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Entanglement is one of the physical properties of quantum systems responsible for the computational
hardness of simulating quantum systems. But while the runtime of specific algorithms, notably tensor
network algorithms, explicitly depends on the amount of entanglement in the system, it is unknown
whether this connection runs deeper and entanglement can also cause inherent, algorithm-independent
complexity. In this Letter, we quantitatively connect the entanglement present in certain quantum systems
to the computational complexity of simulating those systems. Moreover, we completely characterize the
entanglement and complexity as a function of a system parameter. Specifically, we consider the task of
simulating single-qubit measurements of k-regular graph states on n qubits. We show that, as the regularity
parameter is increased from 1 to n − 1, there is a sharp transition from an easy regime with low
entanglement to a hard regime with high entanglement at k ¼ 3, and a transition back to easy and low
entanglement at k ¼ n − 3. As a key technical result, we prove a duality for the simulation complexity of
regular graph states between low and high regularity.
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A fundamental question since the inception of quantum
computing has been to understand the physical mechanisms
underlying the computational speedup of quantum com-
puters. One of the most widely studied resources for
quantum speedups is entanglement [1,2]. However, under-
standing precisely howmuch entanglement is necessary and
sufficient for a quantum system to be intractable to arbitrary
classical simulation techniques has remained elusive.
Quantum computations involving next to no entanglement
can be hard to simulate classically [3–5] and relatively
little entanglement can be universal for quantum computa-
tion [6–8], while states with very high entanglement can be
useless for quantum computation [9,10].
One way the relation between entanglement and hardness

has been studied is by considering the performance of
specific simulation methods, like tensor networks [11–14].
The runtime of tensor-network algorithms depends expo-
nentially on the amount of a certain type of entangle-
ment [1,11,12], as it determines how efficiently we can
contract the tensor network. However, it is an open problem
to characterize the situationswhere tensor networkalgorithms
are optimal. When can we find another algorithm that could
do better in situations where tensor networks are inefficient?
Moreover, when does the failure of tensor networks coincide
with an inherent hardness of the problem itself? This
essentially is the content of the second of Aaronson’s “ten
semi-grand challenges for quantum computing theory” [15].
The effect of the presence of entanglement on hardness

of classical simulation has been considered in various

settings including measurement-based quantum computing
(MBQC) [9,10,16,17], the one-clean-qubit model [18], and
more recently in a line of research considering the time
evolution under certain classes of Hamiltonians [19,20].
However, we lack a quantitative connection between the
entanglement present in certain quantum states and the
inherent computational complexity of simulating them.
In this Letter, we answer Aaronson’s question quantita-

tively with respect to the entanglement of regular graph
states. For a simple graph G ¼ ðV; EÞ given by vertex
set V and edge set E, the corresponding graph state jGi is
defined as

jGi ¼
Y

ði;jÞ∈E
ðCZÞi;jjþi⊗n; ð1Þ

where CZi;j is the controlled-Z operator acting on vertices i
and j. The action of theCZi;j gate is invariant to changing the
control and target qubits. Graph states [21] are a very well-
motivated class to investigate the interplay of classical
simulability and entanglement. On one hand, a graph state
directly maps to a tensor network, and one can invoke the
measurement-basedmodel of quantum computing [6,22,23]
to argue that certain graph states are not efficiently simulable
and are, moreover, universal resources for quantum com-
putations. On the other hand, their entanglement can be
conveniently analyzed using graph theory [7].
Examples of universal resource states are graph states

on hexagonal, square, or triangular lattices [24,25]. Under
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closed boundary conditions these resource states corre-
spond to 3-, 4-, and 6-regular graphs, respectively.
Conversely, graph states on a 2-regular graph, i.e., a
one-dimensional cluster state, and the graph state on an
(n − 1)-regular graph on n qubits, i.e., the complete graph,
are also well studied: both are efficiently simulable and at
the same time have low entanglement [7,25,26]. However,
for all other values of the regularity parameter k, it is
unknown exactly when, if at all, classical simulation is
intractable, and how the regularity parameter relates to the
entanglement of the corresponding graph state.
Our contributions.—In this Letter, we completely

characterize the computational complexity of simulating
k-regular graph states in arbitrary product bases and their
entanglement as a function of the regularity parameter k;
see Fig. 1. We also identify new resource states for MBQC:
a result of independent interest. Our constructions reach all
the way to almost fully connected graphs that may be more
natural for some experimental architectures such as ion
traps [27] or cavity quantum electrodynamics [28] than
low-degree lattices.
Our two main results are summarized as follows and are

illustrated in Fig. 1(b). (i) As the regularity parameter k is
increased from its minimal value of 1 to its maximal value of
n − 1, the simulation complexity first sharply changes from
easy to provably hard precisely at k ¼ 3, but then changes
sharply back to easy again at k ¼ n − 3. (ii) The entangle-
ment scaling, measured by entanglement width [25],
one-to-one corresponds one-to-one with simulation com-
plexity, changing from constant to at least logarithmic to
constant at the same values of k at which the simulation
complexity changes from easy to hard and back to easy.
Qualitatively, entanglement width measures the entan-

glement of “treelike” bipartitions of the state: this directly
determines the runtime of tensor-network algorithms. It is
also a local operations and classical communication
(LOCC) monotone and hence a meaningful measure of
entanglement [6].

We consider simulation of quantum states in terms of
both sampling from their output distributions and comput-
ing output probabilities up to constant multiplicative error
in an arbitrary local product basis. Indeed, in the case where
simulation is hard, the two notions of simulation are
intricately linked: given that computing output probabilities
to constant multiplicative error is harder than any problem
in the complexity class GapP, the sampling task cannot be
efficiently solved. This can be shown by a standard
reduction due to Ref. [29].
No general tool exists to pinpoint when entanglement

produces simulation hardness. What we can say is some-
thing weaker: there is no known class of circuits such that
computing output probabilities is GapP-hard but the
circuit does not produce entanglement.
However, even for those instances, it is not clear that

entanglement is what is producing the hardness, as there are
other quantum resources present. Our Letter provides one
of the first examples where entanglement can justifiably be
said to produce simulation hardness.
We do this by appending single-qubit rotations at the

end to perform the measurement in arbitrary local bases.
This ensures all known classical simulation algorithms for
quantum circuits that exploit specific quantum resources—
in particular, low stabilizer rank or T-count [30,31] and low
negativity in quasiprobability representations [32–36]—
are rendered inefficient. But, the last layer of local rotations
does not affect the entanglement of the quantum state.
So, local rotations enable us to understand to what extent
entanglement present in a state serves as a necessary and
sufficient criterion characterizing simulation complexity.
We have thus identified a setup where all known easy

cases are efficiently simulable precisely because of the state
having little entanglement. Additionally, all other cases are
provably hard to simulate because the entanglement present
in the system facilitates universal measurement-based
quantum computation, as we detail below. To the best of
our knowledge, this is the first setup where both features are

FIG. 1. (a) The family of quantum states we consider are graph states on a k-regular graph G on n qubits with arbitrary single qubit
rotations U1; U2;…; Un. The measurements are done in the standard basis. (b) Phase transitions of the entanglement (as measured by
entanglement width) and computational complexity—whether classical simulation is easy or hard—as a function of the regularity
parameter k. For both the entanglement width and the computational complexity, we take the worst case over all k-regular graphs G as
well as U1; U2;…; Un.
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simultaneously demonstrated; moreover, the entanglement
and complexity transitions, as a function of a natural system
parameter, are sharp.
Main results.—In the hard regime, our proofs also rely

on showing GapP-hardness of estimating probabilities—
of a specific family of k-regular graphs in a specific family
of local bases—implying the hardness of sampling.
Conversely, easiness of sampling and computing output
probabilities up to constant multiplicative error are inde-
pendent properties and not implied by one another.
However, our proofs in the easy regimes show that both
tasks are efficiently possible for our particular setup.
Specifically, we prove the following results.
Theorem 1: The easy regime.—In the regimes of very

low (k ≤ 2) and very high (k ≥ n − 3) regularity, locally
rotated k-regular graph states (a) have constant entangle-
ment width, and (b) can be simulated by a polynomial time
classical algorithm.
For all other values of k, we show that classical

simulations are not efficiently possible:
Theorem 2: The hard regime.—For every 3 ≤ k ≤ n − 4,

there exist locally rotated k-regular graph states such that
(a) these states cannot be simulated classically in poly-
nomial time, assuming the PH is infinite, (b) the entangle-
ment width scales at least logarithmically. We also get the
following corollary:
Corollary 3.—For every 3 ≤ k ≤ n − 4, assuming

BPP ⊊ P#P, there exist k-regular graph states satisfying
Theorem (a) such that their entanglement width is
superlogarithmic.
Assuming stronger hardness conjectures, the lower

bounds on the entanglement width can be sharpened to
ΩðnδÞ for some constant δ > 0 (assuming the exponential
time hypothesis) and to Ωðn1=2Þ (assuming the strong
exponential time hypothesis).
The complexity class P#P is as defined in [37]. Let us

note that our hardness results—while stated for the worst
case—are in fact also valid on average over the local
rotations via worst-to-average case reductions [38,39] (see
Sec. 5 of the Supplemental Material [40] for details.)
Together, our results completely characterize the classical
simulability of locally rotated regular graph states as a
function of the regularity parameter in terms of both
sampling and computing probabilities.
Proof of easiness results.—In order to prove our easiness

results, we utilize connections between entanglement width
and classical simulations of graph states. Let the entangle-
ment width of a graph G be ewðjGiÞ; see Refs. [25,40] for
the precise definition.
First, note that for k ∈ f1; 2; n − 3; n − 2; n − 1g,

ewðjGiÞ is a constant for every G ∈ Gk, where Gk is the
set of all k-regular graphs. To see this, we make use of
relations between entanglement width of a graph state jGi
and width measures of the underlying graphG. Particularly,
entanglement width is equal to the rank width of the

underlying graph for graph states. Furthermore it can be
related to the tree width and clique width of G [25]. All
these width measures express how treelike the graph is
from different perspectives [40]. 1- and 2-regular graphs
have bounded tree width, which implies they have bounded
rank width and therefore bounded entanglement width.
Additionally, rank width, and hence, entanglement width,
satisfy a duality property: if it is bounded for a graphG, it is
also bounded for the complement Ḡ of G [48,49]. This fact
allows us to argue that (n − 3)–and (n − 2)-regular graphs
have bounded entanglement width.
Qualitatively, graph states with low entanglement width

are efficiently simulable via tensor network simulation
methods by the technique of Ref. [17]. For a graph G, the
idea is to construct a tree-tensor-network decomposition
of a graph state jGi. This takes time polyðn; 2ewðjGiÞÞ.
Given this decomposition, and using the techniques of
Refs. [11,12,17], one can compute any output probability
under any set of local rotations. Additionally, one can also
sample from the resulting output distributions.
Hamming weight symmetry for the complete graph.—

For the complete graph—, i.e, the (n − 1)-regular graph—
we construct a new recursive algorithm that allow us to
simulate arbitrary single-qubit product measurements.
Specifically, our approach requires an inherent symmetry

of the complete graph: the fact that any output probability
of the complete graph on n vertices has a Hamming weight
symmetry—it can be written as a linear combination of
nþ 1 many terms, one for each Hamming weight, such
that each of them is efficiently computable. See the
Supplemental Material [40] for details.
While it is known that output probabilities of the

complete graph can be computed efficiently [7,25,26], to
the best of our knowledge, our approach is novel and might
have applications elsewhere to prove easiness, especially in
problems having a Hamming weight symmetry. Some
recent works have used this symmetry to devise classical
algorithms for quantum simulation [50,51].
Proof of hardness for 3 ≤ k ≤ n=2.—In order to prove

hardness, we use the fact that certain graph states are
resources for MBQC. Using Aaronson’s result that
postBQP ¼ PP [52], the output probabilities of a resource
state for MBQC with local rotations are GapP-hard to
compute [6,53–55]. Then, using Stockmeyer’s theorem, it
is not possible to efficiently sample from their output
distribution unless the polynomial hierarchy collapses [29];
see Ref. [56] for an overview of this argument. In particular,
this is true for the square lattice and the hexagonal
lattice [24].
Furthermore, we exploit the fact that certain single-qubit

Clifford operations on a graph state jGi, with classical
communication and standard basis measurements, result in
vertex deletion and local complementation of G [57]. Local
complementation flips the neighborhood of a vertex:
connected vertices in the neighborhood are disconnected,
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and any two disconnected vertices are joined by an edge.
This is illustrated in Fig. 3. It is known that if we transform
a parent graph G to a hexagonal or grid graph by vertex
deletion and local complementation, then jGi is a universal
resource for MBQC and hence hard to simulate [25,54].
Our construction starts from the observation that hexa-

gonal and square lattices with closed boundary conditions
on the torus are, respectively, 3- and 4-regular graphs.
These are universal resources for MBQC, since we can
reach planar hexagonal and square lattices by vertex
deletion: we “cut” the torus open, see Fig. 2(a). Conse-
quently, computing the output probabilities of G in an
arbitrary local basis is GapP-hard for 3- and 4-regular
graphs.
For graphs with higher regularity, we need more

involved constructions. We reverse engineer k-regular
resources by starting from the 4-regular resource state—
the square lattice on a torus—and boost it up to k regularity
by adding gadgets, which can be removed by local
complementation or vertex deletion.
In light of this, starting froma grid graph on a torus, i.e., an

n vertex, 4-regular graph, we add just a single gadget,
namely, another grid graph on a torus, see Fig. 2(b).We then
judiciously connect two grid graphs in a way such that every
vertex is k-regular. It is nontrivial to argue that such a
connection pattern even exists. We prove it does using the
Gale-Ryser theorem [58–60], for every 4 < k ≤ n=2. The
Gale-Ryser theorem is constructive. Thus, our constructions
prove that there exists an explicitn-vertex, k-regular graphG
such that computing the output probabilities of G in an
arbitrary local basis is GapP hard, for every 4 ≤ k ≤ n=2.
The duality property.—Finally, we show that the com-

plexity of simulating graphs with low regularity and graphs

with high regularity satisfies a duality. Specifically, we
prove that the complement of an n × n hexagonal graph
or grid graph is a resource state for MBQC. Hence, the
corresponding (n − 4)–regular graph state is universal
under postselection, and simulating product measurements
of it is classically intractable.
To see this, consider an n × n grid graph G, and mark

three vertices—a corner vertex of degree 2, and its two
neighbors, see Fig. 4. Denote these vertices by a (pink
vertex), b, and c (green vertices). Now, in the complement
graph Ḡ, apply local complementation to vertexa, that is, we
take the complement of the neighborhood of a. Then delete
vertices a, b, c, and subsequently, delete all vertices
in the same row and column as a in G. We are left with
an ðn − 1Þ × ðn − 1Þ grid graph, which is a resource state for
MBQC. An analogous strategy shows that the complement
of an n × n hexagonal lattice is also a resource state
for MBQC.
Proof of hardness for n=2 < k ≤ n − 4.—We now

extend our hardness proof to the regime of n=2 <
k ≤ n − 4. The idea is to take the hard graphs we con-
structed for 4 ≤ k ≤ n=2, comprising two copies of the grid
graph on the torus, and then complement those hard graphs.
If we started with a k-regular graph, after complementation,
we are left with an ðn − k − 1Þ-regular graph. We then
delete all vertices which were part of the second grid graph
in the original graph and then apply local complementation
to one of the vertices and vertex deletion in the column and
row of that vertex.
As a consequence, we obtain an explicit duality of

simulation complexity between regimes of high and low
regularity. That is, we find that there is an explicit n-vertex,
k-regular graph G such that computing the output proba-
bilities of G in an arbitrary local basis is GapP-hard, for
every n=2 < k ≤ n − 4.
Finally, we obtain bounds on the entanglement width of

regular graphs in the easy regime using width measures
from graph theory [48,49,61–69], specifically tree width,
rank width, and clique width, which can be related to the
entanglement width.
Outlook.—We have completely resolved Aaronson’s

question for regular graph states, going significantly beyond

FIG. 3. To perform local complementation LCðG; aÞ of a graph
G with respect to vertex a (pink), we take the complement of the
subgraph comprising the neighbors of the pink vertex (green).

FIG. 2. (a) A grid graph with closed boundary conditions is a torus, which is a 4–regular graph. This is a resource state for MBQC:
“cutting open” the torus along the pink lines gives back a grid graph. (b) Two tori connected together to construct a 5–regular graph. The
pink vertices are ones we delete to recover a grid graph, which proves that this is a valid resource state for MBQC.

PHYSICAL REVIEW LETTERS 131, 030601 (2023)

030601-4



initial results on the interplay between simulability and
entanglement in Refs. [16,17,25].
An immediate follow-up problem is to characterize the

interplay between entanglement and simulation complexity
of more restricted, physical families of graphs such as
planar or bipartite graphs. Our gadgets do not obviously
generalize to more restricted cases. Hence, we need new
techniques to prove hardness.
Additionally, we can ask: can Aaronson’s question of

which systems are classically simulable be resolved gen-
erally, or even for slightly more general setups beyond
graph states? Beyond graph states, entanglement width is
not always related to classical simulation complexity: it
remains open if there is a universal single physical property
that fully determines simulation complexity.

We thank Joe Fitzsimons for sharing his hints regarding
the recursive algorithm for complete graphs, and Misha
Lavrov for sharing his hint regarding constructing the gadget
of the hardness proofs. S. G. thanks Kunal Marwaha for
helpful comments about the manuscript. We are grateful to
the Simons Institute for the Theory of Computing, where
parts of this work was conducted while some of the authors
were visiting the institute. A. D. acknowledges funding
provided by the National Science Foundation RAISE-
TAQS 1839204 and Amazon Web Services, AWS
Quantum Program. The Institute for Quantum Informa-
tion and Matter is an NSF Physics Frontiers Center (NSF
Grant PHY-1733907). B. F. and S. G. acknowledge support
from AFOSR (FA9550-21-1-0008). A. V. G. was supported
in part by theDOEASCRAcceleratedResearch inQuantum
Computing program (Grant No. DE-SC0020312), NSF
QLCI (Grant No. OMA-2120757), DOE ASCR Quantum
Testbed Pathfinder program (Grant No. DE-SC0019040),
NSF PFCQC program, AFOSR, AFOSR MURI, ARO
MURI, and DARPA SAVaNT ADVENT. Support is also
acknowledged from the U.S. Department of Energy, Office
of Science, National Quantum Information Science
Research Centers, Quantum Systems Accelerator. This
material is based upon work partially supported by the
National Science Foundation under Grant CCF-2044923

(CAREER) and by theU.S. Department of Energy, Office of
Science, National Quantum Information Science Research
Centers (Q-NEXT) as well as by DOE QuantISED grant
DE-SC0020360. This research was also supported in part
by the National Science Foundation under Grant No. NSF
PHY-1748958. D. H. acknowledges financial support from
the U.S. Department of Defense through a QuICS Hartree
Fellowship.

S. G. proved the results and wrote the initial draft of
the manuscript. A. D., D. H., A. G., and B. F. contributed
equally in helping to develop the setting, helping with the
proofs, and finalizing the manuscript.

[1] G. Vidal, Efficient Classical Simulation of Slightly
Entangled Quantum Computations, Phys. Rev. Lett. 91,
147902 (2003).

[2] R. Jozsa and N. Linden, On the role of entanglement in
quantum computational speed-up, Proc. R. Soc. A 459,
2011 (2003).

[3] E. Knill and R. Laflamme, Power of One Bit of Quantum
Information, Phys. Rev. Lett. 81, 5672 (1998).

[4] E. Biham, G. Brassard, D. Kenigsberg, and T. Mor,
Quantum computing without entanglement, Theor. Comput.
Sci. 320, 15 (2004).

[5] A. Datta, S. T. Flammia, and C. M. Caves, Entanglement
and the power of one qubit, Phys. Rev. A 72, 042316 (2005).

[6] R. Raussendorf, D. Browne, and H. Briegel, The one-way
quantum computer–a non-network model of quantum com-
putation, J. Mod. Opt. 49, 1299 (2002).

[7] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. V. den Nest,
and H.-J. Briegel, Entanglement in graph states and its
applications, arXiv:quant-ph/0602096.

[8] M. Van den Nest, Universal Quantum Computation with
Little Entanglement, Phys. Rev. Lett. 110, 060504 (2013).

[9] M. J. Bremner, C. Mora, and A. Winter, Are Random Pure
States Useful for Quantum Computation?, Phys. Rev. Lett.
102, 190502 (2009).

[10] D. Gross, S. T. Flammia, and J. Eisert, Most Quantum
States Are Too Entangled to be Useful as Computational
Resources, Phys. Rev. Lett. 102, 190501 (2009).

FIG. 4. A visual proof that the complement of a grid graph is a resource state for MBQC. (a) A 3 × 3 grid graph G. Consider (b) Ḡ—
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