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Supplementary Note 1. Microscopic picture of the quadrupolar order in Ca2RuO4

Here we elaborate on the previously reported mechanism underlying quadrupolar ordering and related physics in
Ca2RuO4. We start with constructing the low-energy electronic structure of Ca2RuO4 based on the relevant energy
scales (Fig. S1). The dominant cubic field 10Dq ∼ 3 eV splits the higher-energy eg manifold from the t2g manifold.
The effective orbital angular momentum of the sixfold degenerate t2g manifold, which includes dxz, dyz, and dxy
orbitals, can be mapped directly to the L = 1 p-orbital, dubbed the T-P equivalence L̂eff (t2g) = −L̂(p) [1].

Hund’s coupling and spin-orbit coupling (SOC) then jointly determine the effective total angular momentum con-
figuration of electrons in the t2g manifold. Since the intra-atomic Hund’s coupling JH ∼ 0.4 eV is much smaller than
10Dq, the four d-electrons will only occupy the t2g manifold and favor a state with total spin S = 1. The moderate
SOC λ ∼ 0.05 − 0.13 eV endows the ground state with a total angular momentum J = L ± S, with its constituents
S and L in (anti)parallel fashion for the less (more) than half-filled t2g manifold according to Hund’s rules [2]. Since
four electrons occupy the sixfold degenerate t2g manifold, the ground state is a J = L− S = 0 singlet, with a J = 1
triplet and a J = 2 quintet at higher energies separated by λ and 3λ from the ground state, respectively. This ground
state is ostensibly nonmagnetic, but a Van-Vleck excitonic magnetism involving a virtual transition from J = 0 to
J = 1 can be facilitated when the SOC gap λ between the two levels is comparable to the inter-atomic magnetic
exchange interaction κ [3]. This excitonic magnetic order hosts unique Goldstone and Higgs magnon modes, which
have been experimentally confirmed by inelastic neutron scattering measurements [4].
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Fig. S1. Schematic of the energy levels for 4d4 multi-orbital Mott insulator Ca2RuO4. Cubic field 10Dq splits the d-shell into
eg and t2g manifolds. The four electrons within the t2g manifold, which are represented by the four red circles, favor a ground
state with a total angular momentum J = 0 and two excited states with J = 1 and J = 2 in the presence of SOC. The excited
states will be further split by tetragonal/JT distortion. When the gap between the J = 0 and J = 1,mj = ±1 manifolds is
comparable to magnetic exchange interaction κ, an excitonic condensation occurs, as shown by the blue dashed circle.

However, previous X-ray/optical/electron spectroscopy studies commonly find that κ ∼ 0.01 − 0.05 eV, which is
slightly smaller than λ [4–9]. This energy mismatch can be reconciled by a moderate Jahn Teller (JT)-type tetragonal
splitting in the t42g manifold. JT effect, arising from the coupling between orbital and lattice degrees of freedom, drives
a structural phase transition concomitant with the orbital ordering and thus removes the orbital degeneracy. Again,
we consider the case with four electrons in the t2g manifold. When λ = 0, two electrons with anti-parallel spins will
occupy the dxy orbital and the other two electrons with parallel spins will occupy dxz/yz orbitals. Consequently, the
octahedron will exhibit a compression along the z-axis. In the presence of a moderate SOC, as is the case for Ca2RuO4,
JT effect still exhibits a finite effect [10]. The J = 1 manifold will split into a doublet with mj = ±1 and a singlet with
mj = 0, and the J = 2 manifold will split into a singlet with mj = 0 and two doublets with mj = ±1 and mj = ±2,
respectively (Fig. S1). The tetragonal splitting thus reduces the SOC gap between the J = 0 and J = 1,mj = ±1
manifolds. When the gap is comparable to κ, an excitonic condensation occurs through virtual excitation from the
J = 0 to the J = 1,mj = ±1 state. Simultaneously, the lattice is compressed along the z-axis, inheriting from the
J = 1,mj = ±1 manifold. However, in the quasi-2D J = 0 system, owing to XY-type fluctuations, the magnetic
ordering is suppressed to a temperature TN — below the quadruopolar ordering temperature TQO (see the last section
of Ref. [11]). This gives rise to an intermediate time-reversal symmetric state with pseudospin quadrupolar order,
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accompanied by the tetragonal compression [12, 13]. This JT-driven intermediate state, dubbed a spin-nematic, was
previously interpreted as a dxy ferro-orbital-ordered phase [14]. Also note that the magnetic transition does not
necessarily accompany any rotation symmetry breaking. In addition, note that SOC cannot be too strong, or else the
JT distortion will be fully suppressed and the excitonic magnetism will be quenched. See Note 8 and Ref.[10] for a
more detailed discussion.

The specific case for Ca2RuO4 is a bit more subtle. The octahedron exhibits tetragonality instead of cubicity
even above TQO, so only a subtle lattice change accompanies the quadrupolar ordering without explicit symmetry
breaking. Although challenging to detect using X-ray diffraction [15], this subtle change manifests as a quadrupolar-
order-coupled phonon phase flip as captured by a recent coherent phonon spectroscopy study [16]. Our experiments
further employ this coupled phonon to drive and detect a light-induced quadrupolar order transition.
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Supplementary Note 2. Fitting of transient reflectivity traces
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Fig. S2. a,b, Probe-energy-resolved transient reflectivity spectra before and after subtraction of the exponential background
acquired with a pump fluence of 15 mJ/cm2 at 80 K. The dashed lines denote the probe energies that are used to measure
the curves as shown in c-f. c,d, Pump fluence-dependent reflectivity transients before and after subtraction of the double-
exponential decaying background with a probe photon energy of 1.77 eV acquired at 80 K. e,f, Same as c,d but with a probe
of 0.83 eV. The dashed lines represent fitting of background.

Here we summarize how we fit and subtract the background terms in reflectivity transients. A full probe-energy-
dependent transient reflectivity spectrum at a pump fluence F = 15 mJ/cm2 is shown in Fig. S2a. Two characteristic
sets of fluence-dependent reflectivity transients probed at 1.77 eV and 0.83 eV are shown in Figs. S2c and e. There is
a clear beat pattern that signifies the presence of multiple coherent phonons as well as a background that arises from
charge excitation and relaxation. The background can be fit by a double-exponential decay or an exponential increase
followed by an exponential decay plus a constant. We can in principle fit these time traces with a combination of
damped oscillatory terms to characterize the phonons and exponential terms representing the background, which is
convolved with a Guassian to account for the instrumental response function:

∆R

R
= g(σ, t) ∗ [

∑
i=1,2

Ai exp

(
− t

ti

)
+ C +

∑
j

Bj exp

(
− t

τj

)
cos (2πνjt+ ϕj)] (S1)

where g(σ, t) = exp
(
− 4 ln(2)t2

σ2

)
is a Gaussian kernel that captures the instrumental temporal resolution σ = 0.1 ps,

Ai denotes the amplitude of the decay background, ti represents the corresponding decay (rise) time, C is a constant
background that we observed within our time window, which may represent a slow heat diffusion process, and Bj , τj ,
νj , and ϕj are the amplitude, lifetime, frequency, and phase of the j-th phonon, respectively.
Since the coexistence of multiple phonons is hard to disentangle and thus fit in the time domain, we first ignore the

damped oscillations and fit only the exponential background with g(σ, t) ∗ [
∑

i=1,2 Ai exp
(
− t

ti

)
+ C] (dashed lines in

Figs. S2c and e). We then subtract this background term from the time domain traces and isolate the oscillatory
components (Figs. S2d and f). This background-subtracted response is then converted into the frequency domain
by a fast Fourier transform (FFT). Since distinct phonons emerge as discrete peaks in the frequency domain, by
performing a multi-Lorentzian fit to the FFT spectra we can obtain their Bj , τj , and νj as a function of pump fluence,
temperature, and probe-energy.

Note that the signs of Ai and C are dependent on the probe energy, and their amplitudes increase with pump
fluence. In general, we see the following dependence. A more comprehensive discussion can be found elsewhere [17]:

Probe energy (eV) A1 A2 C
1.2 - 2.2 < 0 < 0 < 0
0.8 - 1.1 < 0 < 0 > 0
0.55 - 0.7 < 0 > 0 > 0
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Supplementary Note 3. 2.5 THz hump in FFT spectra
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Fig. S3. a, FFT spectra of QOCP acquired from simulation and experiment with probe energies at 0.69 eV (yellow) and 0.92
eV (orange), which are located at the rising edge of the α-peak at 80 K. b, FFT spectra of QOCP acquired from simulation
and experiment with a probe energy of 1.55 eV, which is located at the rising edge of the β-peak, at various temperatures. All
the experimental data were taken at a pump fluence of 15 mJ/cm2. The simulated FFT spectra are calculated by changing g

in a form of
√

1− T/TQO. The normalized values of g at each temperature are denoted. Both experimental and simulation
curves are scaled and offset vertically for better comparison.

In both our experimental results and numerical simulations (Notes 6 & 9), there exists a hump at the low-frequency
shoulder of the QOCP peak. According to previous Raman spectroscopy results [18], all the Ag modes have been
identified and are located above 3.7 THz. Since our reflectivity measurements are mostly sensitive to Ag phonons
according to symmetry, we can rule out the possibility that this hump is a phonon. Also, this hump exists even above
TN but disappears at TQO, indicating that it is not a magnon but should be related to QO.
We postulate that the hump feature may arise from the anharmonicity of the potential energy surface (PES) as

the state is transiently switched from one minimum to the other. When the PES is perfectly harmonic, the state
will oscillate at a single frequency determined by the constant curvature. However, as SOC reduces the curvature of
the barrier partitioning different local minima, the system will exhibit an oscillation with a lower energy component
emerging when it is transiently switched between the minima. We would thus expect the emergence of low frequency
humps in both QEθ and QEϵ at T < TQO (note that for simplicity we drop the letter “E” in all the formulas in
the main text, whereas in the supplementary information we keep “E” for clarity. See a more detailed discussion
in Note 8). Measurements acquired with probe energies located at the rising edges of the dxy → dxz/yz (α-peak)
and dxz/yz → dxz/yz (β-peak) transitions and at different temperatures across TQO show good agreement with the
simulations (Fig. S3), supporting this hypothesis.
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Supplementary Note 4. Fluence dependence of phonon frequencies
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Fig. S4. Fluence dependence of QOCP and ISRS phonon frequencies obtained from experimental data and numerical simula-
tions. The experimental data are acquired with 1.55 eV probe at 80 K. The simulation results are shifted vertically to match the
experimental frequencies of different modes. The error bars are obtained from the standard deviation of the multi-Lorentzian
fitting to the experimental FFT spectra.

While the amplitudes of both the QOCP and the QO-uncoupled phonons demonstrate a strong dependence on
fluence, their frequencies show negligible change as the fluence is varied. A typical dataset is shown in Fig. S4a,
which was captured at a probe energy of 1.55 eV. This behavior contrasts sharply with the equilibrium temperature
dependence of the phonons, where changes larger than 0.5 THz can be resolved between 80 K and 300 K [16].
Importantly, there is no anomaly of QOCP frequency at Fc = 15 mJ/cm2. This fluence independence is further
corroborated by our numerical simulations of the QOCP and the QO-uncoupled phonons (see Note 9 for further
details and the simulation results in Fig. S4a). Note, since the latter are generated by the impulsively stimulated
Raman scattering (ISRS) mechanism, we refer to them as ISRS phonons.

In Fig. S4b, we find that the frequencies of the QEθ and QEϵ components of the 3.7 THz QOCP (see Note 9 for
further details) show a similar lack of fluence dependence with no drastic change at Fc. Note that a subtle softening
of the 7.5 THz phonon with pump fluence may originate from carrier-excitation-induced lattice softening and phonon
anharmonicity [19–21], which are ignored in our microscopic model.



7

Supplementary Note 5. Static and transient optical conductivity spectra
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Fig. S5. a, Static optical conductivity and reflectivity spectra at 20 K. The 0.3 eV pump energy is marked by a vertical green
line, while the probe energy range is shaded gray. b, Static optical conductivity as a function of temperature. c, Transient
optical conductivity as a function of pump fluence measured at t = 0

.

We digitized the static optical conductivity of Ca2RuO4 from Ref.[16]. The equilibrium optical conductivity unam-
biguously shows that our pump energy is well below the low temperature Mott gap and far from any phonon resonances,
which exist at energies lower than the 0.1 eV lower limit of the spectrum (Fig. S5a). The optical conductivity exhibits
little change with temperature until the temperature reaches room temperature, where the first absorption peak as
well as the bandgap region gains significant spectral weight, because the insulator-to-metal transition temperature
is approached (Fig. S5b). We then obtained the transient optical conductivity spectra by Kramers-Kronig analysis
of our transient reflectivity spectra at various probe energies and fluences [17]. The light-induced change of spectral
weight at the highest fluence is at least one order of magnitude smaller than the corresponding change between the
static optical conductivity at 80 K and 300 K, which is still 50 K lower than the insulator-to-metal transition tem-
perature (Figs. S5b and c) [22]. This demonstrates that an insulator-to-metal transition is not transiently induced
upon driving the material, and the PES of the system is only weakly perturbed.
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Supplementary Note 6. Temperature-dependent datasets
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Fig. S6. a, Temperature dependent FFT spectra for 1.55 eV probe and 0.3 eV pump at 15 mJ/cm2. Curves are offset vertically
for clarity. b, Fluence dependence of FFT spectra at three characteristic temperatures as denoted in panel a. The dashed
lines are Lorentzian fits and the thick colored lines are guides to the eye. c, Pump fluence dependence of the 5.7 THz phonon
amplitude at select temperatures acquired with a 1.55 eV probe. All data are normalized to the maximal measured value. d,
Temperature dependence of the 5.7 THz phonon amplitude measured at F = 15 mJ/cm2 with a 1.55 eV probe. All data are
normalized to the maximal measured value in c. The colored line is a guide to eye. e and f are the same as c and d but for the
7.5 THz mode. The dashed lines denote TQO. The error bars are obtained from the standard deviation of the multi-Lorentzian
fitting to the FFT spectra.

The temperature dependence of the FFT spectra measured at 1.55 eV and pumped with a constant fluence of
15 mJ/cm2 at 0.3 eV is shown in Fig. S6a. All the phonon peaks exhibit a dramatic softening and broadening as
temperature increases. The temperature dependence of the QOCP amplitude in Fig. 3b is obtained from these curves.

We conducted pump fluence dependence measurements at four characteristic temperatures: 80 K (below TN), 130
K and 220 K (above TN but below TQO) and 280 K (above TQO). The pump fluence dependence of the QOCP FFT
spectra measured at 130 K, 220 K, and 280 K are displayed in Figs. S6b, while the data measured at 80 K is shown
in Fig. 2d. The pump fluence dependence of the 3.7 THz mode amplitude in Fig. 3a is obtained from fits to these
curves.

As a comparison, we present the fluence dependence of the QO-uncoupled 5.7 THz and 7.5 THz modes at 80, 130,
220, and 280 K as well as the temperature dependence of these modes measured at F = 15 mJ/cm2 with a 1.55 eV
probe in Figs. S6c-f, similar to the presentation for the 3.7 THz QOCP in Fig. 3. As expected, the quasi-linear pump
fluence dependence persists at all the sampled temperatures for both modes, consistent with their QO-uncoupled
nature. Moreover, the pump fluence dependence of the 5.7 THz mode measured at various temperatures almost
follows a single line (Fig. S6c), supporting the temperature independence of the amplitude of the 5.7 THz mode
(Fig. S6d). In contrast, the slope of the pump fluence dependence of the 7.5 THz mode, which reflects the photo-
susceptibility at various temperatures, decreases with increasing temperature (Fig. S6e). This is also reflected in the
temperature dependence of the 7.5 THz mode, where its amplitude decreases with increasing temperature, without
any observable anomaly at TQO (Fig. S6f), unlike the behavior observed for the 3.7 THz QOCP. These results provide
additional confirmation that the 5.7 THz and 7.5 THz modes are not QOCP.

The data obtained with 0.3 eV pump at F = 15 mJ/cm2 and a probe resonant with the β-transition does not
suggest a clear upturn of the phonon amplitude above TQO, but an upturn of phonon amplitude above TQO with
temperature was observed in Ref.[16]. We first acknowledge the difference in experimental conditions between our
work and Ref. [16]. The experiment in Ref.[16] used a pump with a photon energy (1.55 eV) above the bandgap
and a fluence range within the linear response regime (F < 1 mJ/cm2). In contrast, our experiment employed a
pump with a photon energy (0.3 eV) below the gap, enabling the highest fluence up to F > 25 mJ/cm2 without
thermally damaging the sample. To this end, Ref.[16] mainly explores the ground state properties with a relatively
weak perturbation, while our work investigates the possible switch of QO in the strongly-driven out-of-equilibrium
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regime. Given the drastic difference in pump photon energy and fluence range, it expected that different results would
be observed in the two studies.

To investigate whether the pump energy, pump fluence range, or probe energy is the primary cause of this dis-
tinction, we performed a series of temperature dependent measurements with different experimental conditions. We
first repeat our temperature dependent measurements of the 3.7 THz mode at a lower pump fluence. We need to
emphasize that a pump fluence smaller than Fc cannot realize the ultrafast switch to a hidden QO and the measured
phonon amplitude cannot represent the maximal static JT distortion where the potential energy is minimized. Our
temperature dependence measurements in the main text were conducted with a pump fluence slightly larger than Fc

at 80 K, ensuring that the dynamical transition occurs at all measured temperatures. Therefore, in the new experi-
ments we probe at 1.55 eV and pump with a moderately weak pump fluence of 10 mJ/cm2, which is larger than Fc at
T > 150 K and close to (albeit smaller than) Fc at T < 150 K (Fig. S7a). We find that the phonon amplitude shows
a similar temperature dependence as that measured with a pump fluence of 15 mJ/cm2 (Fig. S7c), suggesting that
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the pump fluence may not play a dominant role in determining the temperature dependence of the QOCP amplitude
and confirming that as long as the pump fluence is close to Fc, our results shown in the main text should qualitatively
hold.

We then measured the temperature dependence of the QOCP with a probe energy at 0.69 eV, resonant with the
rising edge of the α-peak, in addition to our current temperature dependence measured with a probe energy at 1.55 eV,
resonant with the β-peak (Fig. S7b). The phonon amplitude in general shows a similar temperature dependence as
that measured with a probe energy of 1.55 eV, albeit with a lower signal-to-noise ratio (Fig. S7c). This is expected in
our microscopic model, because probe energy resonant with the α- and β-peaks is sensitive to Qθ and Qϵ, respectively.
Since both of them exhibit an upturn at TQO, their temperature dependence should be qualitatively similar.
Finally, we measured the temperature dependence of the QOCP with an above-gap pump at a photon energy

of 1 eV and F = 3 mJ/cm2, which is nearly resonant with the α-peak, and probed with energies resonant with
both α- and β-peaks. Interestingly, we observe a more evident upturn of phonon amplitude above TQO with 1 eV
pump compared to the 0.3 eV pump, resembling the results reported in Ref.[16] (Fig. S8). This may indicate that
the pump photon energy plays a more important role in generating the different temperature dependence of QOCP
above TQO. This may be understood because subgap pumping and above-gap pumping have different excitation
mechanisms. The phonon amplitude with a subgap pump (ISRS) is determined by dRe(ε)/dE, where ε is the complex
dielectric constant and E is the photon energy, whereas the phonon amplitude with an above-gap pump (DECP)
is determined by Im(ε)/ωphonon, which is related to the electronic absorption [23, 24]. These two tensors may have
different temperature dependence. A clearer answer to this question needs more comprehensive pump energy and
fluence dependent measurements, which are beyond the scope of the current work.
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Supplementary Note 7. Estimate of laser heating

There are two types of heating that can occur in an impulsively driven system. The first is instantaneous heating

induced by a single laser pulse, which can be estimated with the equation ∆T = (1−R)F
Cρδ [25], where ρ is the sample

density, F is the fluence (we use the critical fluence Fc = 15 mJ/cm2), R is the reflectivity of the sample at 0.3 eV
[26], δ is the optical penetration depth of pump at 0.3 eV [26], and C is the heat capacity [27]. Using experimentally
measured values for each of these parameters at 80 K, we determined that the largest effective temperature increase
at 80 K is 5 K, which is negligable.

The second kind of heating, cumulative heating by the laser pulses, can cause a static temperature increase. Due to
the quasi-2D structure of Ca2RuO4, the in-plane thermal conductivity is several times higher than the out-of-plane
thermal conductivity [28]. Therefore, the temperature gradient induced by the laser will be mainly along the out-of-
plane direction. The temperature increase can be estimated to be ∆T = Pd

Aκ , where P is the input power (1.5 mW at
Fc), d is the thickness of the sample (∼ 0.5 mm), A is the cross-section of the beam with a FWHM of 100 µm, and κ is
the thermal conductivity along the c-axis (∼ 1.8 W/(K·m)) [28]. Using these values, we obtain a steady temperature
increase of around 30 K. Accordingly, we shift the data points in Fig. 3b by 30 K and find that the QOCP amplitude
significantly increases at the reported TQO.
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Supplementary Note 8. Details of the microscopic model for Ca2RuO4

To quantitatively capture the physics of Ca2RuO4, we use the following microscopic single-ion model. Based on
discussions in Note 1, we consider the t2g manifold of electrons with SOC, JT/tetragonal distortion, and multi-orbital
electronic interactions:

Ĥ = ĤU + ĤSOC + ĤJT + ĤL, (S2)

with

ĤJT =
∑
γ=θ,ϵ

gQEγ τ̂γ ,

ĤL =
∑
γ=θ,ϵ

1

2
BQ2

Eγ ,

ĤSOC = λL̂ · Ŝ,

ĤU = (U − 3JH)
N̂(N̂ − 1)

2
+

5

2
N̂ − JH(2Ŝ

2 + L̂2/2).

(S3)

Here, λ is the SOC constant, g is the JT coupling constant, B is the elastic lattice energy that determines the QOCP
frequency, JH is the intra-atomic Hund’s exchange, and U is the Hubbard intra-orbital Coulomb interaction. The Q’s
represent the two possible orthornormal eigenmodes of the octahedral complex with Eg symmetry. L̂ and Ŝ are the

total orbital and spin angular momentum operators, N̂ is the total electron number operator, and τ̂ is the quadrupolar
operator. We can then perform exact diagonalization with electron filling number N = 4. The lowest eigenvalue will
capture the PES as a function of the two structural order parameters QEθ and QEϵ. We now elaborate on each term
as follows.

Lattice-related terms

We first consider the lattice-related terms ĤJT + ĤL. Hereafter, we label the lattice irreproducible representation
with capital letters to distinguish them from the electronic channel. According to the selection rule: t2g⊗t2g =
A1g⊕Eg⊕t2g, the t2g electrons can interact with the fully symmetric A1g mode, two tetragonal/orthorhombic
Eg modes, and three trigonal t2g modes. The spatial configurations of the six octahedral orthornormal eigen-
modes are shown in Fig. S9. We adopt a nomenclature more widely used in JT community which denotes
{dyz, dxz, dxy, d3z2−r2 , dx2−y2} as {ξ, η, ζ, θ, ϵ} for simplicity [29].
The general JT Hamiltonian can be written as [30]:

ĤJT =
∑
k

∑
nΛλ

∑
Λ1Λ2···Λk

1

k!
gΛ1Λ2···Λk

nΛ × {QΛ1
⊗QΛ2

⊗ · · ·⊗QΛk
}nΛλτ̂Λλ. (S4)

Here Λ(Λi) is Eg or t2g, λ is its component, n distinguishes the repeated representation, QΛλ is the orthornormal
coordinate, {QΛ1⊗QΛ2 ⊗ · · ·⊗QΛk

}Λλ is the symmetrized product of coordinates, g is the k-th order coupling pa-
rameter, and τ̂Λλ are the matrices of Clebsch-Gordan coefficients, which can be considered as quadrupolar angular
momentum operators.

Only considering linear coupling terms, we can simplify the JT interaction as:

ĤJT =
∑
γ=θ,ϵ

gEQEγ τ̂Eγ +
∑

γ=ξ,η,ζ

gTQTγ τ̂Tγ . (S5)

We also include the elastic lattice term:

ĤL =
∑
γ=θ,ϵ

1

2
BEQ

2
Eγ +

∑
γ=ξ,η,ζ

1

2
BTQ

2
Tγ . (S6)

Note that the T2g and Eg eigenmodes in general have different microscopic parameters B and g.
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The quadrupolar tensors τ̂ can be written out as a linear superposition of quadratures of orbital angular momentum

operators depending on the specific symmetry of the coupled eigenmodes: τ̂µν = 1
2 (L̂µL̂ν + L̂νL̂µ) − L(L+1)

3 δµν .

Specifically, we have τ̂Eθ = − 1
2 (2L̂

2
z − L̂2

x − L̂2
y), τ̂Eϵ = −

√
3
2 (L̂2

x − L̂2
y), τ̂Tξ = − 1√

2
(L̂yL̂z + L̂zL̂y), τ̂Tη = − 1√

2
(L̂xL̂z +

L̂zL̂x), τ̂Tζ = − 1√
2
(L̂xL̂y + L̂yL̂x).

a b

c

b

c

fed

c

b

A Eθ QEε

QTη QTζQTξ

Q Q

Fig. S9. Eigenmodes of the octahedron that can couple to t2g electrons. a. QA, b. QEθ, c. QEϵ, d. QTξ, e. QTη, and f. QTζ .
The red balls represent O atoms at the apices of the octahedra and the gray balls represent Ru atoms.

In Ca2RuO4, the t2g distortion can be omitted because the coupling constant gT is typically at least several times
smaller than gE in transition metal oxides without static trigonal distortions [12, 13, 30, 31]. Since the octahedra in
Ca2RuO4 are tetragonal without any trigonal distortions within the temperature range of our study, the leading-order
JT effect in Ca2RuO4 is indeed the Eg-distortions. Note that including t2g distortions will only generate new energy
minima in the PES. As the nonlinear fluence dependence of the phonon amplitude arises from the transient switching
between different energy minima, including t2g distortions will not qualitatively change the main conclusion of this
paper. As shown in Fig. S11a, the value of both Eg and t2g JT distortions shows a quantitatively similar dependence
on SOC, indicating that as long as λ is not too large, the existence of multiple minima applies to both Eg and t2g
distorted cases, confirming the main conclusion of the paper. Note that for simplicity we drop the letter “E” in all
the formulas in the main text, whereas in the supplementary information we keep “E” for clarity.
After neglecting t2g distortions, we can plot the PES in the space formed by the two Eg eigenmodes QEθ and

QEϵ. Without the JT interaction (gE = 0), the PES is a paraboloid centered at (QEθ, QEϵ) = (0, 0) with zero lattice
distortion and zero orbital polarization. In the presence of a finite JT coupling, the PES is composed of three identical
paraboloids shifted away from the origin in three directions with angular separation of 120◦ (first panel of Fig. S10),

indicating a U(1)-to-Z3 symmetry breaking. The three equivalent minima at (− gE
BE

, 0), ( gE
2BE

,
√
3

2BE
), ( gE

2BE
,−

√
3

2BE
)

correspond to an identical tetragonal compression u =
√
Q2

Eθ +Q2
Eϵ =

gE
BE

along z, y, and x-axis, respectively, and
the electronic wavefunctions show the dxy, dxz, and dyz-orbital character, respectively.

Adding a tetragonal splitting ĤTS = ∆L̂2
z will elevate the dyz and dxz minima and leave the dxy minimum as the

global minimum, so that dxy QO is uniquely reached, which is indeed the case for Ca2RuO4. We neglect this term in
our dynamical simulation but show later in Note 9 that including such a term will not qualitatively change our main
conclusion.

Spin-orbit coupling

Now, we include the SOC term ĤSOC = λL̂ · Ŝ. According to Ref.[10], whether JT competes or coexists with
SOC depends on the electron filling number. For the single-electron-occupied case t12g, we can analytically solve



14

λ=0 λ=0.08 λ=0.25

λ=1.25λ=0.5 λ=2.5

Fig. S10. Calculated PES as a function of λ for t42g case. The unit of the horizontal axes is gE/BE and the unit of the vertical
axis is g2E/BE . The unit of λ is g2E/BE .

ĤJT,E+ ĤL,E+ ĤSOC and investigate the minimal JT distortion amplitude uλ as a function of λ. uλ shows a decrease
with λ and asymptotically approaches half of uλ=0 when λ → ∞ (Fig. S11a) [10].

The evolution of the PES as a function of λ for the t42g case, obtained by numerically solving ĤSOC+ ĤJT,E+ ĤL,E,
is shown in Fig. S10. As λ increases, the three minima corresponding to compression along x, y, and z-axes become
shallower and closer, similar to the t12g case. However, when λ is larger than a critical value λc, the PES recovers
an isotropic parabolic geometry and the JT distortion vanishes, in contrast to the t12g case where the JT distortion
is preserved even when λ → ∞. Therefore, although SOC and the JT effect compete for both the d1 and d4

configurations, in the latter case SOC will fully suppress JT at λ > λc (Fig. S11b).

Electronic interactions

We now consider the intra- and inter-orbital Coulomb interaction, spin exchange, and pair hopping within the t2g
manifold. This can be captured by a Kanamori multi-orbital electronic interaction term [2]:

ĤU =U
∑
i

n̂i↑n̂i↓ + U ′
∑
i ̸=i′

n̂i↑n̂i′↓ + (U ′ − JH)
∑

i<i′,σ

n̂iσn̂i′σ

− JH
∑
i ̸=i′

ĉ†i↑ĉi↓ĉ
†
i′↓ĉi′↑ + JH

∑
i ̸=i′

ĉ†i↑ĉ
†
i↓ĉi′↓ĉi′↑.

(S7)

With U ′ = U − 2JH and rotational invariance, the Kanamori Hamiltonian takes a simplified form as shown before:

ĤU = (U − 3JH)
N̂(N̂ − 1)

2
+

5

2
N̂ − JH(2Ŝ

2 + L̂2/2). (S8)

Note that in this form Hund’s first two rules (maximal S and then maximal L) are explicitly fulfilled. Since we are
dealing with the isolated ion case with a fixed number of electrons, we can safely set U = 0 [10].
We note that when λ is several times smaller than λc, the JT distortion in the d4 case simulated by the comprehensive

microscopic model is analogous to that of the d1 case where ĤU does not contribute (Fig. S11b). The PES of the



15

a b1.0

0.8

0.6

0.4

0.2

0.0

λ
0

1086420
 λ (g

E,T
2 /BE,T)

 E Distortion
 T Distortion

1.0

0.8

0.6

0.4

0.2

0.0
1.41.21.00.80.60.40.20.0

1

4

c 1 4d

d
d

u
/u λ

0
u

/u

 λ (g
E,T
2 /BE,T)

d

Fig. S11. a, JT distortion amplitude of Eg and t2g distortions as a function of SOC in the d1 electron configuration. b, Eg

distortion amplitude as a function of SOC for d1 and d4 configurations. The orange bar denotes the value of λ for Ca2RuO4.
c, PES of d1 and d4 cases. All the parameters are the same except for the electron filling number N .

d1 and d4 cases are also quantitatively similar (Fig. S11c). Therefore, completely excluding ĤU and treating the
problem as a single electron case can provide quantitatively similar results.
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Supplementary Note 9. Simulated equations of motion

Simulation assumptions and parameter assignment

We denote the PES of the microscopic model described in Section S8 as V (QEθ, QEϵ). We assume an impulsive
excitation (see Supplementary Note 14 for more evidence). Since the pump photon energy is one order of magnitude
larger than the energy of any of the observed phonons, we average out the sinusoidal oscillatory part of the pump
but retain its Gaussian envelop with a time duration σ of 0.1 ps and an amplitude proportional to the pump fluence

F (t) = AF exp
[
− 4 ln(2)t2

σ2

]
. Here, A is a scaling factor determined by the electron-phonon coupling and the real part

of the dielectric constant at the pump energy [23]. Since QEϵ and QEθ are decomposed from the same phonon, we
assume they have equivalent A. We also include a phonon damping term with decay constant γ in the equations of
motion of the QEθ and QEϵ modes:

d2QEθ/ϵ(t)

dt2
+ 2γ

dQEθ/ϵ(t)

dt
+

dV (QEθ(t), QEϵ(t))

dQEθ/ϵ(t)
= F (t) (S9)

Since the phonon frequency is solely determined by BE , we set BE = ω0 ∼ (2π) × 4 THz. Based on previous

X-ray/optical/electron spectroscopy results [4–8], we set gE = 2BE , λ = 0.3
g2
E

2BE
= 0.3EJT,E . Therefore, the form of

V (QEθ, QEϵ) is pinned down. The damping constant γ is 0.4 THz based on our phonon spectroscopy measurement.
Therefore, the effective pump fluence AF is the only tunable parameter. For the initial conditions, we set the

system to stay in the dxy-dominated minimum with zero initial velocity: QEθ(0) = QEθ|eq = −uλ
E ,

dQEθ(t)
dt |t=0 = 0,

QEϵ(0) = QEϵ|eq = 0, and dQEϵ(t)
dt |t=0 = 0.

Simulation results
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Fig. S12. a, Temporal trajectory of the QO parameter in (QEθ,QEϵ) plane upon pumping with F > Fc (red) and F < Fc

(yellow) atop a false-color equilibrium PES map. b, Fluence dependence of the FFT spectra of the QOCP projected onto the
QEθ and c QEϵ axes. d, Fluence dependence of the amplitude and e, frequency of the QOCP projected onto the the QEθ and
QEϵ axes. The error bars are obtained from the standard deviation of the multi-Lorentzian fitting to the FFT spectra acquired
from the simulation.

The temporal evolution of the QO in the (QEθ,QEϵ) plane upon pumping with two characteristic fluences (F > Fc

and F < Fc) is shown in Fig. S12. For F > Fc, the final state corresponds to a state with a different QO and
compression along a different axis, as evidenced in Fig. S12a. The FFT of projections onto the Qθ and Qϵ coordinates
were then used to determine the coherent oscillation amplitudes (Figs. S12b and c). A fine sampling of fluence shows
that QEθ exhibits a slight deviation from linear fluence scaling once F > Fc but QEϵ deviates much more drastically
(Fig. S12d). Also note that although the QOCP amplitude shows an anomaly, its frequency is almost independent of
F , since BE , which determines the frequency of QOCP, is not F -dependent in our model (Fig. S12e).
There is an aperiodic oscillation of the QOCP amplitude as a function of fluence when F > Fc. This nonmonotonic

behavior arises from switching between different minima as F increases. Fc thus corresponds to the fluence where the
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first reversal occurs Fc,i=1. When F is slightly higher than Fc1, the system settles into the x/y-compressed minimum.
When F = Fc2, the system will relax back to the original minimum. With even higher F , the system can switch
between different minima transiently before it settles into one minimum.

In order to understand why switching between minima generates an aperiodic oscillation as a function of fluence,
let us consider two fluences F1 = Fc1 − δ and F2 = Fc1 + δ, where δ is a small positive value. As F2 > F1, the system
will roll over the barrier and move to the new minimum. Since the system now travels a longer distance on the PES,
damping will decrease the amplitude of the QOCP for the F2 case more than the F1 case. As F further increases,
the larger energy pumped into the system will compensate the damping loss and the phonon amplitude will slowly
increase until it reaches the boundary between the two minima again at F = Fc2. Then, the new reversal occurs
and the phonon amplitude will drop again. Therefore, the QOCP amplitude will show a sudden change at each Fc,i,
appearing as an oscillatory behavior as a function of F .

ISRS simulation

Conventional Raman active phonon modes can be coherently launched via the impulsive stimulated Raman scat-
tering (ISRS) or displacive excitation of coherent phonons (DECP) mechanisms. The relationship between these two
mechanisms has been extensively discussed elsewhere [23, 32–34]. In our subgap pump case, the ISRS mechanism
dominates, allowing us to simulate the dynamics of the QO-uncoupled coherent phonons using the following formula
[24]:

∂t
2X = −ωph

2X − 2γph∂tX + F (t), (S10)

where F (t) = F exp
[
− 4 ln(2)t2

σ2

]
with F being the normalized fluence. We can conduct an FFT analysis of the temporal

evolution of the ISRS phonon and obtain its amplitude and frequency dependence as a function of pump fluence. As
shown in Fig. 1c, the amplitude of the ISRS-launched phonon scales linearly with the pump fluence, while its frequency
is a constant (Fig. S4a).

Including tetragonal splitting
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Fig. S13. a, Temporal trajectory in (QEθ,QEϵ) plane upon a pump with F > Fc (red) and F < Fc (yellow) atop a false-color
equilibrium PES map in the presence of tetragonal splitting. b, Fluence dependence of the amplitude and c, frequency of the
QOCP projected onto the QEθ and QEϵ axes. The error bars are obtained from the standard deviation of the multi-Lorentzian
fitting to the FFT spectra acquired from the simulation.

We include the tetragonal splitting by adding a linear term kEQEθ to tilt the PES so that the ground state of
compressed z-axis is uniquely favored. The specific value of the slope is chosen such that the energy difference between
the z-compressed global minimum and the x/y-compressed local minima is equal to the experimental tetragonal
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splitting value obtained by X-ray scattering at temperatures higher than TQO [5, 6]. The other parameters are kept
unchanged. Accordingly, the PES will be tilted along the QEθ axis and the minima will be shifted. With this
assumption, our system is now described by a pseudo-JT effect due to the energetic non-degeneracy in the parent
phase [29]. However, this will not qualitatively affect the physics as explained below.

We show the dynamics of the system at two characteristic fluences above and below Fc. We find that, independent
of F , the state will always settle into the original global minimum after about 3 ps (Fig. S13a), even though the switch
between different QOs is transiently realized. Also note that Fc in the presence of tetragonal splitting is larger than
that without tetragonal splitting because the dxz and dyz minima are elevated and thus harder to reach. However,
despite the discrepancy, the fluence dependences of the QOCP amplitude and frequency are qualitatively identical to
the case with tetragonal splitting ignored (Figs. S13b and c).

Temperature dependent simulation

We can simulate the temperature dependence of both the QOCP amplitude and Fc by assuming that g, which
determines the spacing and depth of different minima in the PES, has an order-parameter-like temperature dependence
with a mean-field critical exponent: (1 − T/TQO)

1
2 . The static JT distortion (Q0) is suppressed as temperature

increases and disappears at TQO. Our simulation confirms that Q0 exhibits a primary order-parameter-like onset at
TQO, validating our assumption on g (Fig. 3b). Similarly, our simulation shows that Fc exhibits an order-parameter-
like onset at TQO (Fig. 3c), in agreement with the experimental data. These results also justify the use of Fc as a
direct measure of QO.

Robustness of the results
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Fig. S14. Pump fluence dependence of the QOCP amplitude projected onto the QEθ coordinate as a function of a gE and b λ.

We set BE = ω0 = (2π)×4 THz, kE = 0, and γE = 0.4 THz. When changing gE , λ is always set as 0.3
g2E
2BE

= 0.3EJT,E ; When

changing λ, gE is always set as 2BE . Pump fluence dependence of the QOCP amplitude projected onto the QEθ coordinate
with different initial launching c signs and d directions. The first and second signs in panel c indicate the signs of F (t) along
the QEθ and QEϵ directions, respectively. The same parameters used in panels a and b are adopted in these simulations.

Since the phonon energy BE and lifetime γE are set by experiments, we examine the robustness of our model by
changing the values of gE and λ within a reasonable range as well as under different pump configurations.
We first see that modulating gE is almost identical to rescaling the fluence-dependence curves (Fig. S14a). This is
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because increasing gE without modulating BE and λ makes the minima in the PES deeper and farther apart without
changing the shape of the local curvature in the minima. Therefore, the required fluence to overcome the barrier is
proportionally higher and the required phonon amplitude is proportionally larger, while the phonon frequency exhibits
little variation.

We also find that increasing λ will slightly decrease the critical fluence (Fig. S14b). This result is intuitive because
increasing λ will lower the potential barrier and the amplitude of lattice distortion. Therefore, the reversal will be
easier to realize. At the same time, we see a slight decrease of phonon frequency due to the λ-induced softening of
the effective BE especially around the boundary regions.

We tried to change the sign of F (t) in Eq.S10. The sign of F (t) along both QEθ and QEϵ axes cooperatively
determines the initial direction along which the system evolves upon impulsive excitation. F (t) with the same sign
along both QEθ and QEϵ axes (i.e. both are positive or both are negative) will drive the system from the z-compressed
state to the y-compressed state while F (t) with opposite signs along QEθ and QEϵ axes will drive the system to the
x-compressed state. Our simulation shows that the general phonon dynamics are insensitive to the sign change (Fig.
S14c).

We can also slightly change the initial launching direction of the QOCP in (QEθ,QEϵ) plane by assigning different
A values to the two coordinates. We can use an angle θ to parametrize the deviation from our initial assumption
that QEθ and QEϵ share the same A, i.e. θ = 45◦ (Fig. S14d). The fluence dependence of the QOCP amplitude is
very similar despite the change of the initial launching condition. However, a change in Fc can be observed because
the initial launching direction will determine the specific position where the system overcomes the barrier in the
(QEθ, QEϵ) plane.

Based on these tests, we reach a conclusion that the nonlinear fluence dependence of the QOCP amplitude that
occurs upon QO switching is very robust against parameter changes in our model.
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Supplementary Note 10. Possible collective lattice distortion induced by QO switching
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Fig. S15. Illustration of the collective pseudospin and lattice configurations of the a, equilibrium quadrupolar ordered phase
(FQ phase) and b, hidden quadrupolar ordered phase (AFQ phase).

The equilibrium crystal structure of Ca2RuO4 is composed of an in-plane corner-shared octahedral network. The
distortion of each individual octahedron upon QO switching is expected to generate a collective lattice change.
For T < TQO, X-ray spectroscopy reported a “ferroquadrupolar” (FQ) order, where all octahedra favor the dxy-
dominated orbital occupation and experience a tetragonal compression along z-axis (Fig. S15a) [14]. When the QO
switch is induced by the driving pulse, however, each octahedron will evolve into either dxz- or dyz-dominated state
and each octahedron will become compressed along the y- or x-axis, respectively. Due to the in-plane isotropy of
each octahedron [15, 35], these two states will be reached with equal possibilities. Therefore, the octahedra may
form mesoscopic domains with either y- or x-compressed octahedra. Another possible scenario is that the lattice
will eventually evolve into a state with checkerboard “antiferroquadrupolar” (AFQ) order, i.e., the nearest-neighbor
octahedra host opposite lattice distortions and orbital occupations (Fig. S15b). This kind of QO has been observed
in manganites [36].

Previous X-ray diffraction results show that along with the Ru-O bond length change as temperature decreases, the
octahedron will tilt by an angle θ along an in-plane axis bisecting the right angle between two adjacent Ru-O bonds
and rotate along z-axis by an angle ϕ [15, 35]. Therefore, it is also plausible that θ and ϕ will change to accommodate
the bond length change accompanied by the QO switch (right panels of Figs. S15a and b). In Note 12, our density
functional theory calculations indeed reveal that the 3.7 THz QOCP involves a rotation and tilting of the octahedra
[16].
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Supplementary Note 11. Probe-energy-dependent datasets
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Fig. S16. a,d,g, Background-subtracted differential reflectivity transients at select probe energies with a pump fluence F =15
mJ/cm2. The insets depict the FFT spectra of the corresponding transients and the dashed lines are multi-Lorentzian fits.
b,e,h, Fluence dependence of FFT spectra of the 3.7 THz QOCP probed at 1.77 eV, 0.92 eV, and 0.69 eV. Blue and red thick
lines are guides to the eye, echoing the fluence dependence of QEϵ and QEθ modes, respectively. c,f,i, Fluence dependence
of FFT spectra of the 7.5 probed at 1.77 eV, 5.7 and 6.1 THz probed at 0.92 eV, and 9.0 and 9.7 THz probed at 0.92 eV
phonons, respectively. Green thick lines are guides to the eye, echoing the fluence dependence of ISRS phonons. Dashed lines
are (multi-)Lorentzian fits.

We scanned the probe energy from 0.56 eV to 2.06 eV, through both the dxy → dxz/yz (α-peak) and dxz/yz → dxz/yz
(β-peak) resonance peaks. We first comment on the probe energy dependence of different phonon amplitudes. For an
electronic resonance whose energy is strongly modulated by phonons, the strongest amplitude of the phonon oscillation
emerges where the first-derivative (slope) of the electronic resonance is the largest [37, 38]. By comparing the phonon
traces in Fig. S2b and the optical conductivity spectra in Fig. S5, it is apparent that the phonon amplitude is the
largest at the rising edge of the two peaks and vanishes when there is a peak or dip in the optical spectrum (i.e. at
1.1, 1.6, and 2.1 eV).

Since the phonons are faint at probe energies perfectly resonant with the dxy → dxz/yz and dxz/yz → dxz/yz
transitions, we chose probe energies at 0.69 and 0.92 eV located at the rising edge of the α-peak, and probe energies
at 1.55 and 1.77 eV located at the rising edge of the β-peak to investigate the phonon dynamics (Fig. S16). We
can always unambiguously resolve the 3.7 THz QOCP regardless of the probe energies. The fluence-dependent FFT
spectra of the 3.7 THz phonon at different probe energies are shown in Figs. S14b,e,h and the data in Fig. 4d are
obtained from fits to these FFT spectra.

To comprehensively understand whether the phonon amplitude anomaly is unique to the 3.7 THz mode, we inves-
tigate the pump fluence dependence of every mode measured over a wide range of probe energies resonant with either
the dxy → dxz/yz or dxz/yz → dxz/yz transition (Fig. S17). This comprehensive plot allows for thorough examina-
tion and cross-checking of the fluence dependence of different modes at various probe energies. The 5.7 THz mode
observed at all the probe energies consistently shows a quasi-linear dependence on the pump fluence, highlighting its
QO-uncoupled nature. Although the 7.5 THz mode only shows at dxz/yz → dxz/yz-resonant probe energies, it also
shows clear linear dependence on pump fluence, in contrast to the 3.7 THz mode in the same probe energy range.
These observations demonstrate that both the 5.7 THz and 7.5 THz modes are not QOCPs.

The 6.1 THz, 9.0 THz, and 9.7 THz modes can only be resolved at probe energies resonant with the dxy → dxz/yz
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Fig. S17. Pump fluence dependence of the amplitude of various phonons probed at select energies. All the data are normalized
by the maximal 3.7 THz phonon amplitude measured at the corresponding probe energies. Thick lines are guides to the eye.
The amplitude of the 9 THz and 9.8 THz modes are shown together because they cannot be clearly distinguished at most probe
energies. The error bars are obtained from the standard deviation of the multi-Lorentzian fitting to the FFT spectra.

transition. They all exhibit quasi-linear fluence dependence within the fitting error bars. There might be a small
deviation from linearity at F > 22 mJ/cm2, but the raw FFT spectra in Fig. S16 still indicate an increase with
fluence without saturation. Therefore, the deviation may result from the imperfect Lorentzian fits. However, since
the 3.7 THz QOCP also does not exhibit clear deviation from linearity at these probe energies, it remains possible
that these modes are QOCP and they might exhibit nonlinear pump fluence dependence if they could be observed
with probe energies resonant with the dxz/yz → dxz/yz transition.
In summary, as we claimed in the main text, the amplitudes of all the other five modes continue to scale linearly up

to F = 25 mJ/cm2 at all the probe energies where they can be observed. This supports our main conclusion that the
3.7 THz mode is a QOCP, while the 5.7 THz and 7.5 THz modes are not. However, we cannot definitively determine
whether the 6.1 THz, 9.1 THz, and 9.7 THz modes are QOCPs, necessitating further research. Regardless, our key
finding remains robust, even if more than one mode is coupled to the QO.
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Supplementary Note 12. Density functional theory simulation results
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Fig. S18. a, DFT-calculated eigenvectors of the 3.8 THz mode and b, the 5.5 THz mode. Grey atoms refer to Ru. Red atoms
refer to O. Blue atoms refer to Ca. The displacement vectors of each atom are denoted with arrows that are exaggerated by 10
times for clarity. c, Optical conductivity along the a-axis in the presence of a static lattice displacement along the eigenvectors
of the aforementioned two phonons. d, DFT-calculated eigenvectors of the tetragonal and e, the orthorhombic octahedral
distortions. The displacement vectors of each atom are denoted with arrows that are exaggerated by 10 times for clarity. f,
The optical conductivity along the a-axis in the presence of a static lattice displacement along the eigenvectors of the two
octahedral distortions. The first derivative of the optical spectra to show the peak position movement is shown in the inset.

We calculated the static optical conductivity spectrum using density functional theory (DFT). The real part of
the optical conductivity along the a-axis exhibits two peaks at around 1 and 2 eV, matching the experimentally
assigned dxy→dxz/yz and dxz/yz→dxz/yz transition peaks (Fig. S18c). We then calculated the phonon modes and
found two A1g phonons at 3.8 and 5.5 THz, in close agreement with the two experimentally resolved modes at 3.7
and 5.7 THz. We then simulated the real-space eigenvectors of these two modes and calculated their induced optical
conductivity changes under the frozen phonon assumption (Figs. S18a-c). Assuming an oxygen atomic displacement
of approximately 0.01 Å(to avoid nonlinearity) along the corresponding phonon eigenvectors, we found that the 3.8
THz mode induces a larger change in optical conductivity than the 5.5 THz mode within our probe energy range.
This result demonstrates a stronger coupling between the 3.8 THz mode and the d-d transition peaks and possibly
explains the direct coupling of the 3.8 THz mode to the QO.

We also calculated the optical conductivity change induced by the two kinds of octahedral eigen-distortions, namely
the tetragonal distortion QEθ and the orthorhombic distortion QEϵ (Figs. S18d-f). We find both modes with similar
amplitudes of oxygen atomic displacement can generate prominent changes in the two optical transition peaks. To
examine the peak position change induced by the two kinds of distortions more definitively, we calculated the first
derivative of the optical conductivity over the probe energy range. The two dips enclosed by the dashed rectangles
in the inset of Fig. S15f represent the position of the two transition peaks. Our results show that the QEθ mode
displaces the lower energy transition peak more than the QEϵ mode, whereas the latter shifts the position of the
higher energy peak more. These observations match our expectation as discussed in the main text. Therefore, our
DFT results support our conjecture that scanning the probe energy from the dxy→dxz/yz to dxz/yz→dxz/yz transition
peak enables a selective coupling to the QEθ and QEϵ component of the phonon, respectively.
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Supplementary Note 13. Relationship between the Ag coherent phonons and octahedral
eigenmodes Q’s

The QO transition is driven by the 3.7 THz phonon mode, which can be mapped onto the two octahedral eigen-
deformations QEθ and QEϵ. This mapping theoretically applies to all phonon eigenmodes. Considering a perfect
octahedron with Oh point group symmetry, any inversion-symmetric distortion can be represented as a superposition
of eigen-distortions respecting A1g, A2g, Eg, T1g or t2g symmetries. Therefore, these eigenmodes form a complete
orthonormal basis for any type of distortion of an isolated octahedron. For the t2g manifold electrons, only six
different distortions respecting A1g, Eg (QEθ, QEϵ), and t2g (QTη, QTξ, QTζ) symmetries are allowed to couple to
the electrons, whose spatial configurations are displayed in Fig. S9.

In other words, any t2g-electron-coupled phonon eigenmodes, regardless of their symmetries with respect to the entire
lattice, is a superposition of the six octahedral eigenfunctions: Q = aAQA+aθQEθ+aϵQEϵ+aηQTη+aξQTξ+aζQTζ ,
where the aâs represent the ratio of different components. Since QA is fully symmetric and JT inactive, the leading-
order bilinear JT coupling term can be expressed as: gE(aθQEθτEθ + aϵQEϵτEϵ) + gT (aηQTητTζ + aξQTξτTζ +
aζQTζτTζ), where gâs are the JT coupling constants and τ âs are the electronic QO parameters. In transition metal
oxides with only static Eg (tetragonal, orthorhombic) distortions like Ca2RuO4, the t2g terms can be omitted because
gT is significantly smaller than gE [30, 31]. Consequently, the coupling strength between the QO and any phonon
mode is determined by g(aθQθτθ + aϵQϵτϵ) (subscript âEâ is dropped for simplicity).
Having established the theoretical foundation, immediate questions are how the 3.7 THz QOCP is mapped to Qθ

and Qϵ and why the other modes are not QOCP. To address these questions, we utilize two methods to demonstrate
how the 3.7 THz mode can be mapped onto Qθ and Qϵ, i.e. obtain aθ and aϵ. Furthermore, we apply the same analysis
to the 5.7 THz phonon as a comparison, which is an unambiguously QO-uncoupled mode due to its consistent linear
fluence dependence across the entire probe energy range.
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Fig. S19. a, Schematic of the tetragonal distortion in the lattice. Only one layer of Ru-O octahedra is shown for clarity. Black
arrows mark the desired displacement of the oxygen atoms, which are shared by two octahedra, in each individual octahedron.
b, Schematic of the eigenvector of the tetragonal distortion in the lattice as marked by the yellow arrows, which are the sum
of black arrows at each atomic position. c, Schematics showing the out-of-plane tilting of octahedra induced by the tetragonal
distortion from the top and side views. Dashed lines indicate the tilting axes. d-f, Same as a-c but for the orthorhombic
distortion.

First, we qualitatively analyzed the components of Qθ and Qϵ, i.e. aθ and aϵ, by examining the amplitude and
direction of the phonon eigenvectors. Ca2RuO4 is composed of in-plane corner-shared octahedra. As the octahedra
undergo distortion, a collective tilting or rotation must follow to accommodate the bond length changes. By considering



25

these geometric constraints, we imposed the required length change in the Ru-O bond of Qθ and Qϵ and simulated
the eigenvectors of Qθ and Qϵ within the entire lattice after accommodating the bond length changes. Interestingly,
we find that the eigenvector of the tetragonal distortion Qθ mainly exhibits an out-of-plane component, indicating
a collective tilting of the octahedra along an in-plane axis (Figs. S19a-c). On the other hand, the eigenvector
of the orthorhombic distortion Qϵ mostly shows an in-plane component, suggesting a collective rotation of all the
octahedra along an out-of-plane axis through the center Ru atoms (Figs. S19d-f). As a result, analyzing the direction
of the eigenvectors allows us to roughly distinguish the components of Qθ and Qϵ for different phonons. Another
distinguishing feature between the two modes is the amplitude of displacement of the apical oxygens. The length of
the apical Ru-O bonds remains unchanged in the Qϵ mode, so the apical oxygen atoms only displace slightly following
the rotation of the octahedron. However, the net displacement of the apical oxygen of the Qθ mode is significantly
larger, due to the combination of tilting of the octahedron and the required length change for Qθ.
We now examine the eigenvectors of the 3.7 THz and 5.7 THz modes obtained from our DFT simulations (Figs.

S18a,b) using the aforementioned two criteria. We find that the eigenvectors of the 3.7 THz mode displays a notably
larger in-plane displacement of the planar oxygens and a larger displacement of the apical oxygens compared to the
5.7 THz mode. These two observations suggest a larger component of both Qθ and Qϵ components in the 3.7 THz
mode compared to the QO-uncoupled 5.7 THz mode. Given the larger projection on Qθ and Qϵ, the 3.7 THz mode
appears to be a more suitable candidate for QOCP than the 5.7 THz mode.

To more quantitatively obtain aθ and aϵ, we calculated the length change in the four planar Ru-O bonds and two
apical Ru-O bonds based on the DFT results. Theoretically, Qθ induces a length change with the same amplitude
(dθ) and sign in the four planar Ru-O bonds, while Qϵ results in a length change with the same amplitude (dϵ) and
opposite signs in the neighboring planar Ru-O bonds. Consequently, the net length change of two neighboring planar
Ru-O bonds should be dθ + dϵ and dθ − dϵ when both distortions are present. The apical Ru-O bond change, on the
other hand, predominantly originates from Qθ. Since dθ : dϵ = aθ : aϵ, analyzing the length change of different Ru-O
bonds provides a direct quantitative way to determine aθ and aϵ. With identical Ca atom displacements for both
modes, we find that the neighboring planar Ru-O bond length change ratio is roughly 1 : 2.36 and 1.29 : 1.32 for the
3.7 THz and 5.7 THz modes, respectively. This indicates that aθ : aϵ = 1.68 : 0.68 and 1.31 : 0.01 for the two modes,
respectively. In other words, the projection on Qθ (aθ) of the 3.7 THz mode is nearly 1.68/1.31 = 1.3 times higher
than that of the 5.7 THz mode. This is further corroborated by the length change in the apical Ru-O bond, with the
3.7 THz mode exhibiting nearly double the bond length change compared to the 5.7 THz mode. On the other hand,
the projection on Qϵ (aϵ) of the 5.7 THz mode is nearly zero. The negligible composition of Qϵ in the 5.7 THz mode
explains the absence of phonon amplitude saturation (which is most apparent in Qϵ) in the 5.7 THz mode.

Based on the aforementioned qualitative and quantitative analysis, we have demonstrated that both aθ and aϵ are
higher in the 3.7 THz mode. However, the formula g(aθQθτθ+aϵQϵτϵ) indicates that the coupling strength to the QO
is also determined by g in addition to aθ and aϵ. Interestingly, our DFT simulation (Fig. S18c) has shown that the
3.7 THz mode induces a larger change in optical conductivity than the 5.5 THz mode at the probe energies sensitive
to both Qθ and Qϵ modes. This result indicates a larger g of the 3.7 THz mode, further supporting that the 3.7 THz
mode is strongly coupled to the QO.

Again, we note that Qθ and Qϵ are not actual phonon eigenmodes of Ca2RuO4 but two eigen-deformations of an
octahedron. For the QOCP, which can map onto Qθ and Qϵ, they both have the same frequency at 3.7 THz. Similarly,
for the 5.7 THz QO-uncoupled mode, which can also map onto Qθ and Qϵ but with smaller components, these two
modes will also have the same frequency at 5.7 THz. Therefore, they will always have the same frequency as the
phonon mode they derive from.
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Supplementary Note 14. Justification of the impulsive excitation of QOCP
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Fig. S20. a, Schematics of real and imaginary FFT spectra of damped cosinusoidal functions of different phases as denoted.
b, Complex FFT spectra measured with a pump fluence of 9 mJ/cm2 and 1.77 eV and 0.92 eV probes. Thin lines indicate
the phonon positions. c, Fluence dependence of the amplitude of ∆R/R(t = 0), the 3.7 THz phonon, and the 5.7 THz phonon
measured at 1.77 eV probe. Gray lines are linear and quadratic fits. The error bars are obtained from the standard deviation
of fitting.

Impulsive stimulated Raman scattering (ISRS) occurs in the transparent regime, exciting coherent phonons with a
sinusoidal oscillation [23]. On the other hand, displacive excitation of coherent phonons (DECP) relies on real elec-
tronic excitations, which modifies the PES and dominates the absorbing regime, resulting in a cosinusoidal oscillation
of the phonons [32]. To ensure predominantly impulsive excitation, we choose a pump photon energy well below the
Mott gap and far away from phonon resonances to maximize (minimize) transmission (absorption coefficient). Our
selection is supported by previous optical spectroscopy measurements, demonstrating at least one order of magnitude
higher transmission and nearly 16 times smaller absorption coefficient at the pump energy (0.3 eV), as compared to
1.1 eV where the first absorption peak occurs [26, 39].

The assumption that the QOCP is impulsively excited is further justified by two observations. First, the phase
of the 3.7 THz mode is close to ±π/2. We directly complex Fourier transform the background-subtracted transient
reflectivity traces at different probe energies. Assuming a damped cosinusoidal function A exp(−t/τ) cos(ωt+ ϕ),
where A, τ , ω, and ϕ are the amplitude, lifetime, frequency, and phase of the phonon, the phase ϕ can be directly
obtained by simultaneously comparing the real and imaginary part of the FFT spectra as shown by the schematics in
Fig. S20a. Our results show that the FFT spectra of QOCP better match the spectra of ϕ = ±π/2 at probe energies
resonant with both α-peak (0.92 eV) and β-peak (1.77 eV), corroborating the ISRS mechanism (Fig. S20b).
Second, the linear pump fluence dependence of QOCP amplitude before saturation argues against the prediction

of the DECP mechanism but matches the prediction of the ISRS mechanism. The DECP mechanism predicts a
phonon amplitude proportional to carrier density n. In the above-gap pumping case, carriers are generated through
linear absorption and n is proportional to F ; in the subgap pumping case, carriers are nonlinearly generated through
either multi-photon absorption or quantum tunneling processes, which gives rise to a superlinear F -dependence of n.
Previous work on Ca2RuO4 already showed that subgap pumping leads to nonlinear carrier generation [17], manifested
through a superlinear fluence dependence of ∆R/R(t = 0), which is proportional to n (Fig. S20c). Therefore, if the
QOCP is launched displacively, its amplitude should scale superlinearly with F like ∆R/R(t = 0). However, we
observed a linear fluence dependence of the QOCP before its amplitude saturates, thus refuting the DECP scenario.
On the other hand, the impulsively excited phonon is stimulated through a two-photon Raman scattering process,
whose amplitude is proportional to the square of the electric field strength E2 (i.e. F ), independent of the pump
photon energy. This is consistent with our observation. Consequently, the evidence once again supports the dominance
of the ISRS mechanism over DECP.

Nevertheless, it is important to acknowledge that despite the QOCP being predominantly impulsively excited, we
cannot completely exclude a small finite contribution of DECP. Importantly, however, even if the QOCP is displacively
excited, the switch of hidden QO would still occur and our main conclusions would remain unchanged. This is because
the QO switch is induced by the coherent phonon oscillation and is independent of the specific mechanism that drives
the phonon at t = 0.



27

Supplementary Note 15. Temperature, probe energy, and fluence dependence of the
QOCP phase
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Fig. S21. a, Temperature dependence of the 3.7 THz phonon phase measured with a pump fluence of 15 mJ/cm2 and probe
at 1.55 eV and 0.69 eV. The dashed line marks TQO. b, Probe energy dependent background-subtracted reflectivity transient
spectrum measured with a pump fluence of 12 mJ/cm2 at 80 K. Dashed lines denote the positions of α- and β-peaks. Inset
shows if phonon modulates the position of the electronic resonance, the measured phase below and above the peak will be
opposite. c, Fluence dependence of the QOCP amplitude from the simulation. Gray shaded area marks the fluence range
where the final metastable state is a different QO, while white shaded area marks the fluence range where the final metastable
state is the initial QO. d, Fluence dependence of the 3.7 THz phonon phase measured at select probe energies at 80 K. The
error bars are obtained from the standard deviation of the multi-Lorentzian fitting to the FFT spectra.

First, we discuss the temperature dependence of the QOCP phase. As reported in Ref.[16], the π-phase flip stems
from a static antipolar distortion of the apical oxygen atoms developing around TQO. Therefore, this phase flip should
also manifest in our experiment. As expected, our temperature-dependent 0.3 eV pump experiment shows a similar
π-phase flip around TQO with probe energies resonant with either α- or β-peaks (Fig. S21a), in agreement with
Ref.[16].

We next comment on the probe energy dependence of the phonon phase. For an electronic resonance whose energy
is strongly modulated by phonons, the phonon oscillation reaches its peak amplitude where the first-derivative (slope)
of the electronic resonance is the largest [37, 38]. Moreover, the phonon oscillation should host opposite phases below
and above the peak position, due to the phonon modulation of the position of the electronic resonance (Fig. S21b
inset). By comparing the phonon time traces (Fig. S21b) and the optical conductivity spectra (Fig. S5a), it is
apparent that not only the phonon amplitude is large when the probe energy coincides with the rising edge of the two
peaks and vanishes when there is a peak or dip in the optical spectrum (i.e. at 1.1, 1.6, and 2.1 eV), but a π-phase
difference between the phonon phase below and above the α-peak position can also be resolved. This phenomenon,
signifying the position of electronic resonances, has been observed elsewhere [38].

Moving on to the fluence dependence of the QOCP, we need to first emphasize that the phonon phase is ill-defined
for an anharmonic potential, especially in the vicinity of a photo-induced phase transition as in our case. There are
two factors preventing us from drawing a definitive conclusion from the experimental results. First, according to the
simulation, the phonon phase should deviate from π/2 when the QO switch occurs. However, due to the dynamical
nature of the transition, the phase shift only occurs after the switch is completed, taking at least half of the phonon
period. Moreover, the initial direction of the phonon oscillation, unlike the cases of changing temperature or probe
energy, remains unchanged as the initial static condition is independent of pump fluence. In other words, the phonon
phase evolves as a function of time, making a strict definition of phonon phase challenging. Second, as discussed
in Note 9, the system may transiently traverse multiple PES minima when the pump fluence is high. Moreover, as
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shown by a more comprehensive dynamical simulation using our microscopic model, the final metastable state, which
is either the initial or a different QO, sensitively depends on the pump fluence (Fig. S21c white and gray regions).
Therefore, in the gray fluence range where the final state is a different QO, the phonon phase will deviate from the
low fluence regime where no transition occurs. However, in the white regions where the transition to a different order
is only transient and the system finally relaxes back into the original QO, the long-time phonon phase should still be
nearly identical to that of the low fluence regime. This complexity precludes obtaining a meaningful phonon phase.
Due to these difficulties and our limited fluence sampling, we refrain from drawing any quantitative conclusions from
our experimental data (Fig. S21d).
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Supplementary Note 16. Estimate of the light-induced atomic displacement

To estimate the atomic displacement induced by the impulsive stimulus, we use the following expression [23, 40, 41]:

UA1
≈

√
3.8× 10−3BA1F

ρνA1
D|ε|

∂ε1
∂ω

(S11)

where ε = ε1 + iε2 is the complex dielectric constant (|ε| ∼ 7), νA1
is the phonon frequency (3.7 THz), ∂ε1

∂ω (∼ 5

eV−1), D = ( 1
R ) ∂R∂E (∼ 0.1 eV−1) [26, 39], and ρ (2.69 amu/Å3) is the density of mass, BA1 is the phonon amplitude

in transient reflectivity (∼ 3× 10−3), and F is the fluence of the pump pulse (∼ 15 mJ/cm2). This gives rise to an
atomic displacement of ∼ 0.02 Å, in qualitative agreement with the length difference between the planar and apical
Ru-O bonds ∼ 0.03 Å[15, 35] — according to our theory, as the quadrupolar order is switched from dxy-dominated to
dxz/yz-dominated, the bond length between the planar and the apical Ru-O bonds should also undergo a switch. The
qualitative agreement between the estimated value and the real bond difference serves as evidence that the transient
QO transition is indeed achievable at the critical pump fluence employed in our study.
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Supplementary Note 17. Robustness of the QO switch against nonlinear doublon-holon
generation

To impulsively excite Raman active phonons with large amplitude while minimizing heating due to absorption,
we choose the pump photon energy well below the Mott gap and far away from phonon resonances. However,
previous work studying the electronic responses of the same material under identical conditions reveals that despite
the subgap pumping, doublon-holon pairs are still generated nonlinearly [17]. Carrier excitation may transiently
modulate the PES, leading to a displacive excitation of phonons. However, the QOCP is predominantly excited by
impulsive excitation based on two observations, which is justified in Note 14. One observation is that the phase
of the QOCP is close to ±π/2, matching the expectation for an impulsively excited phonon and arguing against
the displacive excitation scenario. The second observation is that the QOCP amplitude scales linearly with fluence
before it saturates, which is inconsistent with a displacive excitation mechanism. This is because the amplitude of
phonons excited displacively scales linearly with carrier density, but the carrier density exhibits a superlinear fluence
dependence for subgap pumping either through multi-photon or quantum tunneling processes. Rather, our results
are consistent with the impulsive Raman scattering process (Fig. S20). Therefore, the nonlinear carrier generation
does not affect the predominantly impulsive excitation of QOCP and the QO switch. Moreover, we would like to note
that even if the excitation were displacive, the QO switch can still be induced by the coupled phonon excitation and
our main conclusion is still valid. This is because the QO switch is induced by the coherent phonon oscillation and is
independent of the specific mechanism that drives the phonon at t = 0. Therefore, the nonlinear carrier generation
does not affect our main conclusion that a coherent phonon can induce a switch to a hidden quadrupolar-ordered
state.
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[35] Braden, M., André, G., Nakatsuji, S. & Maeno, Y. Crystal and magnetic structure of Ca2RuO4 magnetoelastic coupling
and the metal-insulator transition. Phys. Rev. B 58, 847–861 (1998).

[36] Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).
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