depends on the relative error (#$# 

and f$) in the nominal PF. The proposition says 
that ,  if .(U) is small, then a small relative error in PF 
induces a small error in using I ~ A M  - ~ ~ 1 1 .  Note that 
different v, U in (9 ) ,  and corresponding e’, E’ in ( lo) ,  
can be used, and one should select a combination that 
gives a small 6. 

For the example in $2, suppose there is an error 
of E in the nominal values (0.5) of 11,12, z 3  and p d .  

Application of Proposition 2 to the non-conformance 
criterion 

M’ is not r-conformant if [ [ K M  - ~ ~ 1 1  > 6(c)  

c 7 + 6 r )  gives 6(c)  = $$--. We found that (see [8]) we can 
have an relative error ( 2 6 )  of up to 60% in our knowl- 
edge of the values of ~ 1 , x 2 , 2 3 ,  pd and still detect the 
faults. For instance, when c = 0.3, [ l r ~  - ~ ~ 1 1  = 

0 0.74 > 0.66 = 6 ( t ) .  

5 Estimatiiig PM 

Step 2 of the test procedure for r-conformance 
($3.1) is less expensive than that for P-conformance 
(SY.2), because i t  has to keep track of n2 fewer counts, 
11 being the number of observable states. Moreover, 
t,he t>erminat,ion crit,erion (3) for the former is less 
stringent than tlte termination criterion (5-6) for the 
latter, possibly leading to  a shorter test length. Hence 
t,he t,est for  conformance is easier t o  perform, though 
it is also less informat,ive since it measures only AM, 

not Phf.  When a test for r-conformance shows that 
114’ is not r-conformant, we may wish to estimate, us- 
ing the measured r ~ ,  the transition matrix PM to 
help identify faults i n  ,Ad‘. Let m(rn4 )  be the set of all 
irreducible and aperiodic matrices whose unique sta- 
tioiiary distribution is r ~ .  We propose to find among 
the infinitely many transition matrices in m(nM) (see 
[S, Proposition 21) one which is “closest” to  PF, sub- 
ject to the condition that no external faults are ob- 
served. We hence seek the solution to  the following 
problem: 

subject to P E  m ( r M ) ,  P 4 PF (12) 

where for a niatrix P ,  l l ~ l l  = Jm is 

t,lie Frobeiiius iiorm [14]. Here, ‘ P  < PF’ denotes 
‘ P ~ ( i , j )  = 0 3 P ( i , j )  = 0’. If this condition is vio- 
lated, then an external fault will  indeed be observed, 
provided the test length is sufficiently long. In this 
section, we derive the solution for (11-12). 

373 



The problem (11-12) INS made difficult by the fact 
that  m(.lr), x > 0,  is in general not closed. Hence the 
feasible solution set m ( n )  n {PIP < P p }  is not com- 
pact and the objective function IIP - Pp1I2 may not 
achieve its minimum on the feasible solution set, as 
the example below demolistrates. If we remove the re- 
striction of irreducibility and aperiodicity and replace 
m(T) by the closed superset 

m'(n) = {PIP is stochastic, S P  = T} 

then the solution indeed exists. The following obser- 
vation is the key to our solution for (11-12). 

Proposition 3 Given any x > 0 ,  m(?r) is dense in 
m'(x), i . e . ,  K ( T )  = m'(:r), where E(s) denotes the 
closure of m ( T). 

The proposition suggests solving the following 
problem instead of (1 1- 12): 

min ] I F '  - pF1I2 (13) P 

subject to P 15 "(TA,) ,  P + Pp (14) 

A unique solution to the original problem (11-12) ex- 
ists if and only if the unique solution P* for (13-14) lies 
in m(a).  If P* lies on the boundary ? i i ( ~ ~ )  \ m(xAl), 
then by the proposition, there exist matrices i n  m( T A , )  

that  are arbitrarily close to the optimal, i.e. given any 
E > 0, there exists a matrix P satisfying (12)  and 

IIP - < llP* - PF1I2 + 6 

Such P is not unique. The proof of the proposition in 
[8] also shows how to coiistruct such  a matrix when 
(11-12) has no solution. 

We illustrate the geiieial method by the following 
example. 

Example 
Consider the problem (13-14), and suppose that 

0.375 0.625 0 
0.250 0.500 0.250 
0.500 0 0.500 

and that x~ is measured to be xn, = [1/3 1/3 1/31. 
To satisfy P < Pp, we restrict ourselves to matrices 
in m'(rM) of the form 

P = [ : i :  X? 2 4  x 5 )  0 

xfj 0 I 7  

where X I  2 0 , .  . . x7 2 0 are to  be estimated. The 
conditions that P is stochastic and S M P  = SM then 
becomes 

2 1  $ 1 2  = 2 3 + 1 4 $ x 5  = 1 6 $ 1 7  = 1 

2 1  + 2 ' 3 $ 1 6  = X Z + X 4  = X : 5 $ X 7  = 1 
xi 2 0,  i =  1, . . . ,  7 

which can be written more compactly in matrix form 
as 

A x  = b 
X L O  

where A is a 6 x 7 matrix, x = [ X I  . . .  x?lT, 
b = [l . . .  1IT, and 0 = [0 . . .  0IT 
are 7-dimensional column vectors.4 Let y = 
[0.375 0.625 0.25 0.5 0.25 0.5 0.5IT be the column vec- 
tor of corresponding nonzero entries of Pp.  Then (13- 
14) is reduced to 

min z f(x) = 11. - y1I2 (15) 

subject to Aa: = b (16) 
1 2 0  (17) 

where in the above J J v J J  = d m )  denotes the Eu- 
clidean norm of a vector U .  By Kuhn-Tucker the- 
orem [15, pp. 3141, I *  is a solution for (15-17) if 
and  only i f  (since f is strictly convex) there exists 
11, = [ P I  . . . p , j I T  # 0 and X = [ X I  . . . X 7 I T  2 0 such 
that 

2 . ~ : " ~  + p T A +  AT = 2 ~ ' ~  (18) 
XTx* = 0 (19) 

Equations (18-19) define a system of equations in 
x*, p and A 2 0. They can be solved to yield 
z* = [0.5 0.5 0.5 0.5 0 0 11, corresponding to  the min- 
imizer r 0.5 0.5 o 1 

for the problem (13-14) with the given Pp and SM. 
Note that P' is not irreducible and hence is not 

i i i  m(TA1). Thus the original problem (11-12) has no 
solution, though one can find a matrix P in m(xM) 

0 that is arbitrarily close to P'. 

6 Conclusion 

We have proposed a probabilistic approach to con- 
formance testing of protocols with unobservable tran- 
sit.ions. linobservahle transitions arise naturally when 

41;br a n y  vector or matrix v ,  vT denotes its transpose. 
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a protocol is specified and implemented as a collection 
of CFSMs, or when its behavior depends on features 
not explicitly modeled. We have formally defined two 
notions of conformance and have suggested ways to 
test for them. We have derived a non-conformance cri- 
terion that is robust against uncertainty in our knowl- 
edge of the desirable probabilistic behavior. We have 
also presented a way to  estimate the transition matrix 
of the observable implementation using the measured 
stationary distribution. The contribution of the pa- 
per is to  exploit the different observable probabilistic 
behavior of an implementation to  probe the unobserv- 
able transitions of a protocol. 

Many issues are not addressed in this preliminary 
work. The  previous test strategy based on determinis- 
tic model assumes observability of all transitions, but 
no states need be observable. Our model allows unob- 
servable transitions and the induced nondeterminism, 
but only a t  the expense of observability of some states 
(Al )  and the probabilistic assumption on the test gen- 
eration (A2). The practicality of these assumptions on 
real protocols needs further study. Our approach uses 
heavily the limit behavior of an implementation. The 
rate of convergence to its limit behavior determines 
the test length required t,o achieve a certain accuracy. 
The problem of choosing a good input randomization 
that  is revealing and efficient has not been considered. 
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